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Introduction

Nowadays we are seeing an amazing grown up of IoT usage and its tremendous
applications in the human life. IoT smart devices are spreading in all aspects of our
society, including industry, smart health, smart city, smart home, smart transport,
smart sport and many others.

Communication mechanism, long range wireless technologies seem to be partic-
ularly adapt for IoT applications. Examples are SigFox, NB-IoT, LTE-M, and Lo-
RaWAN. In particular LoRaWAN is currently having a lot of attentions and deploy-
ments.

LoRaWAN is a low-power radio access and system architecture for LoRa devices
and it is an open network standard developed by a non-profit association called LoRa
Alliance. It is based on LoRa, a proprietary physical layer developed by Semtech Cor-
poration. It is a universal standard for LoRa communication technology and provides
solid connectivity between devices and networks without the need for complex in-
stallation. As designed for IoT applications, LoRa complies with important technical
requirements such as two-way communication, end-to-end security, mobility and lo-
calization services. LoORaWAN specifications directly face different relevant aspects
like device battery life, network capacity, quality of service, security and the variety
of applications provided by the network.

One of the practical advantages of LoRaWAN is that it provides a complete
and light IoT architecture for connecting low-power devices, using the long range
wireless technology. LoORaWAN devices can be seen as LoRa converters which con-

vert sensor digital data (e.g. soil moisture) to LoRa messages and send them to an
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application-server through one or more LoORaWAN gateways and proper backend sys-
tem. The success of LoORaWAN in the last years is demonstrated by the appearance
of large number of LoORaWAN devices and systems.

In this scenario security becomes a crucial aspect and it is essential to protect
both the devices used by these systems and the data they exchange.

Indeed, given the broad utilization of IoT devices, malicious manipulations could
cause deep implications on the security and the strength of the entire Internet. The
Cyber attack launched by the Mirai malware [1] represents a clear example of the
severity caused by instrumenting zombified IoT devices (bots) to launch a larger
DDoS attack, and testifies the necessity of secure authentication mechanisms [2],

together with proper traffic classification techniques.

0.1 Problems and Solutions

Unfortunately the constrains existing in several IoT devices, such as low compu-
tation power, low memory and constrained power sources, make it troublesome to
apply current security solutions utilized in the standard Internet and solid cryptog-
raphy mechanisms. For these reasons novel security measures ought to be outlined
and be optimized taking into consideration the being special properties of the IoT
environment.

Since the communication often performs over the Internet, IoT environment is
vulnerable to several security threats. Thus implement secure infrastructure and se-
cure communication between IoT components in this massive network has become a
significant issue.

As the most founded attacks in IoT systems has been done on the network layer,
so analyzing network layer is more in notice to physical layer and application layer.
However, this engagement raises serious issues since a lot of network traffic as well as
many different traffic classes exist, e.g., those generated from industrial machineries,
driverless cars, health sensors, smart homes and other critical devices. As such, the
requirements of various IoT applications demand for more security and protection

that, in turn, involve accurate classification of network traffic to early detect attacks
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and perform proper countermeasures.

One important aspect in the protection of an IoT system is the possibility of early
detection of possible attack attempts. Therefore, The need for early detection of IoT
malicious traffic is a current hot topic, but the methods currently available, even those
based on artificial neural networks are not satisfying for different reasons: i) do not
reach yet the maximum possible accuracy, ii) most of the time have been tuned based
on local ad hoc traffic datasets from one single network scenario, and iii) sometimes
do not consider actual IoT traffic at all. In this research a novel applicable and effec-
tive model based on neural network have been worked up. Main contribution on this
aspect includes:

* the analysis of recent IoT datasets publicly available;

* the creation of a large dataset of IoT traffic, encompassing different types of
IoT attacks, and the computation of a large set of features, to foster new anal-

yses and researches;

* the design and implementation of a deep neural network classifier, capable to
achieve very high accuracy, more than all similar contributions in the recent
literature, over a dataset made of traffic from different networks.

From the application point of view, in order to study and use IoT specific pro-
tocols and systems, a smart agriculture and precision irrigation scenario has been
considered. This scenario has been also the focus of the Emilia-Romagna funded
project POSITIVE (Protocolli operativi scalabili per 1’agricoltura di precisione).

In this application scenario, security aspects related to LoORaWAN systems have
been studied, and an extensive experimentation activity have been carried out. Dif-
ferent hardware and software LoORaWAN systems have been tested, and an integrated
testbed formed by different sensor devices, gateways and LoRaWAN open networks
has been deployed.

When trying to integrate different IoT platforms in a larger IoT system, possibly
formed by both LoRaWAN and non-LoRa devices, some complications may arise
without any off-the-shelf solution for the user. For this reason we studied and pro-

posed possible interworking solutions, covering the cases when:
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* non-LoRa devices need to be connected to to a LoRaWAN system;

* LoRaWAN devices need to be connected to an existing non-LoRaWAN IoT

platform;

* different LoORaWAN and non-LoRa networks need to be connected together

creating a larger and heterogeneous IoT system.

0.2 Structure of the Thesis

The rest of this thesis is organized as follows:

 In Chapter 1 novel application protocols (CoAP, MQTT) and access technolo-
gies (LoRa and LoRaWAN) are described.

* In Chapter 2 the security threats and vulnerabilities in 10T are described. Then
security limitations which LoRaWAN encountered with them and their coun-

termeasures are displayed.

* In Chapter 3 a possible solution aiming to combat threats in IoT systems via
anomaly detection approach using Deep learning is proposed. First background
of Internet traffic classification and deep neural networks is reported, then deep
learning for IoT attack classification is discussed. Next both the considered
feature model and neural network model are described in detail. Then the in-
tegrated dataset and the experimental settings presented, further it shows the
obtained results as well as a comparison with traditional machine learning ap-

proaches.

* In continue Chapter 4 it is explained POSITIVE project scope, technologies
and activities. Then LoRaWAN node prototyping and real world experimen-
tation are presented. Moreover possible solutions for different interworking
scenarios between LoRaWAN systems and other non-LoRa IoT systems are

proposed. Finally testbed implementing of the proposed solutions is described.
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e Ultimately, Chapter 5 sealed up the thesis with some conclusions and future

works.






Chapter 1

IoT Technologies

IoT technologies and protocols recently has been developed to be more suitable with
targeted IoT applications. They have been developed mostly in wireless communica-
tions due to the protocol difficulty or impossibility to connect devices and network
components via a physical communications equipment.

Wireless systems are presently a portion of the lifestyle of numerous individu-
als and are utilized for numerous applications. As of late, modern technologies that
empower low-power and long-range communications have developed. Long-range
innovations are utilized to create Low-Power Wide-Area Systems (LPWAN). Nu-
merous LPWAN technologies are available, and they offer diverse exhibitions, busi-
ness models etc., replying diverse applications needs. This makes it difficult to select
the proper device for a particular application scenario. Among SigFox, NB-IoT and
LTE-M novel communication technologies LoORaWAN network has been developed.
LoRaWAN with lots of advantages more satisfies [oT devices mostly the low power
ones. It provides Long-Range [oT communications in unlicensed bands. In [3] the
most conspicuous LPWAN advances, SIGFOX, Ingenu, and LoRa, have been pre-
sented and compared to the current short-range communication benchmarks. Their
experimentation done using L.oRa innovation have depicted that the LPWAN world-
view has the potential to complement current IoT standards as an enabler of smart

city applications.
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IoT networks may interconnects a possible large number of heterogeneous de-
vices, denoted as "smart objects”, in an Internet-like structure, which extends the
current Internet, enabling new forms of interactions between objects Machine-to-
Machine (M2M). The IoT smart objects are embedded with electronics and software.
They may also have one or more sensors and/or actuators. The devices collect vari-
ous data, interconnect with each other and exchange the data. Smart objects are often
constraint, mainly in terms of memory capacity, processing powers and limited en-
ergy sources. Nowadays, [oT systems are integrated in almost every field of life. The
IoT is related to various applications addressing diverse needs of the society such
as smart city and smart buildings, smart health and smart living, smart transport and

smart energy, etc.

1.1 Application Protocols in IoT Systems

IoT communication protocols are the way the devices communicate and exchange
data, which sometimes may include also some security services. IoT protocols can
be classified into two separate categories:
* network and transport protocols which are used for connecting devices over
the network (e.g. LoRaWAN);

e application protocols which are used for communication at application level
between low power IoT devices (e.g. CoAP, MQTT, Web-socket).
The most preferred application protocols in the IoT applications are CoAP and
MQTT.

1.1.1 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) is a specialized web transfer like pro-
tocol for use with constrained nodes and constrained networks in the IoT. The proto-
col is designed for M2M applications such as smart energy and building automation.
For simplified integration with the web, CoAP has been designed to be easily trans-

lated to/from HTTP, while also meeting some specific requirements of the IoT: mul-
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ticast support, very low overhead and overall simplicity. The following features of
CoAP have been proposed by the Constrained RESTful Environments (CoRE) IETF

group that has designed the protocol with these main requirements:
* RESTHful protocol design which minimizes the complexity of mapping to HTTP
* URI and content-type support
* low header overhead
* low parsing complexity
* discovery of resources provided by known CoAP services
* simple subscription for a resource and resulting push notifications
* simple caching capability.

Similarly to HTTP protocol, CoAP is based on the REST (Representational State
Transfer) model, according to which servers make resources available under a URL,
and clients access the resources using appropriate methods such as GET, PUT, POST,
and DELETE. CoAP has been designed to use minimal resources in terms of both the
devices and the network. Instead of a complex transport stack, it runs over UDP on
IP. A 4-byte fixed header and a compact encoding of options enables small mes-
sages which lead to no or little fragmentation on the link layer. The interaction model
of CoAP is similar to the HTTP client/server model. However, machine-to-machine
interactions usually result in a CoAP implementation acting both as a client and
a server. A CoAP request is similar to that of HTTP and is sent by a client to a
server in order to request an action (using a Method Code to specify the action) on
a resource-identified by a URI. The server then replies with a response containing a
Response Code; this response may also include the resource representation. However,
unlike HTTP protocol, CoAP deals with those interchanges over a datagram-oriented
transport such as UDP in asynchronous way. Both for requests and responses CoAP
utilizes a short fixed-length (4 bytes) binary header which may be followed by a

variable-length (0..8 bytes) Token value, followed by a sequence of zero or more
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CoAP Options in Type-Length-Value (TLV) format, optionally followed by a pay-
load that possesses the rest of the datagram.

The header is followed by the Token value which the length is varies from 0O to
8 bytes according to the Token Length field. The Token value is used to correlate re-
quests and responses. Header and Token value are followed by zero or more Options.
Each Option can be followed (i) by another Option, (ii) by the Payload Marker and
the payload or (iii) by the end of the message. Following the header, token and op-
tions comes the optional payload. If it is present and of non-zero length, it is prefixed
by a one-byte Payload Marker (OxFF). The payload data extends from after the pay-
load marker to the end of the UDP datagram, i.e., the Payload Length varies based on
the size of the datagram and the token and options if any. A CoAP message, appro-
priately encapsulated into a single UDP payload, which should fit within an IP packet

(in order to avoid IP fragmentation).

1.1.2 Message Queuing Telemetry (MQTT)

MQTT is a messaging protocol based on publish/subscribe pattern that works in IPv4
and IPv6 networks on top of TCP. A standard MQTT system consists of clients com-
municating with a server, usually called a "broker". A client may be either a publisher
of information or a subscriber, and in some cases both of them. Subscribers are clients
that want to receive data on a specific topic. In order to do this, they send a subscrip-
tion request (SUBSCRIBE) to the broker indicating the desired topic name/names.
Publishers are clients that publish information on particular topics. When a publisher
has some data to distribute, it sends a message (PUBLISH request) including those
data and the topic name to the broker. The broker then forwards the information to
all clients that have subscribed to the topic. In MQTT data are sent in plain text
format, even such sensitive information as username and password. For this reason,
the standard proposes to use the Transport Layer Security (TLS) protocol as a mean
of protecting message exchanges providing authenticity and confidentiality of data

exchanged within the system.
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1.2 LoRaWAN

LoRaWAN is a low-power radio access and system architecture for LoRa devices
and it is an open network standard developed by a non-profit association called LoRa
Alliance. It is based on LoRa, a proprietary physical layer developed by Semtech Cor-
poration. It is a universal standard for LoRa communication technology and provides
solid interoperability between devices and networks without the need for complex
installation. As designed for IoT applications, LoRa complies with important tech-
nical requirements such as two-way communication, end-to-end security, mobility
and localization services. LoRa typically operates on free-license sub-gigahertz radio
bands, allowing anyone to create a LoORaWAN network. LoRa technology provides
long power transmission using very low power consumption. LORaWAN specifica-
tions directly face different relevant aspects like device battery life, network capacity,
quality of service, security and the variety of applications provided by the network.

LoRaWAN has been conceived for connecting low power IoT devices in a wire-
less wide coverage area. The physical layer uses the LoRa (Long Range) technology,
a Chirp Spread Spectrum modulation technique, on license-free sub-gigahertz radio
frequency bands, for the communication between the end devices and one or mul-
tiple LoORaWAN gateways. On top on the physical link, LoRaWAN defines a MAC
layer and the entire network architecture for letting end devices communicate, via the
gateways, with a backend network system and an application server [4].

The general LoORaWAN network architecture is summarized in Fig. 1.1. The ar-
chitecture includes the following elements: the end devices, one or more gateways, a
network server, a join server, and the application servers.

Possibly very constrained wireless devices communicate with a base station (Lo-
RaWAN gateway) using LoRa technology The gateway relays the communication to
a backend system formed by a network server, join server, and application server.

The end devices use LoRa technology to send and receive LoORaWAN MAC pack-
ets. A device may send data once in a while (class A device), receive data regularly
(class B device) or listen continuously for data (class C device).

One or more LoRaWAN gateways act as relay systems receiving and relaying
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MAC packets toward a network server. Similarly, the gateway receives MAC packets
from the network server and relays them toward the target devices using the LoRa
radio interface. In the backend system the network server acts as dispatcher element,
by properly relaying MAC packets between the gateways and the proper destination

entity, either a join server or application server.

N
@ il
000 L]
|I| 7 il
R S g
@ 7\
000
3G/Internet
LoRa RF backhaul
Network Join  Application Application
Devices Gateways Server  Server Servers Clients
Se)mtech Protocol or MOJT API

Secured payload

V

Figure 1.1: LoRaWAN network architecture.

The network server is the heart of a LoRaWAN network, it provides communica-
tion between sensor devices and user applications. It certifies message integrity and
authentication through a cryptography message authentication code and sequence
number tracing. AES-128 encryption is operated through the use of pre-shared keys.
LoRa devices cannot be directly reached and communicate with the Internet because
do not utilize the Internet Protocol (IP). LoRa devices can only talk to LORaWAN
applications to which they have been registered and the management is done on the
LoRaWAN network server.

A LoRaWAN backend system implements the network server operations and pro-
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vides frame control and security. The network server manages the entire network,
dynamically controls the network parameters to adapt the system to ever-changing
conditions, and establishes secure 128-bit AES connections for the transport of both
the end to end data (from LoRaWAN end device to the user application) as well as for
the control of traffic that flows from the LoORaWAN end device to the network server.
While the network server ensures the authenticity and integrity of every message, it
cannot access the application data that is end-to-end encrypted. Network server is

responsible for:

* Managing all MAC layer functionality, by relaying these messages to/from Join
server and Roaming, End-node address control

* Frame counter and authentication controls

¢ Acknowledgment mechanism

» Adaptive Data Rate (ADR)

* Data delivery to application servers

* Data delivery to end-devices from application servers

Although the semtech protocol itself doesn’t provide an algorithm for ADR however,
it gives necessary MAC commands to control it. Thus controlling the ADR with an
API is essential issue which need to be considered.

The join server is responsible for securely handling joining procedure by process-
ing Join requests and responding with Join Accept messages.

Finally the application server is in charge of securely handling the exchanged
data by decrypting/encrypting the application payloads [5].

All cryptography functions are based on the AES cipher and on pre-shared sym-
metric secret keys associated to each device. If the Over-The-Air Activation (OTAA)
is used by the end devices, during the joining procedure new session keys (a network
session key and an application session key) are dynamically generated based on the

pre-shared keys.
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The communication between the end devices and the various network elements is
performed using LoRaWAN messages encapsulated within LoORaWAN MAC pack-
ets. These MAC packets are transmitted using the LoRa radio physical layer between
the end device and the gateway. The same packets are then relayed on non-LoRa links
between the gateway and the network server and between the network server and the
join or application server, encapsulated in other transport protocols. While the actual
protocols used on non-LoRa links are left to the implementation, most gateways uses
a de-facto standard and simple protocol originally proposed by Semtech and based
on UDP. Another protocol supported by several gateways for communicating with
the network server is MQTT [6]. In both cases the communication is based on IP and
may use either a private IP network or Internet. The resulting protocol architecture is

depicted in Fig. 1.2.

_— fommmmmmmmmmmmmmmmmmema
LoRa radio | E
8 w———GE
LoRaWAN LoRaWAN TTloRaWAN T
Device Gateway backend system
Application Application
oRaWAN Join/Frame LoRaWAN Join/Frame Join/Frame
LoRaWAN MAC LoRaWAN MAC LoRaWAN MAC
Class A/BIC Class A/BIC SeLfJﬂ[;gch Seufggch
Modulation Modulation P P
Regional bands Reg. bands| Subnet Subnet

Figure 1.2: LoRaWAN protocol architecture.

One of the practical advantages of LoORaWAN is that it provides a complete and
light IoT architecture for connecting low-power devices, using the LoRa wireless
technology. Main strengths of LoORaWAN are as follows:

* offers cheap end devices and installation cost
* openness and possibilities of deploying private networks

» remove the need for service subscription (such as in SigFox or NB-IoT)
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* decrease the operational costs for massy IoT deployments
* has large coverage with single gateway (over 1000 node per gateway)
* provide low power operation for end nodes

* high community support

1.2.1 LoRaWAN Radio Interface

The modulation used for LoRaWAN is based on Chirp spread spectrum (CSS), i.e.
the modulation uses the whole bandwidth of the communication channel by encoding
a message in sequences of chirps. The LoRa layer uses chirps to transmit symbols,
which is an interval in which the transmission frequency is periodically increased.
When it reaches the upper limit of the frequency channel, it overflows to the minimum
limit and continues to increase from there. The chirp is completed when the start
frequency has been reached. Because of the spreading with spreading factor (SF),
every symbol will be a series of 2SF chirps. Semtech sets the chirp speed equivalent
to the used bandwidth, so a bandwidth (BW) of 100 kHz results in a chirp rate (CR)
of 100 keps (Kilo chirp per second). The time on air for a single chirp is possible
to be calculated using "online airtime calculator” !. Finally in LoORaWAN backend
side all the send and receive (RX/TX) meta-data will be shown together with the raw
LoRaWAN physical (PHY) payload in a readable format.

All LoRaWAN end devices for instance in the European region are required to
support at least three default channels in the 868 MHz frequency band for uplink com-
munication with 868.1, 868.3 and 868.5 MHz frequencies. An end device changes
channel in a pseud-random fashion for every transmission which makes the system
more robust to interferences. LoORaWAN devices are required to be able to store 16
channels, with support for in total 8 different frequencies (including the default fre-
quencies). Furthermore in Europe the regional specifications specify the default max-

imum output transmit power as 25 mW (miliwat) for end devices which corresponds

Thttps://www.thethingsnetwork.org/airtime-calculator
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to the maximum output power of frequency 868 MHz. Although the regional speci-
fications also allow for an output power of 100 mW (milliwatt) the user is reminded
that it is his responsibility to not exceed the regional regulatory limits.

The LoRaWAN specification provides for a maximum data payload (Frame pay-
load/FRMPayload) size that is defined for each worldwide region in the LoORaWAN
Regional Parameters document. This maximum payload size varies by DataRate 2
because of the maximum on-air transmission time allowed for each regional specifi-

cation.

1.2.2 LoRaWAN Protocols

LoRaWAN uplink messages are sent to gateway encapsulated into radio packets. After
a specified number of packets are exchanged between the device and the network, the
forwarder initiates communication by sending a PUSH DATA message to the server.

As gateways can be connected to network servers using different technologies it
involves network address translation which keeps a server from initially sending a
message to the gateway. However, since this behavior is needed, the protocol regu-
larly sends PULL DATA messages to the server to open a route to the gateway and at
the same time informing the server about the open route which is in fact a keep alive
message to hold the connection between gateway and the network server [7].

After acknowledging the PULL DATA message the server is now able to send
PULL RESP packets downlink. Theses packets include the physical payload that the
gateway transmits to the end device via transceiver. If a transmission to the gateway
is successful the gateway responds with a TX ACK message.

Nodes broadcast LoORaWAN messages over the LoRa radio protocol. These mes-
sages are received by a number of gateways. The network server is the entity used by
the backend platform for communicating with the gateways.

Their responsibility is to map a device to an application, to forward uplink mes-

sages to the correct application and to forward downlink messages to the correct

Zhttps://lora-developers.semtech.com/documentation/tech-papers-and-guides/implementing-

adaptive-data-rate-adr/implementing-adaptive-data-rate
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Router (which forwards them to a Gateway). The Network Server is responsible for
functionality that is specific for LoRaWAN.

Firstly, there are gateway-related functions such as scheduling and managing the
utilization of the gateways. Scheduling is needed because a gateway can only do
one transmission at the same time. The information is used to evenly distribute load
over different gateways and to be compliant with the related region duty cycles  e.g.
Europe.The greatest duty-cycle, characterized as the most extreme rate of time amid
which an end-device can possess a channel, could be a key limitation for systems
working in unlicensed bands.

Another important issue is monitoring the status of each gateway. Secondly, a
device-related functions that manage the state of devices in the network needed. As
device address are non-unique, the network has to keep track of which addresses are
used by which devices in order to map a message to the correct device and appli-
cation. Moreover the network must keep track of are the security keys and frame
counters. Then it will also start keeping track of the network utilization of each node.
Thirdly there is some functionality related to applications. For example, the network
server need to know to which server traffic for a specific application needs to be
forwarded.

LoRa concentrator/gateways are intermediaries that allow sensing devices to trans-
mit data to the lora backend. LoORaWAN uses some identifiers for devices, applica-
tions and gateways such as: DevEUI - 64 bit end-device identifier, EUI-64 (unique)
DevAddr - 32 bit device address (non-unique). finding the actual device that belongs
to that address is done by matching the cryptographic signature (MIC) of the message
to a device in the database. AppEUI - 64 bit application identifier, EUI-64 (unique).
When you create an application, the server allocates an AppEUI from the address
block. GatewayEUI - 64 bit gateway identifier, EUI-64 (unique). The network server
assigns device addresses to devices (based on configuration). Devices which use ABP
activation mode have to request an address from the network server. For devices use

OTAA, the network server will assign an address when the device joins.*

3https://www.thethingsnetwork.org/docs/lorawan/duty-cycle/
“https://lora-developers.semtech.com/documentation/tech-papers-and-guides/semtech-network-
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Applications running on gateways. They take care of sending demodulated radio
packets arriving at the gateway to a network server and transmitting packets coming
from the same device via a built in LoRa transceiver. Semtech packet forwarding
is based on the connectionless UDP Protocol. Messages are sent to the application
listening on the server with IP-address and port number specified in the destination
fields of the datagram. Also source fields with [P-address and port number of the
sending application exist. There are no mechanisms in the form of acknowledgement
or retransmission to avoid packet loss. As this protocol was implemented in the first
packet forwarder publicly available most gateways include a basic packet forwarder

running this protocol.

server-user-guide/find-your-end-device-activation-keys/
Shttps://github.com/Lora-net/packet_forwarder/blob/master/PROTOCOL.TXT/
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IoT Security

Recently, a wide adoption and deployment of IoT infrastructures and systems for var-
ious crucial applications such as logistics, smart cities, transportation, manufacturing
and healthcare drawn, so evaluation of threats of IoT network and possible counter-
measures has become emerging. Due to a large number of IoT attacks, it is important
to categorize them to have a better understanding to appropriately provide solutions
to detect and neutralize such threats. First we reviewed the state of the art surveys
and solution in IoT attacks, further we classified them based on OSI-layers. Totally
some of the most effective approaches addressed which trace an attack by analyzing
the IoT network traffic and behavior of each device but here concentration is on the
vulnerabilities on the communication layer.

Privacy is also a serious concern among users. For instance, Nest smart cameras,
Google’s solution for IoT indoor and outdoor surveillance, were recently targeted by
hackers. After compromising a Nest baby monitor, an attacker did broadcasts of voice
messages threatening parents, who experienced a dreadful situation, feeling invaded
and uncomfortable [8]. Future security solutions for IoT will need to take into account
that IoT devices with vulnerabilities may often be present in the user’s network and
co-exist with other devices during their whole device lifetime. IoT devices usually
connected to a gateway router offering wireless and wired interfaces for connecting

IP enabled devices to the network. The adversary’s goal is to exploit IoT devices to
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either i) ex-filtrate data, security credentials or encryption keys, ii) compromise other
IoT devices in the network with the help of a compromised device, or, iii) inject false
or tampered information into the user’s network [9].

Securing IoT is especially complicated as smart devices target:

* Low power in computation

* Low memory capabilities

* Low communication resources
* Low battery-powered

* Have limited user interface

* Closed devices

* Heterogeneous

* Distributed architectures

* Low maturity

2.1 Security Threats, Vulnerabilities and Countermeasures
in IoT Systems

Important types of attacks are those which performed through Botnet. According
to [10] in IoT systems malicious bots, to avoid detection, encrypt their information
inside the code moreover encrypt their communication channels. Sink-holing is a
process where the attack traffic is filtered using packet filtering upstream from the
victim. Based on Deogirikar et al. [11] research regarding Sinkhole attack, if the
node authentication is supplied, an attacker cannot compromise the node. Accord-
ing to their survey most of IoT systems uses IPv6 because IPv6 allows billions of
addresses, which is sufficient to provide IP address to each object instead of each
device. They also did their work in the domain of IPv6. They found that it is difficult
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to implement a solution for each attack because of computing and battery power con-
straint. Each attack has done on a significant layer (Application, Network, Physical).
Authors mentioned the prominent section in side-channel attack is cryptanalysis of a
Simple Modular Exponentiation where Diffie-Hellman and RSA operations involve
calculation of R = y mod n, where R is RSA key, n is public key and y is a key
which can be obtained by a listener. The adversary wants to search the secret key. As
countermeasure they used a monitoring verification scheme (MOVE) which is able to

check the monitoring node(s)’ result and correctly identify any malicious behavior.

Some countermeasures and tactics such as restricting forged (spoofed) traffic,
preventing hosts from being used as reflectors, managing routing advertisements are
all useful in preventing some types of DDoS attacks. Moreover gating to weakly
configured Internet of Things (IoT) devices.

Miettinen et al. with their [oT SENTINEL [9] aimed to directed all requests from
clients to an Intrusion Detection System(IDS). Legitimate requests from clients pass
through the IDS onto the server. Anirudh et al. [12] show that if the IDS detects
any anomalies in the requests (Example: Spam requests to initiate a DoS attack),
the requests are passed onto the honeypot and the information related to the attacker
(IP Address, MAC Address, etc.) are stored as logs in a database. Hackers usually
find and shut down the honeypots in the IoT network consequently the solution is a
random set of servers is used as honeypots. They also mentioned that generally these
kinds of attacks are concentrated towards the main server rather than the individual
devices connected in the system. The main reason is that it is easier to access the main
server rather than the individual devices because the protocol for data transmission
in each device might be configured differently and also another main reason is that,
by crashing the main server the whole system is supposedly shut down since another

potential user can’t access the main server to link to any other device.

According to the acknowledgment, the versifier node will decide whether the
node is malicious or not. However implementation of all these security measures and
techniques together consumes computation as well as battery power of devices which
is not acceptable for IoT technology and its devices. They provided a comparison ta-

ble contains possible attacks, vulnerabilities and their countermeasures. On the Data



22 Chapter 2. IoT Security

Link layer, attacks are classified as collision, resource exhaustion, and unfairness.
The key part in Zhang et al. [13] is the application of Hidden Markov Model (HMMs)
which was found relating to Sybil attack detection, where semi-supervised learning
with HMMs was successfully implemented in their model. The attack graph can be
constructed from network configuration, network and firewall logs. An Analyzer in
Mohsin et al. research [14] uses state machines to determine attack likelihood and
costs for an IoT network given attacker capabilities, vulnerability scores and config-
urations. The different individual vulnerabilities are connected together to find attack
paths, using network configuration, firewall and network logs from more than twenty
tools. All the previous works did not capture generic attack typologies simultaneously

with threat provenance in large scale IoT network setting.

In advance, Mosenia and Jha [15] utilized the Cisco seven-level reference scheme
[16] to display different comparing attack scenarios. They investigated various IoT
and focused on attacks and pinpointed their conceivable moderation approaches. The
authors highlighted the significance of having a proactive approach for securing the
IoT environment. They introduced communication level in edge-side layer. The com-
munication level consists of all the components that enable transmission of informa-
tion or commands: (i) communication between devices in the first level, (ii) com-
munication between the components in the second level, and (iii) transmission of
information between the first and third levels (edge computing level). They focused
on this prominent fact that when packets also carry access control information, such
as node configuration, shared network password, and node identifiers, eavesdrop-
ping can take place for critical information. In communication level, with injecting
fraudulent packets threat an attacker can access the communication links using three

different attack methods: (i) insertion, (ii) manipulation, and (iii) replication (replay).

In previous studies countermeasures against networked scenario threats has been
done using IDS e.g. IoT SENTINEL [9], MOVE [11], SVELTE [17].

In [18] authors mostly referred to the side channel attacks and physical layer
threats. IoT devices vendors generally do not send updates and patches to their de-
vices unless user-initiated firmware updates so this is also a threat for [oT end nodes.

Due the 10T device behaviors could be changed with other devices or environmen-
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tal conditions, it is difficult to define a certain set of fine-grained permission rules
for them. The protocols designed by IT companies may have many potential secu-
rity problems. Moreover, different protocols have different semantic definitions, the
attackers also could use this point to find security vulnerabilities like BadTunnel !
when they uncorrected work together. Yin et al. [19] design honeypot and sandbox
system to collect attack samples from IoT devices, and found the most remote net-
work attack.

Threats can be derived by: (i) physical access (ii) networked scenario, (iii) Soft-
ware.

Physical access: It might happens usually if IoT devices operate in an unattended
fashion with no or limited tamper resistance policies and methodologies. The major-
ity of IoT devices operate autonomously in unattended environments with little effort,
an adversary might obtain unauthorized physical access to such devices and thus take
control over them.

Threats related to networked scenario:

» Eavesdropping attack: if the communication channel (often a wireless medium)
is not adequately protected keying materials or security parameters/protocols

not correctly set-up.

* Man-in-the-middle attacks: particularly during key establishment and/or de-
vice authentication procedure device authentication/authorization may be not
automated and need support of a human decision process, since things usually

do not have a prior knowledge about each other

* Routing attack: routing information in IoT can be spoofed, altered, or replayed,
in order to create routing loops, attract/repel network traffic, extend/ shorten

source routes, etc. relevant routing attacks may include:

— Sinkhole attack (or Black-hole attack): an intruder declares himself to

have a high-quality route/path to the base station, thus allowing him to do

Thttps://www.blackhat.com/docs/us- 1 6/materials/us- 16-Yu-Bad Tunnel-How-Do-I-Get-Big-
Brother-Power-wp.pdf
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anything to all packets passing through it

— Selective forwarding: an attacker may selectively forward packets or sim-

ply drop it

— Sybil attack: an attacker presents multiple identities to other things

* Privacy threats: an attacker can gather and track thing’s information, conclud-

ing behavioral patterns

* Denial-of-Service attack: typically, things have tight memory and limited com-
putation, they are thus vulnerable to resource exhaustion attack attackers can
continuously send requests to be processed by specific things so as to deplete
their resources this is especially dangerous in the IoTs since an attacker might
be located in the backend and target resource-constrained devices in an LLN
(Low power and Lossy network). This attack can be launched by physically
jamming the communication channel thus breaking down the communication
channel network availability can also be disrupted by flooding the network with

a large number of packets (Flooding attack).

e battery-draining attack is in result of DOS attack: Power consumption is an
issue of some scenarios that attack can easily succeed in consuming the device

resources.

Security Countermeasures in IoT Systems:
General security policies secure communication protocols and cryptography al-

gorithms to enforce the following security services:

 Availability: It is necessary that the services, devices and interfaces are always

available for the end client.

* Peer authentication/authorization: Data protection (authentication/integrity, con-
fidentiality): Using proper cryptography tools symmetric block ciphers, hash
functions, asymmetric cryptography (Elliptic Curve Cryptography is a well-

known encryption algorithm suitable for IoT systems). In addition a complete
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key management infrastructure is fundamental to handling the required cryp-
tography keys complicated in IoT scenarios than in standard Internet secure

routing protocol.

Anonymity: Is a security service allowing entities to communicate with each
other in such a way that no third party knows that they are the participants
of a certain message exchange. Hiding the fact that communication is taking
place between certain source and destination entities is the biggest challenge

of preserving privacy.

Countermeasures against physical threats:

security policies

protect smart objects in safe places, when possible

safe supplying and installation measures

avoiding untrusted manufacturers and installers

Countermeasures against network and software threats:

secure communication protocols and cryptographic algorithms

robust authentication and key management

vulnerability Assessment

Honeypots

Intrusion Detection systems (IDS)

Machine Learning-based Network IDS
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2.2 Security in LoORaWAN

In [20] authors mentioned LoRaWAN important practical threats, such as end-device
physical capture, rogue gateway and self-replay, which need special attention by de-
velopers and organizations while deploying LoRa network.

Threats related to the networked scenario and physical access specified in Lo-
RaWAN technology:

* plain-text recovery

» malicious message modification (bit-flipping)

* falsification of delivery reports

* hello flood

¢ ack-spoofing can be executed through selective jamming attack
* Jamming

* battery exhaustion attack

Threats related to the physical access to smart objects: Extraction of security
parameters from physically unprotected devices if a group key is used and

compromised this way, the whole network may be compromised as well

* Firmware Replacement attack: when a thing is in operation or maintenance
phase its firmware or software may be updated to allow for new functionality
or new features Cloning of smart things by untrusted manufacturers and/or

Malicious Substitution of things during the installation

Countermeasures for both network scenarios and physical access in LoORaWAN

technology:

 Link-layer encryption and authentication through AEAD coverage (Authenti-

cation encryption for associated data)

* multi-path routing
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* identity verification

* authenticated broadcast

* bidirectional link verification
 firmware update

The LoRaWAN protocol stack is implemented on top of LoRa modulation (PHY).
Security Challenges of LoORaWAN include:

» Network Entities based such as Gateway, Servers, End node,
» Key Distribution based such as ABP based, OTAA based,

* Implementation based includes Exit procedure, DevEUI, Frame counters, JoinEUI,

Secure Storage.

However, all communications are done with a dynamic 32 bit device address
(DevAddr) of which 7 bits are fixed, leaving 25 bits that can be assigned to individual
devices, a procedure called Activation. According to the LoRaWAN join procedure
there are two different modes that define or compute keys for MAC frame payload

encryption which are activation procedures:

* OTAA (Over-the-Air Activation): During this procedure a dynamic DevAddr

is assigned and security keys are negotiated with the device.

* ABP (Activation by Personalization): In some cases you might need to hard-
code the DevAddr as well as the security keys in the device. This means ac-
tivating a device by personalization (ABP). This strategy might seem simpler,
because you skip the join procedure, but it has some downsides related to se-

curity.

Regardless of the mode used with LoORaWAN communication, messages are pro-
tected by two session keys, AppSKey and NwSKey, which are used to encrypt mes-
sages in Counter with CBC-MAC (CCM) mode, a variation of Counter (CTR) mode.
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CTR mode is used to encrypt the payload using AppSKey and authenticates the
message with a Cipherbased Message Authentication Code (CMAC) based on the
NwkSkey.

According to [21] LoRaWAN is secure by design using encryption, integrity and
authentication on both the network and application level. Join Servers maybe used to
safely store LoORaWAN keys and issue session keys to the Network Server and Appli-
cation Server. This decouples secure storage from packet routing, allowing users to
host Join Servers on-premises and using hardware secure modules (HSMs) to stay in
full control over security keys. Once an end node has joined a LoRaWAN network,
either through OTAA or ABP, all future messages will be encrypted and signed using
a combination of NwkSKey and AppSKey. As the NwkSKey key is only known by
the network server and specific end node, as well as the AppSKey key is only known
by the application server and the end nod. They mentioned how a node join to the
LoRa network, and how keys transfers in detail. Keys are distributed in one of two

ways depending on how an end node joins the network.

In [22] authors mentioned LoRaWAN v1.0.2 uses a pair of two distinct keys,
the network key NwkSKey, and the application key AppSKey As the communication
channel is wireless and thus available to anyone for injection and modification, also
the authenticity of communication in other words do the packets indeed originate
from the alleged source and the protection against originally legitimate but mali-
ciously re-injected traffic become a concern. Raise the issue of device and key en-
rollment(key establishment) is necessary. As IoT devices are produced and stored
in bulk and shipped to an enduser who would like to connect a device to his or her
account, downloading a device/user/application-specific key to the unit becomes nec-
essary. Here authors described that the approach LoRaWAN takes on each of these
aspects. Establishment protocol (enrollment protocol) to activate the end device in
the network via OTAA or ABP. Threats eavesdrop and decrypt the content of a frame
under certain circumstances. Second, authors show that the content of a packet may
be modified outside of the integrity check provided by the protocol. Third, authors
highlight that messages could either be replayed, or a node tricked into believing

that a message has been received by the gateway when it actually has not, and out-
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line a battery exhaustion attack. This compromises the availability of the network.
They also mentioned threats in ABP method. They designed and described threats (5
attacks):

* replay attack leads to the selective denial-of-service on individual IoT devices,
* plaintext recovery

» malicious message modification

» falsification of delivery reports

* battery exhaustion attack

Miller group 2 describes the location of the key material in a LoRaWAN setup, and
alerts that flaws in key management could compromise a backend. Miller did not
analyze the protocol nor evaluates the security of message exchanges. Tracing and
finding DDOS attacks in LORA networks is not detectable because the attack leaves
no abnormal adversarial traffic such as flooding which is detectable by the network.
They opens widely and in detail completely how the attack accomplished in practical
by them selves practically these attacks: replay attack, eavesdropping, bit flipping,
ACK spoofing. Then redo all the above scenarios for LoORaWAN class B.

2.2.1 LoRaWAN Threats

* False Join Packets: In implementation related vulnerabilities, renewal of JoinEUI
and DevEUI values were reported to be problematic. However, even they are
old in value, they can still be used for MIC: Join-Request and Join-Accept mes-
sages are protected with MIC (by using JoinEUI and DevEUI values) and also
with another unique nonce (JoinNonce) value, it is quite unlikely this attack to
happen.

* MITM Attacks: Bit-flipping or Message Forgery Attack: Especially, a specific
version of MITM attack called "bit-flipping attack”, in which an adversary (or a

Zhttps://labs.f-secure.com/archive/lo/
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rogue network server) changes the content of the messages in between NS (net-
work server) and AS (application server). Bit-flipping attack still constitutes a

threat for LoORaWAN v1.1 as also declared in the specification document.

Frame Payload Attack: Handover-roaming enables more possibilities for a MITM
attack, as the unprotected FRMPayload’s are first transported from the serving-
NS to the homing network servers, and from there to the AS. Henceforth, net-
work servers are considered as trusted entities by default. However, deploying
engineers are recommended to use extra precautions (end-to-end security so-
lutions) if they are wishing to have end-to-end confidentiality and integrity

protection against MITM attacks.

Network Flooding Attack: End-devices can be captured and used to perform
attacks against the rest of the network. For instance, it is possible for an end-
device to degrade the network by flooding it with packets. Nevertheless, end-
devices should comply with regulatory airtime restrictions and some networks
might protect themselves from flooding attacks by imposing added airtime re-

strictions.

Network Traffic Analysis: This is a passive attack and also called eavesdrop-
ping attack if happens in the physical layer (radio signals). In this kind of
attack, an attacker can setup a Rogue-GW by using the vulnerabilities men-
tioned to receive packets and deduce some knowledge about the data being
transmitted or the keying material being used. Observe that, without access to
key material, it is infeasible for the attacker to be able to decode the contents
of the packets received and the usefulness of this traffic analysis will be highly
application specific. For instance, a LoRa network deployed in a smart-city ap-
plication to deduce noise levels in the city might leak information related to
the level of activity in certain locations through simple observation of trans-

missions.

Physical Attacks: Network entity and implementation related vulnerabilities

of LoRaWAN can be exploited by the adversaries to perform the following



2.2. Security in LoRaWAN 31

attacks:

1. Destroy, Remove, or Steal End-device: In both versions of LoRaWAN,
root keys (from which session keys are generated) are uniquely gener-
ated for each device during fabrication or before deployment. Therefore,
revealing of a single root key will not compromise any information in the

network other than the data stored at that specific device.

2. Security Parameter Extraction: The LoRaWAN specification requires pro-
tection of the relevant key material against reuse, but nodes need to be
adequately protected against firmware change that might indirectly lead

to key material reuse.

3. Device Cloning or Firmware Replacement: An attacker with physical ac-

cess to the device and can replace firmware or steal/reuse key material.

* Plaintext Key Capture: If the secure storage elements are not used and keys are
stored in regular files (such as text files) in the ED’s, then this attack can be
a major threat for the confidentiality, integrity and availability of LoORaWAN

network.

e RF Jamming Attack: In the past, it has been shown that by using low cost
and commodity hardware jamming of the RF signals is possible. RF jamming
attacks in wireless networks lead do Denial-of-Service (DoS), which are gener-
ally easy to detect. However, selective RF jamming attacks are harder to detect
an very harmful for wireless communications as it is not trivial to avoid. There-
fore, in LORaWAN, it is possible to jam reception of the signals at a gateway
or a node by using RF jamming. This could open-up some advanced attacks
as it is described in the Replay attack, which partially relies on the ability to

perform selective RF jamming.

* Rogue End-Device Attack: To be part of the network, an end-device needs ac-
cess to key materials that should not be accessible to malicious users. One way
to do this is by capturing a device and replacing its firmware such that it reuses

key materials in the captured device (as discussed in physical-capture-attack).
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End-devices are data sources and are not authorized to reach information at
servers. Therefore, any rogue end-device with legitimate authentication infor-
mation will not able to access or leak data from the network. The most harm can
be done by injecting false data to the application server. End-devices can also
be exploited by the attackers to be used as jammers in the network. This might
cause the LoRaWAN network to be not available for legitimate end-devices
(DoS). However, this will be a restricted area in the vicinity of the Rogue end-
device, and the rest of the network continues regular operation. Rogue end-
devices can be also used to perform replay attacks. Packets being transmitted
by the neighbors can be captured and replayed later on, which generally will
be detectable due to the use of different nonce values (e.g., DevNonce, Join-
Nonce). However, this might cause waste of available resources in the network

and decrease the availability of the gateway for the legitimate end-devices.

Rogue Gateway Attack: From the beginning (including LoORAWAN v1.0), the
gateways are always considered as legit and obeying relays. However, this as-
sumption raises the question: "What happens if adversaries hack/capture/replicate
one or multiple gateways (GWSs) are vulnerable and therefore can be a target

for persistent attackers as described:

i) Beacon Synchronization DoS Attack: Class B sessions might be vulnerable
to Rogue-Gateway attack, which is in line with Session Hijacking Attacks. In
LoRaWAN, Class B beacons are not secured by any means, indicating that an
attacker can set up a Rogue-GW to send fake beacons. This could result in class
B end-devices to receive messages in windows out-of-sync with the Rogue-
GW and also increased collisions on packets being transmitted. Addressing this
threat would require issuing a key that GWs could use to authenticate beacon

transmissions.

ii) Impersonation Attack: GWs can also be impersonated to set-up attacks
against end-devices (EDs). EDs can be listened to and their network addresses
can be determined. More importantly, a triangulation method (minimum 3

GWs are needed in this case to perform the intended capturing attack towards
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the ED) can be used to determine the physical location of the EDs.

* Routing Attacks: Mainly two types of attacks can be considered under this
category: i) Selective Forwarding Attack: In this attack type, an attacker can
selectively forward packets and can cause one or several nodes in the network
to be totally blocked, or totally overwhelmed. ii) Sinkhole or Blackhole Attack:
In these attacks, an attacker attracts the traffic through itself by falsely adver-
tising modified routing information. As a result, whole network traffic might
collapse. In LoRaWAN, in order routing attacks to be successful, an attacker
needs to capture a GW or a server, which is a non-trivial and complicated task.
These attacks cannot be perpetrated from the EDs, as they do not participate in
routing. Therefore, the probability of this attack to happen is very Low

» Self-Replay Attack: Although OTAA is devised to enhance the security level
of the LoRaWAN, itself can be the target of attacks, as details described below:
Attacks that are exploiting the join procedure of LoRaWAN v.1.1 is possible
by using selective RF jamming attack. An advanced attacker can selectively
jam the signals that are being used for OTA A session. In this type of attack, the
transmission of a Join-request with DevNonce from a legitimate ED is success-
fully observed. The corresponding Join-accept message from the NS to ED is
jammed by using selective-jamming techniques. After waiting for a timeout to
receive the Join-accept message from the NS, the ED retries to join the network
and sends again the same Join-request message with the same DevNonce value
as required by the specification. This causes the NS to respond the Join-request,
because still the join procedure is not fulfilled and everything is legitimate and
in order according to the specification. This attack will continue till the daily
message quota of the ED depletes.

This attack is especially valid for LoORaWAN OTAA, since the communication of the
messages is limited and under quota. For instance, each ED is allowed to transmit
at most 14 packets per day (maximum packet payload of 12 Bytes), including the
acknowledgments for confirmed up-links. In order this attack to be fully successful,

it requires that the attacker can receive packets from the NS before the ED does
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and also, at the same time, jam their reception by the ED. This can be achieved, for
example, by having a device receiving (or sensing) the packet from the NS outside
the interference range of the jamming device and jam the signal before it reaches
the destined ED, which might not always be possible depending on the transmission
range and distance to the nearest GW. This attack is made substantially more difficult
for the attacker with the existence of several receive paths for the NS packets to the
ED. Thus, if the NS’s transmissions to ED can be provided by multiple GWs (let
us say if the ED is under coverage of multiple GWs), this attack will be extremely
difficult to perform. However, GWs are typically deployed fewer in numbers in a
LoRa network and therefore this attack has a possibility to succeed.
Moreover Network attack surfaces is well protected in LoORaWAN (in theory)

* AES security performs both authentication/integrity protection and data confi-

dentiality, from end-device side to application server side

* security is based on AES secret keys (long term keys) that have to be shared
between the device and the application server possible issues depend on how
these keys are managed problem when the devices have to be reused with a

different application server
* security of the overall application depends also on the application behind the
application server in LoRaWAN backend
2.2.2 Threats in OTAA Mode (Over-The-Air Activation)

If the end-device supports the Join function and can store dynamically generated
keys, a join procedure can be performed to compute keys for encrypting and protect-

ing packet integrity. The process of computing new keys:
* The end-device sends a Join Request
* The network will generate keys

* If the device can Join the network, a Join Accept message is sent by the network

encrypted with AppKey, providing an App Nonce
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* With the given parameters sent via the Join Accept message, the end-device

can compute the new encryption and integrity keys

According to the LoORaWAN 1.0.3 specifications, the Join Request is sent in clear-
text to the gateway with the following parameters:

* DevEUI: unique end-device identifier in IEEE EUI64 address space, Deveui
is assigned to the device by the embedded chip manufacturer. (Usually rep-
resented in the form HH:HH:HH:HH:HH:HH:HH:HH where HH are pairs of
hex digits)

* AppEUI: the application identifier in IEEE EUI64 address space which is a

random DevNonce of 2 bytes.

From the LoORaWAN 1.0.3 specifications, DevNonce values are tracked to avoid
replay attacks. The message integrity code (MIC) for this message, which also en-

ables the network to check if the AppKey is correct, which computed as follows:

cmac = aes128_cmac(AppKey, MHDR|AppEUI|DevEUI|DevNonce) — (2.1)

MIC = cmac|0..3] (2.2)

If the device is allowed to join the network and the MIC is correct, the network
sends an encrypted Join Accept message with the following fields:

AppNonce in LoRaWAN 1.0: random value (3 bytes)

NetID, called Home_NetID in 1.1 network ID (3 bytes)

DevAddr Device ID (3 bytes)

DL Settings: downlink parameters

RxDelay: delay between TX and RX (1 byte)

CFList: optional list of channel frequencies (16 bytes)

The Join-accept payload is encrypted as follows:

aes128_decrypt(AppKey, AppNonce | NetID | DevAddr | DLSettings | RxDelay |
CFList | MIC)
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The sessions keys are computed in the network and end-device sides as follows:

All the communications will then be encrypted using AppSKey, and the integrity
protected with NwkSKey. Nevertheless, only one AppKey key is used to compute
the MIC as well as AppSKey and NwkSKey, which leaves a bigger opening for an
attacker to crack either the MIC of the Join procedure’s message or the Join-accept
message to retrieve this key. Retrieving the key could allow an attacker to eavesdrop

on the messages between an end-device and a gateway.

2.2.3 Threats in ABP Mode (Activation by Personalization)

The ABP method is simpler than OTAA as there is no Join Procedure. Nevertheless,
it has downsides in terms of security, as session keys are hardcoded on versions 1.0
and 1.1. Indeed, session keys stay the same until the user manually changes them or
when a firmware update/upgrade is applied. Because of this, ABP is more vulnerable
to a cryptanalysis attack compared to OTAA.

MAC Frame Payload (FRMPayload) Encryption: With given session keys, we
can protect MAC frame payloads on Data Up and Down messages. The key "K" is
chosen depending on the FPort (Port field) of the data message:

For the encryption, the message is split into a sequence of blocks:
A; fori= 1.kwithk = ceil(len(pld) /16)(with pld = FRMPayload) (2.3)

So, the block A_i is encrypted as follows:

S; = aes128_encrypt(K,A;) fori=1..k 2.4)

S = 81|55 (2.5)

Encryption and decryption of the blocks are then performed as follows:
(pld|pad16) xorS (2.6)
The MIC is computed as follows:

msg = MHDR|FHDR|F Port|F RMPayload (2.7)
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MIC = cmac|0..3] (2.8)

2.2.4 Threats Against LoORaWAN

Most of the attacks documented below have been performed on LoRaWAN class A
devices. However, a class B attack is also possible; these are usually done to drain the
end-device’s battery.

DoS in ABP mod:

Given that the counter in FRMPayload is only 16 bits long in LoRa 1.0, a denial-
of-service (DoS) attack is actually possible. In [22] authors mentioned that a ma-
licious actor could replay a captured packet, wait until the counter overflows, and
replay this packet to realize a DoS attack.

Session keys stay the same until manually changed or with a firmware update/upgrade.
Because of this, ABP could be more vulnerable to a cryptanalysis attack than OTAA.

Eavesdropping:

Aforementioned authors also highlighted that the key could be retrieved if the
counter is reset, as it is not used securely in LoRaWAN 1.0. Indeed, when the counter
is reset, the keystream will be reused and could allow an eavesdropping attack. An-
other factor that leaves it vulnerable is the use of CTR to encrypt information. The
same researchers also highlighted a bit-flipping issue in v1.0 that is backward com-
patible with v1.1.

Bit-Flipping:

Regardless of the version, the integrity of LoORaWAN messages is protected thanks
to the MIC and encryption. Nevertheless, the messages decrypted by the network
server and sent to the application are no longer protected.

To protect messages from the network server to the application server, it would
require designing the network to use an SSL tunnel, preferably with a client SSL
certificate in order to protect the communication or by using another MIC field inside
the MAC Layer Payload computed by the AppSKey.

Ack Spoofing:
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An acknowledgment mechanism was introduced in LoRaWAN to maximize bat-
tery life by reducing the time the radio needs to be powered up.

To illustrate this issue, researchers proposed to selectively jam the downlink when
an end-device sends a confirmed message to the gateway that will confirm the recep-
tion. The confirmation message will never get to the end-device, and the confirmed
message will be retransmitted seven times. Then, the message will be considered
lost or refused.But during the jamming session, the attacker can capture the down-
link message for the confirmation and can play the confirmation for the first message
when the end-device sends a second confirmation message.

Beacon (Class B) Synchronization Attack:

Most setups use the class A mode, which specifies that downlink traffic must/can
follow an uplink one. Class B tends to reduce the amount of spent energy by telling
end-devices to wake up periodically to wait for any incoming messages during a
receiving window. The durations of the receiving windows are specified by beacon
broadcast messages that are comprised of a PHY layer header followed by a beacon
payload.

An attacker can easily compute the different publicly known fields with malicious
parameters to: i) Find the location of a LoRa gateway.

ii) Drain the battery by sending crafted beacons framed with an extreme wakeup
time value. It would be better to use a MIC instead of a CRC to check the time’s field
integrity.

Threats in Root Key Management:

Indeed, the backend is exposed to the internet, which leaves it open to attacks
(LFI, SQL injection, deserialization vulnerability, etc.). A malicious actor would be
able to get the secret key, read the data, craft downlink packets, and more. Here are
some security points to check in a LoRaWAN setup:

* Use randomly generated keys

* Avoid the exposition of key management servers and services (exposed key

management service accessible on the internet)

¢ Preferably use HSM (Hardware Security Module) to keep the keys
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* Preferably use OTAA mode and LoRa version 1.1

2.2.5 The State of Security

A few security tools exist towards the LoRaWAN technology, released starting this
year. Some researchers released a framework called LAF (LoRaWAN Auditing Frame-
work). They also provided a tool that can parse, send, craft, analyze, audit a setup,
and crack some LoRaWAN 1.0.3 packets using weak/default keys. Nevertheless, this
framework still has some limitations: i) It only works with a Gateway ii) It can only
listen to uplink packets iii) It can only listen to eight out of 64 channels iiii) Gen-
eration and fuzzing depends on LoRaWAN (Go) using an inflexible format such as
JSON

Over the same period, another type of tool called "LoRa Craft" was released to
intercept packets using Software Defined-Radio and craft packets using dedicated
LoRaWAN v1.0 and v1.1 Scapy layers developed for this tool. But this tool is mainly
a do-it-yourself (DIY) tool and needs much more assistance than those already re-
leased, like the crypto-helpers for Join-Accept payloads and MIC to help crack weak
keys.

Later another framework called ChirpOTLE was released by the SEEMOO Lab.
This demonstrated two attacks affecting the availability of LoORaWAN networks, like
time drifting in LoRa class B and a novel ADR spoofing attack to manipulate frame
metadata. But still, the researcher’s setup was limited since they only chose a few

default channels to demonstrate their attack on each node.

2.2.6 Security Countermeasures to Improvement LoRaWAN

In this section, we provide our suggestions for the further improvement and distribu-
tion of LoRaWAN as follows:

Usage of Public Certificates for Generation of Root Keys at the End-Devices:
Secure provisioning, storage and usage of root keys are very important. A solution
to this might be the use of PKI server (Public key infrastructure), can be installed

to either join server (JS), AS or NS, so it can be used as a certificate server. Cer-
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tificates from the PKI server can be pre-installed during or after the fabrication of
the end-devices along with the serial numbers, nonces, and other counters. Root keys
can be used by using this certificate and along with an authenticated key-exchange
algorithm such as Authenticated Diffie-Hellman key Exchange (ADHE) algorithm In
this scheme, end-device revocation and/or key-update/key-redistribution is an easy
task compared to the manual update of the keys (root keys). This topic is very impor-
tant as it will enable the renewal of the root keys when needed, hence will provide

flexibility to the network operator while adding/revoking keys.

Nonce Related Improvement: Each end-device may have nonce which might be
associated with the serial number of itself. The NS holds the list of nonces (Nonce-
List) and revokes each nonce whenever its used first time. Nonces can be updated
by hand-shaking, after successful key initiation phase. Both NS and the end-device
might agree on a new nonce and that nonce might be written to a non-volatile memory
of the end-device. The old nonces would be moved to the "used nonces list" and the
new nonce should be moved to "valid nonces list". By this way, any attempt to use an
old nonce would not cause any security breach in the network. Besides, these attempts
can easily be detected by the NS by comparing the nonce with the nonce lists. The
join request can be granted if only the submitted nonce is in the valid nonces list
otherwise, if the nonce is in the used nonces list, then this is a possible situation of
cloning, node-capture or replay attack.

Introduction of End-to-End Encryption between Servers: This topic has prime
importance, as it will completely prevent any kind of man-in-the-middle attacks to-
wards servers. Although it is mentioned in the LoORaWAN v1.1 specificationthat the

communication in between the servers is considered as secure.

Inclusion of Padding: To divert packet-sniffing attacks, it is always a good prac-
tice and counter-measure to set packet length to a certain constant value and apply
padding when needed. Eventually, this will come with a price of increased airtime of
the added extra padding data.

Packet Count Limitation: This opens a venue for attacks for LoRaWAN, since
the communication per ED is limited and under quota. For instance, each ED is al-

lowed to transmit at most 14 packets per day (maximum packet payload of 12 Bytes),
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including the acknowledgments for confirmed up-links.

Time Synchronization: Hence time synchronization of the EDs is provided within
v1.1 this can be efficiently used as a time-stamp to improve the freshness and integrity
of the messages.

Gateway Related Improvement: An authentication mechanism for the GWs is
necessary in order to prevent the network from Rogue-Gateway attacks. For instance,
mutual authentication can be performed between the couples of ED-GW and GW-NS.

Server Trust Related Suggestion: In LoRaWAN, servers need to be trusted en-
tities otherwise, they can create single point of failure for the network. By default,
all the servers in LoORaWAN are assumed to be trusted entities as mentioned in the
specifications.

End-Device Related Improvement: Physical capture threat against end-devices
(and eventually extraction of security parameters) can be neutralized by usage of
tamper-resistant hardware for the storage of the keying materials in the end-devices.
Although this comes with an extra cost in safety-critical installations where Cyber
threats need to be mitigated, the use of tamper-resistant hardware should be manda-

tory

2.2.7 Key Management Mechanism

Regarding the key management of root keys (AppKey and NwkKey), a practical issue
is that these secret keys must be shared with the backend platform. In LoRaWAN 1.1
two keys have been introduced (in place of just one root key) in order to reduce the
number of systems that know the key used for encrypting the payload (AppSKey). In
fact in LORaWAN 1.1 the AppSKey is derived from the AppKey that can be shared
just with the application server (and of course the device). The other keys used for
integrity protection and for joining the network are instead derived from the NtkKey.
However, in different practical cases the application server is not owned by the same
entity that owns the device (for example when the device is attached to third party
backend system like TTN ). In this case the AppKey is disclosed to an entity (the
application server) that eventually may not be trusted any more (for example if the

user want to change the backend system provider). In this case the original root keys
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cannot be considered secret any more. In order to overcome this issue, the following

possible solutions can be used:

* Change the root keys: However this requires the change of these key stored
in the device. This can be complicated or impossible due to some limitations
in device configuration (no configuration interface is available), or in device
access (the device is not physically accessible and secure Over-the-air (OTA)

configuration is not available)

¢ Introducing an automatic root key renewal mechanisms: We experimented this
approach by letting the device to periodically update the root keys (in our case
the single AppKey). The key is updated using a deterministic algorithm based
on a secret master key. At the same time a proper client application is intro-
duced by the the device owner that periodically updates the root keys on the
current backend platform (in our case we used TTN and the corresponding
TTN REST API for the updating the AppKey)

* Adding an extra encryption layer for end-to-end security: In this case the pay-
load passed to the LoRaWAN upper layer is encrypted using a symmetric key
share only between the actual application endpoints, i.e. the data provider (e.g.
a sensor) and the data consumer, both administrated by the same entity or two
reciprocally trusted entities. In order to minimize the cost of this extra encryp-
tion operation, the same cipher lo0RaWAN payload encryption algorithm (AES
EC) can be used

We just implemented the last aforementioned case. A current demonstrator consists
of:

* avirtual LoRaWAN device configured with an additional DataKey. Data passed
to the LoORaWAN client is first encrypted using this key
* avirtual LORaWAN gateway that is used by the device to connect to TTN

* an application that uses the TTN REST API to receive device data. The re-
ceived payload is further decrypted using the same DataKey and finally showed

in clear-text to the user.
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Anomaly Detection in IoT Systems

According to the studies in Sec. 2 authors attempted to provide a comprehensive
list of vulnerabilities in IoT systems. In their researches it is understandable that the
vulnerabilities existed in the communication layer are more than physical layer and
application layer, so most attacks have hit this layer, thus we focused on this category
to analyze the network layer. In addition based on the surveys in [23, 24, 25] we
found that the most effective and light strategy to combat threats in IoT heterogeneous
network is data analysis model based on machine learning by network traffic analysis
in IoT systems. Finally we proposed a novel security countermeasure based on state
of the art machine learning models.

As most founded attacks have been done on the network layer. IDS systems used
to discover vulnerabilities in the network layer. Machine-learning-based-IDS systems
are more beneficial in comparison with the traditional IDS for Anomaly Detection
and Deep-learning-based-IDS is one of most proper effective approach in terms of
Anomaly Detection on Traffic classification. Neural network architecture one of most
successful between Deep learning models for traffic classification in IoT network.
Moreover it would be able to detect also zero attacks ! too.

By study recently done researches on traditional IDS systems following achieve-

ments obtained:

! Attacks which are not recognized by security specialists and systems yet in the world
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* Machine-Learning-based-IDS systems are more beneficial in comparison of

the traditional IDS systems

* Deep learning is a novel technique in IDS systems which is able to provide our

needs in IoT

¢ Limitations of methods in the literature, even those based on artificial neural

networks

3.1 Traffic Classification

For traffic classification and anomaly detection, usually bi-directional network flows
are considered. These are composed of a series of ordered packets, exchanged be-
tween two terminal points, and are uniquely identified through the following quintu-
ple: source IP address, destination IP address, source port, destination port, trans-
port protocol. Source and destination ports and addresses may be pairwise inter-
changeable and identify the two single main unidirectional sub-flows (from source
to destination and vice versa) a flow is made of.

Internet traffic can be captured by using standard network sniffers like tcpdump?
and Wireshark®, or network emulators [26]. They permit one to get traffic traces,
composed of various packets belonging to different sessions or flows, flowing inside
private or public networks.

Historically, the main traffic classification methods can be roughly divided into
three categories [27]: 1) Session-based ii) Content-based and iii) Statistical approaches.
The usage of well-known ports belongs to the first category, while the exhaustive
packet payload analysis is a proponent of the second category. In this part, we fo-
cused on the third category, which exploits concepts of statistics, information theory
as well as artificial intelligence, and usually it does not require any application-level

protocol information.

Zhttp://www.tcpdump.org/
3http://www.wireshark.org/
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As concerns the inherent nature of statistical traffic classification approaches, they

usually perform their tasks at two different levels:

* at a fine-grained level, to detect the particular application protocol that gener-

ated a certain flow [28];

* at a coarse-grained level, to identify a larger group of protocols (e.g., bulk

transfer, mailing, web browsing, etc.), and not a specific protocol.

Whatever the considered granularity, all statistical classification algorithms usually
consider transfer-based, time-based and protocol-based features of the packets to
characterize a flow [29]. However, the description of flows in terms of numerical
features may be carried out at different levels of abstraction [30]. As a matter of fact,
there exist i) methods that consider packets as well as their inherent and simplest
properties (e.g., size, inter-arrival time, the relative position in the flow, etc.); and ii)
methods relying on aggregated statistical features of a flow or sub-flow (e.g., maxi-
mum, minimum, mean and standard deviation of the total volume in bytes, the overall
duration, etc.).

Here we focused on the second approach, i.e., the one that regards aggregated
statistical features of the flows (and their two main sub-flows). As concerns the gran-
ularity of the classification, we will address both a binary classification (distinguish-
ing normal traffic from abnormal one) and a more fine-grained multiclassification

(identifying normal traffic and different types of malicious flows).

3.2 State of The Art on Anomaly Detection based on Deep

Learning

Deep Learning (DL) regards a particular branch of machine learning, encompassing
techniques that allow the simulation of information processing typical of biological
nervous systems [31]. A DL architecture is made of a set of related layers, wherein
each layer obtains different inputs from another layer and reorganize the information

in a hierarchical fashion, useful to perform feature learning and pattern classification.
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DL algorithms are usually considered more suitable than other machine learning tech-
niques in contexts featuring a high level of complexity (i.e., several attributes and a
great number of data).

The training of a neural network has the two main phases:

e the feed-forward phase, wherein the activation of the nodes of the network is
performed from the input layer, usually containing a number of nodes equal
to the number of the considered features, to the output one, usually containing
a number of nodes equal to the number of classes, in classification problems.
Except for the nodes in the input layer, all subsequent nodes, in the intermediate
layers, represent neurons which activate their output according to a proper and

ad-hoc activation function (e.g., ReLu) [32].

* the back-propagation phase, which allows one to improve the overall network
performance by assigning to the connection between the nodes proper and up-
dated weights, as well as bias values if necessary, with the aim of increasing

the overall performance of the whole neural network.

In [33, 34] authors surveyed anomaly detection mechanisms in IoT scenarios with
artificial intelligence techniques.

Lopez-Martin et al. [35] proposed an unsupervised anomaly Network Intrusion
Detection System (NIDS) for IoT environments, based on a Conditional Variational
AutoEncoder (CVAE). Their method is unique due to its ability to carry out feature
reconstruction, i.e., it can retrieve missing features from incomplete training datasets.
The used dataset was a refined version of the NSL-KDD* one with 116 features and 5
possible labels. They proved experimentally that their work is less complex compared
to other unsupervised NIDS, with better classification metrics (accuracy, precision,
recall and F-measure) than well-known algorithms like random forest, linear SVM,
multinomial logistic regression and multi-layer perception, both for binary and mul-
ticlassification problems.

Thing [36] analyzed wireless network threats and proposed an anomaly NIDS to
detect and classify attacks in IEEE 802.11 networks, based on Stacked Auto-Encoder

“https://www.unb.ca/cic/datasets/ns].html



3.2. State of The Art on Anomaly Detection based on Deep Learning 47

(SAE), a neural network built by stacking multiple layers of sparse auto-encoders
with both two and three hidden layers. The author experienced different activation
functions for the hidden neurons. To test his strategy, he used the AWID_CLS_R
dataset generated from a lab-emulated Small Office - Home Office (SOHO) infras-
tructure. He achieved an overall general accuracy of 98.6688% in a 4-class classifica-
tion (legitimate traffic, flooding attacks, injection attacks and impersonation attacks),

but with only a 2-layer neural network.

Diro and Chilamkurti [37] applied Fog Computing principles in IoT environ-
ments to detect intrusions. In particular, they equipped edge layer devices with in-
telligent detection capabilities to improve efficiency and reduce the data transported
to the Cloud. The authors proposed a deep learning approach to detect known and
unseen intrusion attacks, but without specifying clearly the number of used layers.
The distributed parallel deep learning approach gets better results in accuracy than
centralized deep learning NIDS and also than shallow machine learning algorithms,
but the employed machine learning algorithms are not specified. Diro et al. used the
aforementioned NSL-KDD dataset, with some modifications, thus considering 123
features. They performed 4-class detection and achieved 98.27% of overall accuracy,
96.5% detection rate, as well as 2.57% of false alarms rate using the deep learn-
ing model, while the shallow machine learning classifiers achieved an accuracy of
96.75%, 93.66% of detection rate and 4.97% of false alarms rate. They also noted an
increase in the overall detection accuracy while increasing the number of fog nodes
from around 96% to over 99%.

Moustafa et al. [38] proposed an Adaboost ensemble method for intrusion de-
tection, based on decision tree, Naive Bayes and Artificial Neural Network, to miti-
gate particularly botnet attacks against DNS, HTTP and MQTT protocols utilized in
IoT networks. A set of 36 features, some typical of a single protocol, are extracted
from two datasets, namely UNSW-NB15 and NIMS. Then, a feature selection step is
performed to extract the most important ones. This step enables the reduction of the
computational cost of the overall system. The ensemble achieved an overall accuracy,
for the binary classification, between 98.54% and 98.97% for UNSW-NB15 dataset
and between 98.29% and 98.36% for the NIMS dataset, while the performance of the
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artificial neural network by itself, whose number of layers is not specified, does not
pass 96.27%.

In the contribution in [39] the authors used an intelligent system to maximize
the recognition rate of network attacks by embedding the temporal behavior of the
attacks into a Tap Delay Neural Network (TDNN) structure, a particular type of re-
current neural network. It has only 2 layers and a Tap Line or Tap Delay Line (TDL),
which consists of a group of taps that orders the temporal inputs. The system has
been compared with SNORT and with the MIT DARPA Intrusion Detection Evalua-
tion system over the old DARPA 1998 dataset with a claimed 100% recognition rate
for both port scan and host sweep attacks. No clues are given about the considered

features.

Vinayakumar et al. [40] proposed a highly scalable and hybrid Dense Neural Net-
work framework called scale-hybrid-IDS-AlertNet (SHIA IDS), which can be used
in real-time to effectively monitor network traffic and host-level events to proactively
alert possible cyber-attacks. The authors considered both a multiclassification, trying
to detect each different attack, and a binary classification by combining all attacks
together and labeling them as “abnormal” traffic. They tested their model in different
public datasets such as CICIDS-2017, NSL-KDD, KYOTO, WSN-DS, KDDCup-99,
UNSW-NB15. They evaluated deep learning architectures of up to 5 hidden layers
performing also experiments with a reduced set of features and some comparisons
with traditional machine learning algorithms. They achieved a best overall accuracy
over all classes, in the mutliclassification experiments, of 87.3% on the CICIDS-2017
dataset and of 93.57% on the UNSW-NBI1S5 dataset.

Finally, the recent work in [41] considered two datasets, namely ISCX-IDS-2012
and CIC-IDS-2017, to evaluate the performance of a proposed Hybrid Neural Net-
work method. Like the contribution in [40], they tested their model in two scenar-
i0s, namely multiclassification and binary classification, and they considered differ-
ent types of features of a traffic flow (sequential, statistical and environmental). The
achieved overall accuracy in the binary classification is 99.57% on the CIC-IDS-2017
dataset and 99.58% on the ISCX-IDS-2012 dataset, while the values are 99.35% and

99.61%, respectively, in the multiclassification scenario.
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According to our paper [42] in this section first the proposed feature model and

then the used deep learning neural network is described.

3.3 Feature Extraction Model

Similarly to the anomaly detection on traditional Internet traffic, also in case of IoT
traffic we consider bi-directional network flows composed of a series of ordered pack-
ets, exchanged between two terminal points. The set of features considers all the as-
pects that characterize a flow as well as its two main sub-flows, one for each direction
of the communication (forward, Fwd, or backward, Bwd). As a consequence a flow
F;, identified through the 5-tuple described in Sec. 3.2, can be considered as a series

of features (f;, j = 1...n) mirroring an instance as follows:

E:{f17f27f37fn} i=1.M (31)

where 7 is the number of features per flow, and M the number of considered flows.

Specifically, we extracted from the considered traffic flows a set of 70 statistical
features, as summarized in Table 3.2: these features have been already successfully
adopted within the traffic classification schemes discussed in [30, 43]. Table 3.2 lists,
for each feature, a brief description, as well as the unit of measurement (UoM) of
the feature itself (where (s and B stand for micro-seconds and bytes, respectively).
The features encompass mainly size- and time-related characteristics, as well as their
maximum, minimum, average and standard deviation values, but they also comprise
information about the flags, the number of packets with certain characteristics or
further sub-flows inside the two main sub-flows.

In order to make a flow a full instance, we had to label each flow according to
the type of traffic, adding the so called class as the (n+ 1) feature. In this paper we
considered both a binary classification, where the flows were label only as BENIGN
or ATTACK, and a multinomial classification, where we considered the particular
type of attack.

Based on the the previous surveys we mentioned in the Sec. 3.2 and state of the

art IoT datasets the most popular and famous attacks on IoT systems are in particular
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the following attacks:

L]
o
L]

34

DOS: a Denial of Service attack, performed also in a distributed fashion.
MIRAL: an attack launched by a Mirai bot.
MITM: a Man-in-the-Middle attack.

SCANNING: comprising both OS scanning and service scanning attacks.

Deep Learning Model

The considered deep learning architecture was inspired by the work in [44], its main

components are presented in Fig. 3.1, and they are described in the following:

L]

one Input layer: the entry point of the network, encompassing a number of
nodes equal to the number of considered features (70 as described in Sec. 3.3);

a Batch Normalization layer: useful to improve the training of the neural net-
work, since it increases the speed of training and permits one to adopt higher
learning rates as well as to saturate possible non-linearities. This usually results
into a higher accuracy on both validation and test, thanks to a stable gradient

propagation within the network itself [45].

a variable number of Hidden layers: they are made of artificial perceptrons
and output a weighted sum of their inputs, passed through a ReLu activation
function. We made experiments with a different number of hidden layers to

evaluate the differences in the overall performance.

a Dropout layer: we considered this layer tightly coupled with the aforemen-
tioned one and immediately following it. As a matter of fact, in the above men-
tioned experiments, we replicated different times the pair hidden layer-dropout
layer. The dropout layer helps to prevent over-fitting by means of a regulariza-
tion technique that turns off randomly several neurons in a layer according to

a probability p drawn from a Bernoulli distribution. We considered the same
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Figure 3.1: The used neural network model for both the binary (gray) and multi-
(orange) classification.

probability for each node of the coupled hidden layer and we set its value to
0.2.

* An Output layer: this layer produces the final classification outcome and is
composed of a number of nodes equal to the number of classes. In Fig. 3.1,
we show 2 different output layers, since they refer to the binary classification
and multi-classification problem, respectively. However, when we ran our ex-
periments we considered for each problem only one of the two depicted output

layers at a time, which are a dense layer using a so ftmax as activation function.

3.5 Experimentation Description

In this section, we present the application of the deep neural network architecture,
described in Sec. 3.3 to a large IoT dataset. We constructed it by merging together
traffic traces coming from different sources.

First of all, we describe the four datasets we used as well as the statistical characteris-
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tics of the whole merged large dataset, secondly, we detail the parameters we used as
well as the considered metrics, and finally, we report the evaluation results together

with a brief discussion.

3.5.1 Dataset Scenario

The literature review, reported in Sec. 3.2, shows that the studies about IoT attacks
and traffic classification mainly employ ad hoc built datasets to evaluate particular
and specific attacks or traffic flows. Some of the limits of these datasets are that they
are i) small, so not apt for being used with deep learning techniques, ii) with a few
attacks or with difficulties in separate clearly attacks from benign traffic, iii) not di-
rectly comparable and scarcely usable to evaluate and compare different approaches,
and iv) usually coming from the same network scenario, where flows exhibit the same
easy to learn pattern across the considered features.

Stemming from these considerations, we decided to build a large and integrated
dataset by merging together four different IoT datasets, with different dimensions
and different types of attacks and of traffic, in order to validate the proposed deep
neural network model. The integration procedure is composed of the following steps:
1) datasets selection, ii) datasets transformation; iii) datasets cleaning, and iv) datasets
merging.

The selection of the datasets regarded finding out in the Web useful and recent
datasets, built in the last few years and containing a sufficient number of instances
regarding both benign and malicious IoT traffic.

The transformation step concerned the creation of proper CSV files, with more
features than the 70 ones described in Sec. 3.3, from raw .pcap files, as well as
the consistent labeling of the flow instances by exploiting the information each sin-
gle dataset was endowed with. These tasks have been performed by using the CI-
CFLOWMETER tool® [46], which is a Java network traffic flow generator allowing
for flexibility in terms of choosing the features to compute and a control of the dura-

tion of the flow timeout.

Shttps://github.com/ahlashkari/CICFlowMeter
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The cleaning step regarded the removal of instances containing inconsistent val-
ues such as NaN, Infinity, and the like, and it has been performed using a proper
Python script. This step involved also the reduction of the initial available features,
in order to remove non-computable features or constant features throughout all the
instances. This step led to have the surviving 70 features described in Sec. 3.3.

Finally, the merging step, carried out through a Python script as well, provided
the integration of the considered datasets into a unique large dataset, whose statistics,
together with the ones of the 4 datasets it is composed of, are summarized in Table
3.1.

Dataset D1° [47] has been released on September 2019 and built considering two
typical smart home devices, i.e., SKT NUGU (NU 100) and EZVIZ Wi-Fi Camera
(C2C Mini O Plus 1080P), as well as some laptops and some smartphones, connected
to the same wireless network. All attacks except Mirai Botnet category contain pack-
ets captured while simulating attacks using tools such as Nmap. In the case of Mirai
Botnet attack, the packets were generated on a laptop and then manipulated to make
it appear as if they originated from the IoT device. For dataset D2 [48] [49] [50] [51]
[52] [53], created by designing a realistic network environment in the Cyber Range
Lab of UNSW of Canberra, we considered only 5% of the entire dataset and only
scanning attacks in order to make the whole merged dataset unbalanced and test our
DL architecture in these conditions. For dataset D3 [54], whose data were collected
for IEEE TMC 2018 [55], we only considered benign traffic, in order to increase the
number of instances of this type of traffic up to the order of magnitude of scanning at-
tacks and, at the same time, to vary the network scenario from which traffic traces are
captured. Indeed, these traces contain traffic from a great variety of IoT devices, such
as Amazon Echo, Netatmo Welcome, TP-Link Day Night Cloud camera, Samsung
SmartCam, etc.

Finally, dataset D4 [56] contains mainly IoT malware traffic of type “Mirai” cap-
tured at the Stratosphere IPS laboratory at the Czech Technical University in 2018
and 2019, and we exploited it partly to achieve an order of magnitude of Mirai in-

stances, in the whole dataset, equal to the one of benign traffic and scanning attacks.

Shttps://ieee-dataport.org/open-access/iot-network-intrusion-dataset
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Table 3.1: Statistics of the considered datasets.

Dataset ID | No. instances | Benign | DoS | MITM | Mirai | Scanning
D1 26246 496 3273 378 18623 3476
D2 794767 - - - - 794767
D3 437322 437322 - - - -
D4 546720 - - - 546720 -
Whole 1805053 437817 | 3273 378 | 565343 | 798243

The integrated whole dataset comprises a total of 1805053 flow instances, 437817
of normal traffic and 1367236 of abnormal traffic (attacks). The figures of the four
considered attacks (DoS, Mirai, MITM and Scanning) are detailed in Table 3.1. As
one can see, the instances for DoS and MITM are quite small compared to the other
types of traffic, and this was done purposely to test the robustness of the proposed
DL model against unbalanced data, as it will be described in Sec. 3.6.

3.5.2 Evaluation Settings

The assessment has been performed on the aforementioned integrated dataset in order
to identify i) benign and malicious traffic, and ii) normal traffic as well as 4 different
attacks. The evaluation is performed using both the deep learning architecture and
by using some traditional machine learning algorithm, namely Hoeffding Tree (HT),
useful for the classification of streaming data from IoT devices, and Naive Bayes
(NB), with the aim to demonstrate that, for the considered IoT attack scenario, a ma-
chine learning approach is overcome by deep neural networks with several hidden
layers. The considered deep neural network architecture has been implemented using
the Python programming language, in particular Tensorflow 2.1.07, an open source
software library for high-performance numerical computation, and Keras 2.3.1%, a
Python-based high-level neural networks API, cable to run on top of TensorFlow
and to simplify the creation of an artificial neural network. The deep neural network

model, described in Sec. 3.4, was trained by using categorical cross-entropy [57] as

"https://www.tensorlow.org/
8https://keras.io/
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Table 3.2: The list of the 70 considered features used to characterize a flow.

Feature Description UoM
Flow duration Duration of the flow in microseconds us
Total Fwd Packet Total packets in the forward direction pck
Total Bwd packets Total packets in the backward direction pck
Total Length of Fwd Packet | Total size of packets in forward direction B
Total Length of Bwd Packet | Total size of packets in backward direction B
Fwd Packet Length Min Minimum size of packets in forward direction B
Fwd Packet Length Max Maximum size of packets in forward direction B
Fwd Packet Length Mean | Mean size of packets in forward direction B
Fwd Packet Length Std Standard deviation size of packets in forward direction B
Bwd Packet Length Min Minimum size of packets in backward direction B
Bwd Packet Length Max | Maximum size of packets in backward direction B
Bwd Packet Length Mean | Mean size of packets in backward direction B
Bwd Packet Length Std Standard deviation size of packets in backward direction B
Flow Byte Rate Number of flow bytes per second B/s
Flow Packets Rate Number of flow packets per second pck/s
Flow IAT Mean Mean time between two packets sent in the flow us
Flow IAT Std Standard deviation time between two packets sent in the flow us
Flow IAT Max Maximum time between two packets sent in the flow us
Flow IAT Min Minimum time between two packets sent in the flow us
Fwd TAT Min Minimum time between two packets sent in the forward direction us
Fwd TAT Max Maximum time between two packets sent in the forward direction us
Fwd TAT Mean Mean time between two packets sent in the forward direction us
Fwd IAT Std Standard deviation time between two packets sent in the forward direction us
Fwd IAT Total Sum of all IATs in the forward direction s
Bwd IAT Min Minimum time between two packets sent in the backward direction us
Bwd IAT Max Maximum time between two packets sent in the backward direction us
Bwd IAT Mean Mean time between two packets sent in the backward direction us
Bwd IAT Std Standard deviation time between two packets sent in the backward direction us
Bwd IAT Total Sum of all TATs in the backward direction us
Fwd PSH flag Number of times the PSH flag was set in packets traveling in the forward direction (0 for UDP) -
Bwd PSH Flag Number of times the PSH flag was set in packets traveling in the backward direction (0 for UDP) -
Fwd URG Flag Number of times the URG flag was set in packets traveling in the forward direction (0 for UDP) -
Bwd URG Flag Number of times the URG flag was set in packets traveling in the backward direction (0 for UDP) -
Fwd Header Length Total bytes used for headers in the forward direction B
Bwd Header Length Total bytes used for headers in the backward direction B
Fwd Packet Rate Number of forward packets per second pck/s
Bwd Packets Rate Number of backward packets per second pck/s
Min Packet Length Minimum length of a packet in the whole flow B
Max Packet Length Maximum length of a packet in the whole flow B
Packet Length Mean Mean length of a packet in the whole flow B
Packet Length Std Standard deviation Iength of a packet in the whole flow B
Packet Length Variance Variance Iength of a packet in the whole flow B
FIN Flag Count Number of packets with FIN pck
SYN Flag Count Number of packets with SYN pck
RST Flag Count Number of packets with RST pck
PSH Flag Count Number of packets with PUSH pck
ACK Flag Count Number of packets with ACK pck
URG Flag Count Number of packets with URG pck
CWR Flag Count Number of packets with CWE pck
ECE Flag Count Number of packets with ECE pck
Down/Up Ratio Download and upload ratio -
Average Packet Size Average size of packets in the whole flow B
Avg Fwd Segment Size Average size of a segment observed in the forward direction B
Avg Bwd Segment Size Average size of a segment observed in the backward direction B
Subflow Fwd Packets Average number of packets in a sub flow in the forward direction pck
Subflow Fwd Bytes Average number of bytes in a sub flow in the forward direction B
Subflow Bwd Packets Average number of packets in a sub flow in the backward direction pek
Subflow Bwd Bytes Average number of bytes in a sub flow in the backward direction B
Init Win bytes forward Total number of bytes sent in initial window in the forward direction B
Init Win bytes backward | Total number of bytes sent in initial window in the backward direction B
Act data pkt forward Count of packets with at least 1 byte of TCP data payload in the forward direction pck
min seg size forward Minimum segment size observed in the forward direction B
Active Min Minimum time a flow was active before becoming idle us
Active Mean Mean time a flow was active before becoming idle s
Active Max Maximum time a flow was active before becoming idle us
Active Std Standard deviation time a flow was active before becoming idle us
Idle Min Minimum time a flow was idle before becoming active us
Idle Mean Mean time a flow was idle before becoming active s
Idle Max Maximum time a flow was idle before becoming active us
Idle Std Standard deviation time a flow was idle before becoming active us
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a loss function, and stochastic gradient descent (SGD), with learning rate equal to
0.1, momentum equal to 0.09, decay of 1e~° for optimizing the loss function. More-
over, SGD has been integrated with Nesterov accelerated gradient (NAG) correction
to avoid excessive changes in the parameter space [58]. The metrics that we used to
evaluate the classification results have been the following: Precision, Recall, Accu-
racy and F-measure. As a matter of fact, the considered datasets is somehow unbal-
anced with respect to certain attack classes as it has been described in Subsec. 3.5.1,
so only the overall accuracy would have not been a significant parameter. Precision
has been evaluated as the proportion of samples that truly belong to a given attack (or
normal flow) among all those which were assigned to it. It is computed as the ratio
of the number of relevant detected samples (true positive) to the sum of irrelevant

detected samples (false positives) and relevant detected samples (true positives):

true positives

Precision =

. 3.2
true positives + false positives (3-2)

On the other hand, the recall has been evaluated as the proportion of samples assigned
to a given attack (or normal flow), among all the samples that truly belong to the
attack (or normal traffic) itself. It is computed as the ratio of the number of relevant
detected samples (true positive) to the total number of relevant samples (the sum of

true positives and false negatives):

true positives

Recall = (3.3)

true positives + falsenegatives

The F-measure, or F-score, is the weighted harmonic mean of precision and recall,

and is computed according to the following formula:

PR

F —score =2——,
P+R

34

where P and R are precision and recall, respectively. While precision and recall can
be computed both per class and on average, the accuracy is an overall metric and has
been computed as the ratio of the sum of true positives and true negatives to the total

number of samples:
tp+itn

tp+fn+tn+ fp’

(3.5)

Accuracy =
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where 7 p means true positives, fn means true negatives, fn means false negatives, and
fp means false positives.

The experiments have been run on an Intel Core i7 7" gen machine, equipped
with 1 GPU and 16GB of RAM.

3.6 Results

In this section we present some of the obtained results, as regards both the training
phase of the considered Deep learning (DL) model as well as the test phase and the
comparison with traditional machine learning algorithms. All the results have been
obtained considering a 5-fold cross validation process.

Deep learning networks are usually trained for several epochs, a hyper-parameter
defining the number of times the learning algorithm will present the entire training
dataset to the network under training. To make the network reaching its best perfor-
mance during the test phase, it is important to set the number of epochs to a value
corresponding to the point when the network accuracy vs the numbers of epochs is
not increasing anymore. The loss function is usually inversely proportional to the ac-
curacy and when the accuracy increases, the network is learning and the loss trend
is decreasing. In a symmetric way to what said about the accuracy, the network does
not learn anymore when the loss function reaches a constant trend.

Figures 3.2 and 3.3 show the trends of accuracy and loss versus an increasing
number of epochs for the considered DL model with a hidden number of layers equal
to 7 (DL7), the configuration reaching the best performance in terms of accuracy. As
one can see, after about 50 epochs both the accuracy and the loss trends stabilize.
Similarly, Figures 3.4 , 3.5 presents how accuracy and loss vary during the epochs
when considering the multinomial classification and the training of the proposed DL
model with 6 hidden layers (DL6), the configuration achieving the top accuracy in
this type of classification. As one can see, the trend is less smooth than in the case of
the binary classification, and this is possibly due to the major difficulty in separating
more classes, but the number of epochs when the trend stabilizes is more or less the

same.
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Figure 3.2: Accuracy trends for binary classification with 7-layer DL.
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Figure 3.3: Loss trends for binary classification with 7-layer DL.

As concerns the test phase, we report in Table 3.3 the values of overall accu-
racy, precision, recall and F-measure for both some traditional machine learning tech-

niques and the proposed Deep leaning model. As stated in Sec. 3.5.2, we considered
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Figure 3.4: Accuracy and loss trends for multiclassification with 6-layer DL.
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Figure 3.5: Loss trends for multiclassification with 6-layer DL.

as machine learning techniques HT and NB and their Weka® implementation, while
for the proposed DL model we report the results for different hidden layers, from 4

to 7. As one can see, the best accuracy is reached with a DL architecture made of

https://www.cs.waikato.ac.nz/ml/weka/
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Table 3.3: Classification results on the test set.

Binary classification Multiclassification

Alg. | Acc. P R F Acc. P R F
HT | 0.9930 | 0.993 | 0.993 | 0.993 | 0.9736 | 0.974 | 0974 | 0974
NB | 0.8723 | 0.877 | 0.872 | 0.859 | 0.6702 | 0.879 | 0.670 | 0.748
DL4 | 0.9968 | 0.9935 | 0.9935 | 0.935 | 0.9942 | 0.9875 | 0.9854 | 0.9864
DL5 | 0.9969 | 0.9936 | 0.9936 | 0.9936 | 0.9943 | 0.9884 | 0.9864 | 0.9874
DL6 | 0.9970 | 0.9938 | 0.9938 | 0.9938 | 0.9973 | 0.9886 | 0.9867 | 0.9877
DL7 | 0.9975 | 0.9937 | 0.9937 | 0.9937 | 0.9937 | 0.9874 | 0.9854 | 0.9864

7 layers for the binary classification, while it is achieved by a DL architecture made
of 6 layers for the multiclassification. In general, the DL approach outperforms the
two considered traditional machine learning techniques and can reach the best re-
sults compared to the related works surveyed in Sec. 3.2. As concerns the introduced
unbalance in the dataset, we can see that for the binary classification the effect is
negligible, given that the averaged precision, recall and F-measure are always greater
than 0.99, while it becomes somewhat relevant in the multiclassification, even if the

considered metrics are always better than those of traditional ML techniques.

3.7 Threats to Validity

As concerns the construct validity threats, some inaccuracies and omissions can be
due to the reliability of the captured traffic traces and of the tools used to extract
or compute the features. In order to limit this threat, we have considered four dif-
ferent datasets, from four different network scenarios, as well as a very renown and
used tool like CICFLOWMETER. Moreover, regarding the internal validity, if the
adopted datasets are not correctly labeled or are obtained with a non-rigorous pro-
cess, we could have classification errors. This risk is strongly mitigated because the
used datasets are well documented and referenced in papers already published in rep-
utable venues. Finally, threats to external validity may involve the generalization of

the discussed findings. We have evaluated our approach on a great number of flows
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from four existing datasets having different sizes and characteristics. However, in the

future, it is possible to integrate more datasets with many more IoT flows.






Chapter 4

Application Scenario

4.1 POSITIVE Project, Scope and Technologies

The POSITIVE project has been funded under the 2018 call POR FESR Emilia-
Romagna (Regional Operational Program - European Regional Development Fund),
Strategic industrial research projects aimed at the priority areas of the Intelligent
Specialization Strategy. The total amount of the project is 1.1 million Euros, of which
70 percent covered by the regional contribution.

POSITIVE aims to make agronomic interest indices available on a regional scale
from the satellite images of the Copernicus project and to prepare an I'T infrastructure
that makes precision irrigation and fertigation usable throughout the entire region.

The activity plan was divided into 5 phases, not to be understood as strictly se-
quential but functional, with evident levels of interdependence. As regards precision
agriculture, the project not only deals with the specificity of the individual phases,
but also connects with the seasonality of the irrigated / fertigation campaigns. Phase
1 designs and implements the POSITIVE Sat Service. To this end, it defines and
implements the procedures for downloading data from the Copernicus hub, the pro-
cessing necessary to obtain the indices and agronomic parameters that can be derived
from satellite data, the organization of the archive and the data access service by users

via the Web API. Phase 2 concerns the execution of experimental measurements on
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the ground for the validation (ground truthing) of both the indices produced by the
processing of satellite images and the data collected by ground sensors (proximity or
in vivo) in the companies served by the participating companies. These operations
will be repeated in both the useful crop campaigns of the project. Phase 3 intervenes
on the IRRINET irrigation service, improving it at two levels: in the forecast model
of water needs, with the introduction of temporally updated data derived from satel-
lite and, where available, from ground sensors; in operations and functionality, with
the adaptation of interfaces to users and to data acquisition services / systems. Phase
4 is divided into two sub-phases. The first deals, in agreement with the project com-
panies and the partners associated with the project, of the design and implementation
of Scalable Operational Protocols (POS). In other words, components and interfaces
will be developed to manage the flow of information from satellite or ground data to
irrigation advice services and from these to precision and variable rate irrigation sys-
tems. The realized architecture will be available in open format, documenting the data
generated by the components and their interfaces. The second includes the imple-
mentation of the POSITIVE Server information system, to coordinate and organize
the data flow between the aforementioned services and systems, and its integration
into the information system oriented to the SAMS business management referred to
in phase 5. Phase 5 provides for the validation of the Scalable Operating Protocols
by means of a demonstrator information system consisting of the integration of the
POSITIVE Server with the information system called Smart Agronomic Manage-
ment System (SAMS) prepared by CRPA Lab. The demonstration of the operation of
the irrigation management system of precision and variable rate is carried out by ap-
plying it to the management of the irrigation campaign in pilot farms equipped with
precision irrigation equipment, on different types of crops.

POSITIVE Objectives:

* set up a stable service, with coverage on a regional scale and managed by insti-
tutional actors, which makes updated maps of the most significant agronomic
indices at 10 x 10 m resolution available on a regular basis and interfaces it to
the IRRINET system;

* develop components and interfaces to manage the flow of information from
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the production of index maps (including those generated by proximity or in
vivo sensors) to irrigation advice systems and from these to precision irrigation

systems;

e implement a demonstration system for the management of precision irrigation
with a high degree of automation that relies on these services and on protocols

shared with companies producing irrigation machines;

» improve the FERTIRRINET functionality of the IRRINET service in the qual-
ity of irrigation and fertigation advice thanks to the systematic integration of

satellite data and, where available, of data from ground sensors;

* producing variable rate irrigation plans for crops and plots that can benefit from
them. The standards and protocols developed in the POSITIVE project will be
available and documented to be freely usable by all companies interested in the
topic of precision fertigation.

Expected Results:

Service for the supply of high resolution satellite maps for the entire RER terri-
tory. A service, called Positive Sat Service, will be created for accessing Sentinel2
satellite data. These data will consist of derived maps of biophysical parameters re-
lating to the main crop classes of the region, georeferenced and updated every 5 days.
The maps, with a resolution of 10 or 20 m, can be used, alongside other data, to feed
the forecast models of irrigation and fertigation needs, from the scale of the district
to that of the plot and its internal parts. Users (farms, service providers, reclamation
consortia, producer associations) will be able to access the data in a flexible way (eg
for delimited areas) and will have a high quality database which is also useful for sta-
tistical and forecast studies. Service of supply of irrigation and fertigation "recipes"
with high spatial resolution and variable rate. At the end of the project, the irrigation
and fertigation recipe today provided by the IRRINET / FERTIRRINET service of
the CER will be improved in terms of accuracy and reliability thanks to the integra-
tion of satellite information on crops and, where present, from the company sensor

networks on the ground. The high spatial resolution of satellite or ground data will
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make it possible to generate different recipes within the plot. The service thus en-
hanced, here called IRRINET +, will continue to be provided by the ERC as an insti-
tutional service, thus bringing the potential and resources for precision and variable
rate irrigation to full capacity for the entire region. Protocols for interfacing public
and private service servers and precision irrigation machines. The adhesion to the
project of important manufacturers of different irrigation machines and equipment
will allow to jointly develop and document the standards and interfaces to enable the
interconnection of a significant repertoire of such machines to public and private irri-
gation council services. Some machines enabled by the project will be operational at
different farms in the region on diversified crops. A geographic information system
(POSITIVE-SAMS) will document the validity and effectiveness of the protocols
developed by displaying the data collected over time (eg sensory measurements, irri-
gation, yields). The data will be available at different levels of detail, distinguishing
between private data or data pertaining to the individual company and aggregate data
of interest on a larger scale (eg. Protocols for interfacing field sensors and public and
private service servers. By virtue of the interfacing protocols developed in the project,
the data provided by field sensors, interconnected in the network, will be more eas-
ily acquired by expert decision support systems and irrigation or fertigation advice,
helping to validate the indications. With the contribution of companies participat-
ing in the project, having significant experience in the installation and configuration
of such sensors, configurable interfaces will be defined capable of encompassing a
wide range of measurement situations on a proximal and in vivo scale, also enabling
the interconnection of emerging types of sensors according to the Internet of Things
paradigm. Demonstrator of scalable operational protocols for precision irrigation.
POSITIVE Server integrated with POSITIVE-SAMS will constitute a demonstrator
of the project, i.e. a distributed IT infrastructure that communicates with the data
producers (satellite or land), with the IRRINET + service, with users and irrigation
equipment capable of receiving commands and returning data. The demonstrator will
be based on data models in standard formats, accessible via documented APIs, and
will include software components to periodically query information providers, collect

and process information, send data, commands and recipes to registered users or keep
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them available for a supply on request. The system will demonstrate the functionality
of the operational protocols and the interoperability of services.

Within the project, the aspects regarding data capturing, by means of proper on
field sensors (e.g. soil temperature and humidity sensors), and transmission have been
faced.

As LPWAN technology the LoRaWAN protocol and the corresponding network
architecture have been selected.

The carried out activities are hereafter described, focusing on: (i) LoORaWAN sen-
sor devices, (ii)) LoORaWAN gateways and (iii) LoORaWAN backend platforms.

4.2 Practical Experimentation

This part of the research mainly focused on the evaluation of LoORaWAN technologies
and corresponding experimentation for the transmission of sensor data in precision
agriculture scenarios. We started by deeply analyzing the state of the art of LoRa and
LoRaWAN standard, versions 1.0.2 and 1.1, facing supported features, procedures
and communication mechanisms between the different LoORaWAN components, that
are the end nodes, gateways, join-server, network-server, and application-server, pos-

sibly involved in both join procedure and uplink and downlink data transmissions.

4.2.1 LoRaWAN Devices

We used two categories of LoORaWAN devices (nodes) in our Experimentation.

* Off-the-shelf sensor devices: Temperature-humidity sensors (e.g. LHT65, LSEO1

devices)
¢ Ad-hoc devices

— STM32 WL55JC (Included lora module)
— STM32 L0727 (Included lora module)
— STM32 L476RG (Without lora module)
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For LoRaWAN device prototyping there are some development boards like Reyax
which includes MCU, antenna and lora module. Lora-module is communicating with
MCU via SPI bus. STM32 causes to increase lora-module performance. It can be
found in many commercial products. By studying papers and real world scenarios

important parameters in prototyping lora node can be:
* Power consumption
* Easy programming (UPLOADING CODE TO THE MCU)
* Memory (Ram) depends on the codes we need to upload in the device
* MCU speed
* Price

Note: Each Lora device can be easily play the Lora-gateway role by adding an
embedded Linux board like Raspberry Pi.

Lora Node Prototyping and Experimentation:

We studied all possible hardware components necessary to implement our exper-
imentation in real world experimentation and state of the art Lora Node Prototyping
scenarios (more than 20 prototyping scenarios) then by comparing them and the fea-
tures of each hardware component we gathered necessary list of material (LOM) to
deploy our prototyping base on a less power consumption, less CPU and memory

usage. Main hardware components to form a LoRaWAN node are:

Board/MCU
e Lora module
» Battery

* Possibility of connecting other interfaces (e.g. RS232-485-SDI12) to the Lo-
RaWAN node
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Boards and their features: Most common proper boards for LoRaWAN device
prototyping are such as Arduino Atmega base, stm32 arm based, Esp32 ,Pycom
board) and comparison done according to our studied the best MCU was STM32

because of:

Includes all components (Board/MCU, Lora module, Antenna) to gather Low

power consumption
* High performance due to the MCU speed
» Easy programming (method of uploading code to the MCU)
* Memory size
* Economic aspect

In order to quantifying the link performance two main parameters are considered:

(i) Link budget (is the sum of all of the gains and losses from the transmitter,
through the medium, to the receiver in a telecommunication system)

(i1) Receiver sensitivity (is the lowest power level at which receiver can receive
or demodulate the signal).!

Lora modules and features:

Common lora module are such as SM32WLX, MICROCHIP, Adafruite, HopeRF,

Rylr890, Dragino. Parameters can be considered are such as:
» Simple connectivity to the board
 Exist practical method to use it in real world
+ Radio power consumption in standby/Active mode depending on Duty-cycle >
 Sensitivity

 Link budget

Thttps://lora.readthedocs.io/en/latest/
https://www.thethingsnetwork.org/docs/lorawan/duty-cycle/
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* High speed (Lora-module is communicating with MCU via SPI bus)

LoRa transceiver modules:

(i)HopeRF RFM96 LoRa transceiver module: which uses RFO5W part number.
On its chip is marked RF96 which means the chip is using the SX1276 chip.

(ii)LoRa-E5 LoRa module: It has a lot of capabilities e.g. Ultra-low Power Con-
sumption, Extremely Compacted Size. High Performance and long Distance Use.

Conclusion: HopeRF with sensitivity down to -148 dBm, maximum link budget
168 dB and sleep current 0.2uA is number one between all others. Battery and it’s
features for LORaWAN device prototyping:

power supply and battery plays an integral rule on life time of the node as node
power consumption should be as less as possible. Most common battery types Li-

Soci2, Li-ion, Li-po. Most important features to select battery are:
 Battery life
* Temperature conditions the battery can tolerate (-30 to 70)
* Economic aspects
Important notes:

» With less power the MCU has less performance e.g. in ATmega MCU speed
decreases from 16mhz to 8mhz e.g transmit each 20 minutes. So in order to
have as less as possible power consumption, Arduino nano (Arduino uno) can

power on from 1.8 to 5.5 volt
» Using a capacitor with the battery could increase battery life many years more.

* Rechargeable (Recharging battery using SOLAR PANEL, not useful for Lo-
RaWAN projects as it decrease the life time of battery until 2 years) moreover
the accessibility of node could be hard to change the battery.

* Thus Li-Soci2 type is proper as it’s life duration is around 10 years minimum

in case device sends packet every 20 minutes.
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We did also reverse engineering in LSEO1 sensor hardware components as it was
a suitable LoRaWAN node to start.

Possibility of connection interfaces (e.g. RS232-485-SDI12) within the board
(Stm32 or any type of board):

e RS-232 link: It cannot be directly wired to an Arduino serial link pins (voltage
levels are not compatible). It needs a voltage/logic inversion converter such as
a MAX232 chip.

* RS485 link: there is a RS485-module which add to board to be able
» SDI12 link: easily can connect to Arduino and no need any converter

» Use serial to LoRaWan bridge (converters) which directly convert sensor data
from rs232 or rs485 to gateway also it is possible to use AT Commands to

change parameters

It is interesting we found out that LSEO1 sensor consists of a LoORaWAN RS485
converter and a soil moisture sensor, so it is possible also to use it as a RS485 con-
verter.

SDI-12 protocol (Serial Digital Interface) Soil moisture sensors (e.g. Sentek prob):
The SDI-12 specification is maintained by the SDI-12 Support group. SDI-12 is an
asynchronous serial communications protocol often used for environmental monitor-
ing due to it’s low power operation. It is intended for use in systems that are battery
powered, low cost, and require a multiple sensors attached to one cable. SDI-12 is
a standards-based protocol for interfacing sensors to data loggers and data acquisi-
tion equipment. Multiple sensors with unique addresses can share a common 3-wire
bus (power, ground, and data). Two-way communication between the sensor and log-
ger are possible by sharing the data line for transmit and receive as defined by the
standard. Sensor measurements are triggered by protocol command. An intelligent
sensor typically takes a measurement, makes computations based on the raw sensor
reading, and outputs the measured data in engineering units. For example, an SDI-

12 pressure sensor may take a series of pressure measurements, average them, and
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then output pressure in psi, inches of mercury, bars, millibars, or torrs. The sensor’s
micro-processor makes the computations, converts sensor readings into the appropri-
ate units, and uses the SDI-12 protocol to transfer data to the recorder.SDI-12 has

several advantages in application projects:
* battery powered operation with minimal current drain
* use of one data recorder with multiple sensors on a single cable

* use with microprocessor-based sensors that perform complex calibration algo-

rithms or make internal computations

Using micro-processor based sensors: A micro-processor in the sensor may cali-
brate the sensor, control sensor measurements, and convert raw sensor readings into
engineering units. The micro-processor also controls the SDI-12 interface. It accepts
and decodes instructions received from the data recorder, starts the measurements,
controls all timing, and uses the SDI-12 protocol to communicate with the data
recorder.

Connect more than one sensor to a single data recorder: SDI-12 is a multi-drop
interface that can communicate with multi-parameter sensors. Multi-drop means that
more than one SDI-12 sensor can be connected to a data recorder. The SDI-12 bus
is capable of having ten sensors connected to it. Having more than ten sensors, how-
ever, is possible. Some SDI-12 users connect more than ten sensors to a single data
recorder.

Take more than one measurement from a sensor: Multi-parameter means that
a single sensor may return more than one measurement. For example, some water
quality sensors return temperature, conductivity, dissolved oxygen, pH, turbidity, and
depth.

Advantages of SDI-12 possess for environmental data collection:

* A serial-digital interface is a logical choice for interfacing microprocessor-
based sensors with a data recorder. This has advantages for sensors and data

recorders.
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* Unique and complex self calibration algorithms can be done in microprocessor-

based sensors.

* Sensors can be interchanged without reprogramming the data recorder with

calibration or other information.
» Power is supplied to sensors through the interface.

* Hybrid circuit and surface mount technologies make it practical to include the
power supply regulator, a microprocessor, and other needed circuitry in small

sensor packages.

» Sensors can use low cost EEPROMs (electrically erasable programmable read
only memory) for calibration coefficients and other information instead of in-

ternal trimming operations.

* The use of a standard serial interface eliminates significant complexity in the

design of data recorders.

* Data recorders can be designed and produced independently of future sensor

development.
» SDI-12 data recorders interface with a variety of sensors.
» SDI-12 sensors interface with a variety of data recorders.

¢ Personnel trained in SDI-12 will have skills to work with a variety of SDI-12
data recorders and SDI-12 sensors.

Conclusion: According above studied the best micro-controller (MCU) could be
STM32 because of low power consumption and high performance so SM32WLX
board types together with their including lora module was the best choice due to the
aforementioned essential factors.

Although lora device prototyping is the first step in lora deployment it seems re-
searchers have not been prepared a scientific sufficient paper regarding best hardware
for prototyping yet perhaps because this section is an interdepartmental study field

between electronic and computer area.
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4.2.2 LoRaWAN Gateways

We used two types of gateways in our experimentation:

1. LoRa Gateway (Dragino LG02)

LGO02 is an open source dual channels LoRa Gateway. It lets to bridge LoRa
wireless network to an IP network via WiFi, Ethernet, 3G or 4G cellular. The
LoRa wireless allows users to send data and reach extremely long ranges at
low data-rates. It provides ultra-long range spread spectrum communication
and high interference immunity. LG02 have rich internet connection methods
such as WiFi interface, Ethernet port and Cellular (Optional). These Interfaces
provide flexible methods for users to connect their sensor networks to Internet.
LGO2 can support customized LoRa transition protocol. The design of LG02 is
use the Linux to directly control two sx1276/sx1278 LoRa modules which lets
the LoRa can works in full duplex LoRa mode and increase the communication
efficiency. LGO2 can be used to provide a low cost IoT wireless solution to
support 50 300 sensor nodes. LG02 can support multiply working mode such
as: LoRa repeater mode, MQTT mode, TCP/IP Client mode, TCP/IP Server

mode to fit different requirement for IoT connection.

There is limitation because the LGO02 only listen one Frequency and DR, while
the LoRaWAN end node transmit the data on multiply frequency and different
DR. For example, in EU868 LoRaWAN,

The base requirement to fully compatible with LoRaWAN protocol requires
the gateway support 8 channels. The LG02 only support two channels and can
only support limited LoRaWAN protocol. Below are limitations:

* It works only on one frequency at a time. It can support multiply end
nodes, but all end nodes must transmit data at the same frequency so the
LGO02 can receive it. For example: if the End node transmits at 868.1Mhz,
The LG02’s RX setting must be 868.1Mhz so to receive this packet.

* It works only for one DR at a time. DR specifies the Spreading Factor and
Bandwidth. In LG02, even the rx frequency match , if DR doesn’t match,
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it still can’t get the sensor data.

* LoRaWAN compatible issue In LoORaWAN protocol, the LoORaWAN end
nodes send data in a hopping frequency. Since LG02 only supports one
single frequency, it will only be able to receive the packets sent from the

same radio parameters (frequency and DR) in LGO02.

* Downlink and OTAA issue: According to the LoRaWAN class A spec,
the end node will open two receive windows to get the message from
LoRaWAN server for OTAA or downlink function. These two receive
windows are quite short (milliseconds), if LoRa packet from the gateway
can’t reach End Node in the receive window time, the end node won’t get

the rx message and downlink / OTAA won’t work.

2. LoRaWAN Gateway (Dragino model DLOSS)
The DLOSS is an open source outdoor LoORaWAN Gateway. Like LG02 gate-

way it lets bridge LoRa wireless network to an IP network via WiFi, Ethernet,
3G or 4G cellular (3G/4G is supported by optional module). The LoRa wireless
allows users to send data and reach extremely long ranges at low data-rates. The
DLOS8 uses Semtech packet forwarder and fully compatible with LoRaWAN
protocol. It includes a SX1301 LoRaWAN concentrator, which provide 10 pro-
grammable parallel demodulation paths. DLOSS has pre-configured standard
LoRaWAN frequency bands to use for different countries. User can also cus-
tomize the frequency bands to use in their own LoRaWAN network. DLOSS8
can communicate with ABP LoRaWAN end node without LoORaWAN server.
System integrator can use it to integrate with their existing IoT Service without

set up own LoRaWAN server or use 3rd party LoRaWAN service.

DLOSS is fully compatible with LoRaWAN protocol. It uses the legacy Semtech
Packet forwarder to forward the LoRaWAN packets to server. The structure is

as below.

Then we did a comparison between lorawan gateways and their radio features to
be adaptable with the Lorawan node (main radio types in recent lorawan Gateways
such as sx1308, sx1301, sx1276, sx1272, sx1257)
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4.2.3 LoRaWAN Backend Platforms

We evaluated most of common third-party (cloud-based) and self-deployed (local-
based) LoRaWAN platforms (more than 20 platforms like Loriot, Resiot, Kerlink,
Digitalnordix, Acklio, Multitech, Orange, Floranet, Xisiot, etc), performing a com-
parison of different platform features. Many LoRaWAN backend platforms have been
developed and are currently available, under either free or commercial licenses.

User can deploy her/his own system (located on the user infrastructure) or use
the online (cloud-based) system provided by a third party operator. As examples,
two well-known open-source backend LoRaWAN platforms are The Things Network
(TTN) and ChirpStack.

* Local (ChirpStack, Semtech Network Server, Xisiot LoORaWAN System, Got-
thardp LoRaWAN Server)

* Online (e.g. RetePAIoT, The Things Network (TTN), Digitalnordix, Multi-
Tech, Kerlink, Acklio, Loriot, Actility, OrbiWAN, etc) LoRaWAN Platforms

comparison

LoRaWAN system is composed by three different parts: (i) the LoRa devices, (ii)
one or more gateways, and (iii) a backed system that includes different functional
LoRaWAN entities (network servers, join servers, and application servers).

In general these three parts are formed by hardware and software components
produced by different manufacturers and possibly managed by different entities. The
interoperability between these parts are guaranteed by the compliance with the Lo-
RaWAN specifications and, between the gateway and the backend platform, by the
use of standard protocols (usually the Semtech protocol or MQTT).

In this section we focused on the backend system. We present and compare dif-
ferent currently available platforms. We consider both (i) platforms that a user can
deploy as independent instances, and/or (ii) online (cloud-based) platforms. One of
the most well-known LoRaWAN backend platform is The Things Network (TTN)3. It
is commonly known to developers as a free online cloud-based LoRaWAN platform,

3https://www.thethingsnetwork.org
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however it provides also enterprise-level LoORaWAN commercial solutions. The TTN
platform is based on their open-source LoRaWAN stack implementation*. TTN is
most a complete and fully documented platform for both open-source/licensed and
Local-based and cloud-based platform and thus could be so helpful for developers
to discover DNA of lora-backend deeply. TTN is probably the most complete and
fully documented platform used in several projects. It has benchmarked for 100000
devices with 12 confirmed uplinks per day. Like other platforms, TTN includes a
powerful web interface for registering and configuring gateways and devices and for
monitoring all activities.

TTN backend is internally formed by four different components: (i) Router (ii)
Broker (iii) Handler (iiii) Discovery server.

The Router is a microservice that acts as network server. It receives messages
from the gateways and finds a Broker to forward the message to. This component
is tasked with handling gateway data and status, and to transfer data to the rest of
the network. The Broker is a microservice that identifies the device, deduplicates
traffic and forwards the packet to the Handler where the application is registered.
The Handler is microservice that encrypts and decrypts the payload and publishes it
to message brokers to be used by applications. The Discovery Server keeps track of
various components that are registered in the network and a Network Server which
contains the device registry alongside keeping track of device states.

On the interface between the network server and the gateway the TTN supports
three protocols: the Semtech UDP protocol, their Gateway Connector protocol, and
MQTT. Additional gateways not only will extend the capacity of the network but de-
crease the distance between end devices and gateways. For shorter distances, faster
data rates can be used. It causes downgrade airtime and thus channel utilization. Gate-
way connector protocol: With this protocol Gateways are identified by an ID and by
a key. Sending a message to a router requires to know the combination. Messages
are sent encoded in protocol buffers. This serialisation technology allows transfer of
data from a program to another, in native types, regardless of the language. With

the gateway connector protocol, messages can be exchanged through two network

“https://github.com/TheThingsNetwork/lorawan-stack
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protocols: If hardware and software supports it, through gRPC, which supports pro-
tocol buffers natively. gRPC supports TLS encryption natively. Otherwise, protocol
buffer-encoded messages can be sent through MQTT. MQTTS a variant of MQTT
enforces TLS encryption. Gateways can support between 8§ to 64 channels, which al-
lows millions of messages per day processed by a network. The quality of the radio
network (coverage, robustness, performance, up-time, reliability) directly depends on
the quality of the gateways used in the network.

The goal of TTN is to be very flexible in terms of deployment options. The pre-
ferred option is to connect to the public community network hosted by TTN Foun-
dation or its partners. In this case the Application connects to a Public Community
Network Handler usually using the MQTT APIL. It is also possible to deploy private
networks, by running all these components in a private environment. In this way, all
data will remain within the private environment, but still make use of TTN’s hosted
Account Server for authentication and authorization. The most simple option for this,
is for someone to run his own Handler, allowing them to handle the encryption and
decryption of messages. A more complicated option is a private network that ex-
changes data with the public network. For this to work, private Routers will have to
connect to public Brokers and vice versa. In this case the private network can offload
public traffic to the community network and use the public community network as
backup. The latter is not yet possible with the current implementation of the TTN
backend. One of the main features of TTN is Packet Broker allowing the exchange of
traffic between TTN backend and private LoRaWAN networks which increases Lo-
RaWAN network coverage, performance and capacity, and prolongs the end device
battery life.

ChirpStack? is another popular open-source LoORaWAN backend platform. It was
previously known as "Loraserver". A web interface is available for configuring the
applications and devices.

They both support all existing LoRaWAN versions, operation modes A, B and
C, and all regional parameters as released by the LoRa Alliance. In particular TTN
provides a cloud based system that users can freely use for connecting their gateways

Shitps://www.chirpstack.io/
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and devices.

Other interesting systems are: Semtech Network Server®, Gotthardp LoRaWAN
Server’, Xisiot LoORaWAN System®, FloraNet’, Digitalnordix (DNX)!°, Acklio'!,
MultiTech!?, Kerlink!3, Loriot'#, ResIOT">, OrbiWAN!®, Actility!”, and Orange!®.
Some of them are based on a third pary backend platform like TTN or ChirpStack.
These LoRaWAN backend platforms are compared in Table 4.1. For each platform
the table reports the type of the license, whether the platform can be used as cloud
service and/or can be deployed locally, the list of main extra features, whether it
support the Firmware Update Over the Air (FOTA)!® (This can be achieved using the
LoRaWAN protocols using the multicast capability in conjunction with an efficient
fragment scheme, which significantly reduces the number of required transmissions),
and whether it is available as a released Docker image.

Moreover all these platforms conclude following features:
* Support both ABP and OTAA activation methods;
* Support A, B, and C device classes;

* Support Adaptive Data Rate (ADR used to control spreading factors, power

emissions and retransmits to optimize network capacity);

* Web graphical interface (GUI) for the backend application server;

Shttps://lora-developers.semtech.com/resources/network-server
7https://github.com/gotthardp/lorawan-server
8https://github.com/xisiot/lora-network-server
https://github.com/Fluent-networks/floranet
10https://digitalnordix.se/en/
Uhtps://www.ackl.io/software/private-lora-network
Zhttps://www.multitech.net/developer/software/lora/lora-network-server
Bhttps://www.kerlink.com/lora
4https://www.Loriot.io

Dhttps://www.resiot.io
16https://orbiwise.com/orbiwan
Thttps://www.actility.com/lorawan-network-server
8https://liveobjects.orange-business.com

19Pysh binary firmware updates over-the-air to a single or group of devices
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Table 4.1: Comparison of LoRaWAN Platforms

Platform name

Free/Commercial

Local / Cloud installa-
tion (L/C)

LoRa Alliance member

Filtering inappropriate

Major extra characteristics

Firmware update over
the air (FOTA)

Docker implementation

‘The Things Network (TTN)

Free for non-commercial

I
)

- Supports LoRaWAN 1.1

- Import bulk device (in 3rd ver

ion)
Command line interface

- Packet Broker connection (exchange traffic between LoRaWAN networks)

- Multi tenancy (support multiple organization which users can be assigned)
Includes OAuth 2.0 Identity Server

ChirpStack

Free

NO

NO

Supports LoRaWAN 1.1
- Imports bulk device via gRPC/RESTful API

- Multi tenancy

- Channel configuration

‘Semiech Network Server

free for 3 gateways and

10 sensor nodes

NO

- Developers platform based on ChirpStack
- Supports only MQTT protocol (the Semthech/UDP protocol can be used
installing a Gateway Bridge)

Gotthardp LoRaWAN Server

Free

NO

NO

rates both netwvork.server and application-server
- Command line inerface
- Supports multicast to user-defined groups
Can send health alerts via e-mail or Stack
- Implemented in Erlang, designed for fault-tolerant systems

Xisiot LoRaWAN System

Free

NO

NO

- Implemented in JavaSeript on Node js
A Docker image is available

NO

NO

FloraNet

Free

NO

NO

Supports Class A and Class C end-devices (no class B)

- No support for EU433 bands
Implemented in Python
- Command line interface

NO

NO

piNetSuite (Patavina tech)

Commercial (free for 6

months)

- Supports LoRaWAN 1.1

- Audit for suspeet devices

Commercial

- Quality development for network operation with Machine Learn;

- Command line interface

Acklio

Commercial

NO

- Support external Join-Server (¢.¢. Gemalto)

Provided specific codec

- Transfer resources between accounts
- Query language
Avoid i

hnology lock-in and silos of proprietary syntax
- Device alerts
- Import Bulk device/gateways

Device history retrieval

NO

MultiTech

Commercial

- Command line interface

Kerlink

Free trial 1 month

NO

NO

- Based on Kubernete.

‘Wanesy Management Center

Loriot

Free for | gateway and 10

sensor nodes

Strong Logging/debugging management
- SSH twnnel
-TLS

ResIOT

Free for | gateway and 15
sensor nodes or 1 gate-
way and 5 sensor

on

NO

NO

Telegram BOT
- Real time dashboard alert
- Email alerts with private SMTP

OrbIWAN

Commercial

Option to recovery lost gateways c.g. via SMS

- Local packet sorage on gateway during back-haul ailure
- Encrypted and authenticated back-haul to gateways via dedicated gateway
agent
- Support third-party Join Servers - Storage of device data for customizable
period of ime

gateways alarms
- Device man;

ment in groups
- Import bulk device via CSV file
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* Monitor, analyze, manage, and process received messages;

» Show gateway location on map;

« REST API, MQTT API, webhook API;

¢ Integration with other platforms such as AWS IoT, Azure loT, IBM;

* Automatic decoding of application payloads (e.g. binary sensor data to JSON);
* Support custom payloads;

* Choose best gateway optimized on SNR and duty-cycle;

* Logging of gateway events and MAC messages;

* Possibility to export logging data;

* Set airtime limits for uplink and downlink per users and per devices.

Preliminary Experimentation and Tests

Evaluation has been done on LoRaWAN technologies, and corresponding experimen-
tation done for the transmission of sensor data in precision agriculture scenarios.

We did some experiments with physical IoT devices connected to either cloud-
based or local-based LoRaWAN backend systems. In particular we connected Lo-
RaWAN end nodes to a LoRa gateway; we connected LoRa devices to some cloud-
based LoRaWAN platforms; we connected above components to a local-based Lo-
RaWAN platform; we designed and connected virtual LoORaWAN nodes and virtual
LoRaWAN gateways to the local-based and cloud-based LoRaWAN platforms, and
finally we did the prototyping of the LoRaWAN end node capable of connecting var-
ious industrial sensors.

We started experimentation with running a private LoRa network and transmit-
ting packets between LoRaWAN devices and a gateway sited in the lab. We used
two LoRaWAN devices (Dragino LSEO1 and Dragino LHT65) and a LoRa gateway
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(Dragino LGO02). Standard LoRaWAN devices transmit packets in 8 different chan-
nels while the gateway we used for the experimentation was a LoRa gateway (not Lo-
RaWAN gateway) which works only with a single channel. This means that it could
just transmit packets in 1 channel while LoORaWAN devices were transmitting pack-
ets to it in 8 different channels so we tried to modify the device configuration to solve
this issue. We finally succeeded in letting the device joining a backend system via the
single channel gateway. In order to communicate with the device via PC we used a
USB-TTL-converter interface and a middle-ware to be able to run the AT-commands

in the LoRa device.

In second activity we did experimentation with a cloud-based platform, The Things
Network (TTN), using the two LoRa devices to transmit their data to this platform.
By setting up necessary applications and parameters in TTN console we transmitted
data to TTN and vice versa (as downlink) from TTN platform to LoORaWAN end node
through the LoRa gateway.

Then in third activity we experienced transmitting sensor data to RetePAloT
which is another cloud-based platform provided by Lepida. It includes several Lo-
RaWAN gateways and LoRaWAN backend network-server and application-server.
First we tested the signal strength between a LoRa node, sited in the Campus area of
the University of Parma (more precisely on the parking area behind building 2 of the
Department of Engineering and Architecture) and a RetePAloT gateway, sited in the
center of Parma (Piazza Garibaldi). It resulted in a very high distance for joining the
LoRaWAN node to the LoORaWAN backend without any repeater or gateway in the
middle (around 6 Km distance including buildings and trees).

In fourth activity we locally deployed a LoRa backend system which could act
as a complete LoRaWAN backend. It includes the following main components: Lo-
RaWAN network-server, join- server, application-server and gateway-bridge. For this
purpose we used Chirpstack which is a popular LoRaWAN platform (Chirptack is
also used for local LoRaWAN platform on Google Cloud). In this scenario we set up
a PostgreSQL database, prerequisites and related configurations to store data of the
gateway-bridge, application-server and network-server; then we set up backend com-

ponents and their configuration files. We also implemented a LoRa-virtual-gateway
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in Java (we are going to release it publicly) that is capable to run several gateway
instances and several virtual device instances at the same time. It also emulates dif-
ferent sensors including the Dragino LHT65 and LSEO1. Furthermore we imple-
mented a RetePAIoT virtual device which sends the data obtained from RetePAIoT
application-server (via RetePAIoT token) using REST API. We used these virtual
gateways to test the local backend. We set up and started web interface of the the
backend and we obtained the frame payload of virtual LoRa device transmitted to
the application-server and web interface. We created simple java-script functions to
decode the uplink payloads and encode the downlink payloads. By accessing the
REST API of the Chirpstack we were able to transfer the payload in another web
application-server or any web server e.g. create a XAMP server and access the frame
payload via Curl commands; payloads can be saved also in the local host (in a text file
or in a DBMS). In particular in the heart of Chirpstack backend there are two MQTT
brokers: (i) gateway-broker which interacts with gateway-bridge and network-server;
(ii) integration-broker which interacts with gateway-bridge and application-server.

Reverse engineering on Chirpstack: According to our last discuss we subscribed
in below two ways to our chirp-stack broker and received the payloads but as shown
in screenshot they are encoded (i) Mqtt-box (an extension for chrome) (ii) Commands
Terminal (Subscription to the Topic gateway/ + /event /+)

Based on the attached logs (from gateway-bridge, net-server, app-server) there is
only one broker in chirp stack backend which works in two ways: (i) gateway/mqtt
(interact with gateway-bridge,net-server)

(i1) integration/mqtt (interact with gateway-bridge, app-server) Not only we at-
tached all components log-file but also we separated Pub Sub mechanism from all
of them as shown in the attached file. By subscribing to the broker we could receive
payloads due to their related TOPIC.

After subscription on broker, is it possible to decode the payloads. By publishing
a json string on the broker (on this topic: gateway/35506e3b00b176bd/event) is it
possible to receive this payload in chirp-application-server.

In fifth activity we started studying hardware components to prototype a Lo-

RaWAN end node. Different assemble scenarios with various micro-controllers (e.g.
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Atmega, STM32, ESP32), and different boards (e.g. PI, Arduino, Dragino, Adafruit,
Reyax, Pycom, Seedstudio, etc) were considered and pros and cons of each scenario
have been evaluated. According to the above study a possible solution could be us-
ing the STM32WLX board that integrates a MCU and a LoRa radio module in one
chip, performing low power consumption and high performance. An experimentation
activity with this board has been started.

We did also some traffic analysis by filtering and decoding the inner payloads of
the gateway packets. For this purpose we developed proper tools in Python and Java.

In order to connect lora nodes via USB-Ttl to TTN following steps done:

* On LSEO1 board set FLASH-mode for (change parameters) programming, also

the way shows RXD/TXD has been attached to the converter are vise versa.

* While the device is sending join-req it is possible to write commands, or wait

until 5 min to finish its sending.

¢ In the user manual shows it can connect without need to attach sensation cable
(black -yellow - green) but without attaching those cables to the board it doesn’t

work.

* Steps should be in this order first turn off device, connect all wires then turn on

device.

In order to work the lora device with single channel gateway (LGO02) we set
following parameters via AT-command by attaching the device via USB-Ttl con-
verter. To return back to OTAA activation and standard Lorawan setting we used

AT-commands too.

1. Build LoRaWAN end node using LO72ZLRWAN STM32 board and transmit
data to TTN

A lorawan end node have created by setting the keys of the device in TTN
server platform. Device parameters Configured, codes uploaded (Flashed) to
the device via STM32-cube-IDE tool and finally activate it in the TTN to trans-
fer the packets. Voltage and the temperature of the MCU in the board were
visible in the TTN online platform.
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Description: First, choose and install the best tool (tool-chain) to configure
and upload the codes(FLASH) the device. Cube-IDE includes CubeMX and
Cube programmer tools (for Linux OS) and could be the best between IAR,
EWARM, KAIL, Arm and mbed online tools. Secondly, download the Lo-
RaWAN end node example and import it to the Cube IDE. Thirdly, upload the
LoRaWAN application code to the device. Fourthly, choose and install a termi-
nal tool for tracking the packets. Finally, creating an account and other entities

in TTN (e.g. add gateway, application and a device).

Hardware prerequisites:

* BL072Z LRWAN STM32 BOARD
* Type C USB cable (connect board to the PC)

Software equipment:

¢ Cube-IDE software

* Cutecome terminal application (or any terminal simulator application)
There are some additional resources regarding these simple experimentation:

* Frequency setting according to the zone to set in the lora device and TTN

(Frequency plan) 2°

+ Stm32 BL072Z LRWAN pins out 2!

2. Build LoRaWAN end node using WL55JC STM32 NUCLEO board and trans-
mit data to TTN

Description: First we created a project in cube-IDE Setting the keys and param-
eters of Lorawan end node then Save, we compiled and Debug the project. Then
we checked Terminal tool (Cutecome) the data transmission. We checked the

data is transmitted to TTN (Create an application, end-device) thing network

2Onttps://www.thethingsindustries.com/docs/reference/frequency-plans/
2l https://os.mbed.com/platforms/ST-Discovery-LRWAN1/
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(TTN) version 1.0.3 is TTI(The Thing Industrial) or The Things Stack Com-
munity or The Things Stack. One of the most energy efficient boards between
Dragino, Pycom, Arduino, Raspberry pi, Adafruit, Esp32 and Semtech in 2021
is stm32 nucleo wi55Jc. It is one of the best choices in case of performance
too. It includes all necessary pins and equipment to prototype a LoRaWAN
and other prototyping.

Hardware prerequisites:

* WL55JC STM32 NUCLEOBOARD
* Type C USB cable (connect board to the PC)

Software equipment:

¢ Cube-IDE software

» Cutecome terminal application (or any terminal simulator application)

There are some additional resources regarding these simple experimentation:

* Video of deploying the scenario 2*

* Frequency setting according to the zone to set in the lora device and TTN

(Frequency plan)?

* In addition an introduction Getting Started with STM32 and LoRaWAN
(STM32 LoRaWAN gateway for The Things Stack) 2*

3. Retrieve DHT11 sensor data to L476RG STM32 board:

Goal is to transmitting Temperature and Humidity of DHT11 sensor via L476RG
STM32 board to output (In a Terminal simulator application).

Description: Based on the usermanual of DHT11 a library wrote to implement 4
steps mentioned in the usermanual to be able to read DHT11 sensor data (Tempera-
ture and Humidity) and interact with DHT11 to read it’s data. Main functions defined

22https://drive.google.com/drive/folders/193a0y-XQt243 AbnOHG VEFdcdix3MfqSEusp=sharing
Zhttps://www.thethingsindustries.com/docs/reference/frequency-plans/
24 https://www.youtube.com/watch?v=uJU3YM1MWN4
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are (DHT11 start, Check response, DHT11 read) but besides there would be needed
other functions ((Delay, Set Pin input, Set Pin output). Pull up and pull down proce-
dures for the MCU pin(MCU Input Output or GPIO input/output) implemented and
set them to high or low based on the DHT11 usermanual. Defining timer and related
interrupt parameters studied. Then a timer defined to be used in our DELAY function
in our code to be able to interact with DHT11 sensor and read its data.

Hardware equipment:

L]

DHT11 sensor

L476RG STM32 board

L]

Related USB cable (connect board to the PC)
* 3 Jumper wires
Software equipment:
* Cube IDE software
* Cutecome terminal application (or any terminal simulator application)
There are some additional resources regarding these simple experimentation:
* Video of deploying the scenario >
* Links for downloading STM cube IDE 26

» L476RG STM32 BOARD pins out %’

e DHTI11 usermanual 28

ZShttps://drive.google.com/drive/folders/193a0y-XQt243 AbnOHG VEFdcdlx3MfqSE 2usp=sharing

2onttps://www.st.com/en/development-tools/stm32cubeide.html

2Thttps://os.mbed.com/platforms/ST-Nucleo-L476RG/

Z8https://www.mouser.com/datasheet/2/758/DHT 1 1-Technical-Data-Sheet-Translated- Version-
1143054.pdf
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4.2.4 Interworking between LoRaWAN and Non-LoRa IoT Systems

IoT may be a later communication worldview that envisions a near future, in which
the objects of way of life will be prepared with microcontrollers and transceivers for
advanced communication, and reasonable protocol stacks that will make them able
to communicate with one another and with the users, getting to be an necessarily
portion of the internet.

Such a heterogeneous field of application makes the distinguishing proof of ar-
rangements able of fulfilling the prerequisites of all conceivable application scenarios
a impressive challenge. This trouble has driven to the expansion of diverse and, some
of the time, contradictory proposition for the viable realization of IoT frameworks.

LoRa is an IoT communication technology that provides very long power trans-
mission using very low power consumption. LoORaWAN specifications directly face
device battery life, network capacity, quality of service, security, and the variety of
applications provided by the network. LoORaWAN devices can be seen as LoRa con-
verters which convert sensor digital data (e.g. soil moisture) to LoRa messages and
send them to an application-server through one or more LoRaWAN gateways and
proper backend system.

LoRaWAN is an efficient and easy-to-deploy complete solution for LPWAN IoT
scenarios. However, since it specifies all protocol layers from LoRa radio access to
the application, the interoperability with non-loRa devices and/or non-LoRaWAN
backend is not straightforward and it is left to the user.

An interesting system analysis of LoRaWAN is presented in [59]. The authors
highlight the following main strengths of LoORaWAN: (i) offer cheap end devices and
possibilities of deploying private networks, (ii) remove the need for service subscrip-
tion such as the one in SigFox or NB-IoT, (iii) decrease the operational costs for
dense IoT deployments, iv) have large coverage with single gateway and finally, v)
provide low power operation for end nodes.

Instead in [60] a large-scale measurement study is presented. In particular it is
shown that LoRa performance is severely affected by obstructions such as buildings
and vegetation. Moreover, the promise of prolonged battery life requires extreme

tuning of parameters.
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In [61] authors depicted taxonomies of the design and implementation of an In-
teroperability in Internet of Things.

A good description of the design and implementation of an interworking IoT
platform in cloud is provided in [62]

There are implementation of interworking between IoT devices in [63] and a great
implementation of interworking between IoT devices and IoT systems in [64]

Model for Interworking between LoRaWAN and Non-LoRa IoT Systems:

According to our paper [65] we proposed solutions for different interworking

scenarios where:

¢ one or more non-LoRaWAN devices have to be connected to a LoORaWAN

backend system;

¢ a set LoRaWAN devices, connected to a LoRaWAN backend, must interact
with a non-LoraWAN IoT system;

* different LoORaWAN and non-LoRaWAN networks, possibly implemented through
different platforms, have to be interconnected forming a larger heterogeneous

IoT system.

Connecting Non-LoRa Devices to LoORaWAN

The first case we consider is when a non-LoRa sensor or actuator has to be connected
to a LoRaWAN backend system. This could be useful in application scenarios where
both LoRaWAN and non-LoRa devices should coexist and a LoRaWAN backend
system is used as application platform. The non-LoRa devices may support other
connectivity technologies, either wireless or wired.

To face this problem two approaches can be used:

 connecting the non-LoRa devices directly to the backend systems using non-
standard (non-LoRaWAN) interfaces;

 connecting the non-LoRa devices to a proper virtual gateway acting as inter-
working element between the non-LoRa devices and the LoORaWAN backend

system.
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Although the first approach can be used in some applications, the latter is more
convenient since it is independent from the particular backend platform. This ap-
proach can be further extended by decoupling the interworking element (between the
non-LoRa device and LoRaWAN protocols) from the actual gateway functionality. In
this case, from the gateway point of view, the interworking element acts on behalf of
the original non-LoRa device, representing a new LoRaWAN device.

A further step is to remove the possible unnecessary LoRa link between the in-
terworking element and the gateway, simplifying the resulting architecture (in this
case the interworking element may also be conveniently located on the side of the
gateway or connected via an IP network). This last scenario is depicted in Fig. 4.1,
where the interworking element is refereed to as virtual device, and is connected to
the gateway via a non-LoRa interface. In order to distinguish this non-LoRa gateway
from a standard LoRaWAN one, we refer to it as virtual getaway. This two entities

can be characterized as follows:

* Virtual LoRaWAN device: it is a node that implements the LoORaWAN MAC
layer and above and exchanges corresponding packets with a virtual LoORaWAN

gateway and a remote LoRaWAN network;

* Virtual LoRaWAN gateway: it is a gateway node that can be connected to
a standard LoRaWAN network (network server, join server and application
server), possibly using standard mechanisms (e.g. MQTT or Semtech pro-
tocols), and performs standard proxing functionality by relaying LoRaWAN
MAC packets between some virtual devices and the LoRaWAN backend sys-

tem.

From the protocol architecture point of view, a virtual LoORaWAN device is a
standard LoRaWAN client node where the LoORaWAN physical layer, normally used
to physically communicate with the gateway and for transmitting LoORaWAN MAC
packets, is replaced by a different transmission mechanism. In case of a packet net-
work is available between the virtual device and the gateway (e.g. IEEE 802.11
WiFi, IEEE 802.15.4, Ethernet, IP), the corresponding communication protocols can
be used. In particular the LoORaWAN MAC packets can be encapsulated directly as
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; LoRaWAN
backend system
................................................... Virtual
Virtual Gateways

Device

Figure 4.1: Virtual gateway scenario.

datagram payload within any datagram protocol (e.g. Ethernet, IP, or UDP), with-
out requiring any additional adaptation layer. In our implementation we used UDP
as encapsulating protocol. The UDP has been selected in order to guarantee easy
portability on several types of devices with different access technologies. The same
protocol must be implemented on both sides: the device and the virtual gateway. Then
the gateway will extract LoORaWAN MAC packets coming from the devices and for-
ward them to the backend system (actually a LoRaWAN network server). Similarly,
LoRaWAN MAC packets in the opposite direction are encapsulated and sent to the
virtual device. The resulting protocol architecture is depicted in Fig. 4.2.

Note that the new LoRaWAN virtual devices can be useful also in the following

applications:

* Realization of a digital twin, that is a virtual instance or digital representation
of a physical system that includes properties, conditions, and behavior of a
corresponding real-life system and can be used for either testing or planning
purposes in different application scenarios such as Industry 4.0, smart cities,
healthcare, etc [66].
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Application Application
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UDP UDP
P P P
Access Access Subnet Subnet

Figure 4.2: Virtual gateway protocol architecture.

* Implementation of a sidecar object, that is a separate piece of software ded-
icated to handling specific issues, which are not directly related to the smart
object/device and should be managed outside the object’s scope and/or real-
ization [67]. It is deployed as additional component of a pre-existing object

without interfering with the mechanisms and behaviors already implemented.

A special application for LoORaWAN virtual devices is when physical non-LoRa
devices are requested to be connected to a LoORaWAN system. Two approaches can

be considered depending on whether the non-LoRa devices can be modified or not:

1. non-LoRa devices are extended in order to support the protocol architecture
described in Fig. 4.2 and to directly communicate with the virtual gateway;

2. a separate virtual device is implemented and used as interworking element be-

tween the physical device(s) and the gateway.

Of course the advantage of using an independent element is that existing (off-the-
shelf) non-LoRa devices can be easily integrated without any modification.

Regarding the physical deployment of the virtual devices, we can consider two
possibilities: (i) a single element (virtual device) for each physical non-loRa device,

or (ii) a single element for all non-LoRa devices, providing the virtualization of these
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devices. In this case this element can coincide also with a IoT gateway, if preset in
the non-LoRa network.

A special case is when the non-LoRa devices use a standard application protocol
like CoAP [68] or MQTT [6] for communicating with other nodes. This is focused in
the following Subsec. 4.2.4 and Subsec. 4.2.4.

CoAP-to-LoRaWAN Virtual Devices

In order to connect a CoAP-based smart object (either a sensor or actuator) to a
LoRaWAN system, a pair of virtual LoRaWAN device and gateway can be used.
The LoRaWAN virtual device will include both the upper layers of the LoRaWAN
stack, for communicating with the gateway and with the LoRaWAN servers, and
the CoAP protocol, for communicating with the smart object. The resulting protocol

architecture is depicted in Fig. 4.3.

T~ [rmmm————————————
—~ H

CoAP virtual Virtual T LoRaWAN

Smarth Object Device Gateway backend system
Application Application Relay Application
CoAP CoAP  PRaWAN JoinFrane LoRaWAN Join/Frame LoRaWAN Join/Fram:
LoRaWAN MAC LoRaWAN MAC LoRaWAN MAC
ubP uoP Semtech uDP Semtech Semtech
P P UDP P UDP UDP
1P 1P 1P
Access Access Subnet Access Subnet Subnet

Figure 4.3: CoAP virtual device protocol architecture.

The actual CoAP role (client or server) and the type of interaction implemented
by the virtual device, depend on the communication paradigm implemented by the

CoAP smart object. The following cases can be distinguished:

* The smart object is a CoAP client and produces and/or consumes data. In this
case the virtual device should implement a CoAP server supporting the corre-

sponding methods (PUT and/or GET). In particular it is a PUT server in case
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the object is a producer, GET server in case the object is a consumer

* The smart object is a CoAP server and provides support for reading data from
it and/or writing data to it. In this case the virtual device should implement a
CoAP client with the corresponding methods (GET and/or PUT)

Note that both asynchronous data request/response or synchronous data pub-
lish/subscribe interactions can be supported, based on the application scenario and the
communication paradigm supported by the CoAP object. In case of a publish/subscribe

interaction, the CoAP observe extension [69] should be used.

MQTT-to-LoRaWAN Virtual Devices

Similarly, in case a MQTT-based smart object has to be connected to a LoRaWAN
system, a pair of virtual LoORaWAN device and gateway can be used too. In this
case both the smart object and the virtual device will implement MQTT client that
subscribes and publishes data on a remote MQTT broker. Depending on the role of
the smart object (publisher or subscriber or both), the virtual device will implement
the corresponding opposite method (subscribe or publish).

For example if the smart object is a sensor that periodically publishes data on a
MQTT broker, the virtual device will subscribe for the corresponding topic on the
same broker. Each time that new data is published, a MQTT publish message is re-
ceived by the virtual device that will forward it as a LoRaWAN data message to the
virtual gateway that will relay it to the LoRaWAN application server. Similarly, if the
smart object is an actuator that subscribes for a given topic on a MQTT broker, the
virtual device will publish on the same broker with the same topic the payload data
received from the LoORaWAN application server through the virtual gateway.

LoRaWAN-to-CoAP Proxy

In case some LoRaWAN devices connected to a LoRaWAN backend system have to
be integrated into an IoT system, other mechanisms have to be properly introduced.

In particular if the devices have to be controlled/accessed via REST API based on the
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standard CoAP protocol, a LoORaWAN-to-CoAP interworking element is required.
This element could be either:

* A LoRaWAN-to-CoAP proxy that includes both a LoRaWAN application server
and a CoAP client, letting the client forward LoRaWAN application payload to
aremote CoAP server (sent through CoAP PUT requests), and/or send back to
the LoRaWAN device data received from a CoAP server (as a result of GET re-
quest/response exchanges or as result of a publish/subscribe service according
to the CoAP observe extension [69]);

* A LoRaWAN-to-CoAP reverse proxy that acts externally as CoAP server sup-
porting PUT and/or GET methods, possibly providing also a publish/subscribe
paradigm with the CoAP observe extension. The data is retrieved from or sent
to the LoORaWAN device via an internal or external LORAWAN application

SCrver.

Depending on whether the LORAWAN application server is implemented within
the proxy or it is deployed as independent element, the interaction with the applica-
tion server is done via external (e.g. REST or MQTT) or internal APIs respectively,

as depicted in Fig. 4.4.

L
ORGWANsvstem ..................... . LoRaWAN-to-CoAP

(reverse) proxy

: : external :
P or internal API
CoAP
LoRaWAN' Agent

LoRaWAN Application
Devices Server

Figure 4.4: LoRaWAN-to-CoAP proxy architectures.
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Larger Data-centric IoT Platform

In this section we try to further extend the interworking scenario by creating a larger
data-centric (data-driven) IoT system with heterogeneous access technologies. The
objective is to allow a user to receive data from and/or to send data to devices as-
sociated to different LoRaWAN networks and non-LoRa IoT networks, in a simple,
transparent, and scalable way.

For this scope we consider an architecture where different LoRaWAN and non-
LoRaWAN networks are interconnected through an intermediate system providing
a standard application interface to the user clients. The LoRaWAN networks may
also be heterogeneous in terms of inner implementations and used protocols (e.g. the
protocol used between the gateway and network server, or the protocol used between
the application server and application client).

The proposed architecture uses the publish/subscribe paradigm, through the MQTT
protocol and a MQTT broker, for exchanging data between IoT subsystems and user
clients. The resulting system is depicted in Fig. 4.5.

In order to connect an IoT subsystems (e.g. a LoRaWAN network) to the cen-
tral MQTT broker, if MQTT is not natively supported by the subsystems as interface
protocol, a proper adapter system has to be included. In case of LoORaWAN IoT sub-
systems, this adapter system includes both a client used to exchange data with the
LoRaWAN application server, and a MQTT client used to communicate with the
MQTT broker.

Network of Brokers

This architecture can be further extended in order to obtain better performances in
presence of a large number of connected devices, LORaWAN networks, and user
clients.

In order to achieve more scalability and reliability the single broker can be re-
placed by a network of brokers. For example, a possible scenario is the one where
there is one broker for each LoRaWAN network. In general, each LoRaWAN net-

work may be connected to one or more MQTT brokers, and the same applies for the
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Devices Gateways LoRaWAN Broker Application
Networks .
Clients

Figure 4.5: Proposed architecture with single broker.

user clients. However, the most common scenario is the one where each LoRaWAN
network is connected to a single broker, and each client also connects and uses just
one broker for sending/receiving data from different LoRaWAN networks. The new

architecture is depicted in Fig. 4.6.

Figure 4.6: Proposed architecture with network of brokers.
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4.2.5 Testbed

The proposed interworking systems described in Subsec. 4.2.4 and the extended net-
work architecture have been implemented and tested.

A completely new light Java implementation of the LoORaWAN MAC, Join/Answer,
and Frame layers has been realized and released? as open-source.

The current release includes also the implementation of:

* avirtual gateway, that can be used to connect to any standard LoRaWAN plat-

form;
* avirtual device, that can be used to virtualize any non LoRa devices.
The release has been further extended by including:

* a CoAP client virtual device - that is a LoRaWAN virtual device that periodi-
cally retrieves data from an external CoAP server and sends it to the LoRaWAN

application server;

* a CoAP server virtual device - that is a LoRaWAN virtual device that includes
a CoAP server allowing one or more resources to be updated via the CoAP
PUT method. The updated data is then automatically sent to the LoRaWAN

application server.

The implementation of the CoAP components has been based on the mjCoAP
library [70], a light CoAP Java implementation available open-source™.

For testing the LoRaWAN functionalities two different LoRaWAN open networks
have been used: the well-known TTN platform>®' and RetePAIoT?2. TTN provides a
cloud-based free LoRaWAN backend (network server, join server, application server)
integrated with a powerful web interface with a user console, together with two differ-

ent APIs (HTTP REST API and MQTT) for remotely connect user own applications.

https://github.com/thingsstack/lorawan
3Ohttps://github.com/thingsstack/mjcoap
31https://www.thethingsnetwork.org

2 https://www.retepaiot.it
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Since TTN provides only the LoRaWAN backend, we connected two physical gate-
ways to it: a Dragino OLG0233, and a Dragino DLOS83*.

As physical devices connected to the two gateways we used a Dragino LSE013?,
that is a soil moisture sensor, two custom temperature sensors based on the STM32
B-L072Z-LRWAN13¢ and STM32 NUCLEO-WL55JC137 boards, respectively, and
two Arduino-based sensors with Dragino LoRa Shield3.

In addition we connected to TTN our virtual gateway with different virtual de-
vices including a CoAP-client virtual device and a CoAP-server virtual device.

The overall testbed is depicted in Fig. 4.7.

MQTT device
Gateway <
2
(Dragino OLG02) )
User app
MQTT client
— )
Soil moisture sensor i TTN-to-MQTT
(Dragino LSEO1) TTN cloud network_ proxy MQTT|broker
Ad-hoc LoRaWAN = % (m
sensor | i
(STM32 boards) JooTTTTT @
. RetePAloT-to-MQTT
Gateway

Vitual Gateway

; l @ proxy
hzl (Dragino DLOSE)
RetePAloT network

CoAP-client
virtual sensor
ﬁf

’
CoAP-server
virtual sensor

Temp & humidity sensor§
(Dragino LHT65)

Figure 4.7: Implemented testbed.

In order to access to the sensor data, we used both the TTN HTTP REST API

Bhttps://dragino.com/products/lora-lorawan-gateway/item/135-1g02.html
34https://dragino.com/products/lora-lorawan-gateway/item/160-dlos8.htm]
3 https://dragino.com/products/lora-lorawan-end-node/item/159-Ise01.html
3ohttps://www.st.com/en/evaluation-tools/b-1072z-Irwan1.html
3Thttps://www.st.com/en/evaluation-tools/nucleo-wl55jc.html
3Bhttps://dragino.com/products/lora/item/102-lora-shield.html
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and the MQTT interface. While for accessing data via MQTT we used a stand alone
MQTT client, for accessing data via REST API we developed a proper TTN client®
and we integrated it in a new TTN-to-MQTT proxy as depicted in Fig. 4.7.

The second network is the RetePAIoT, a LoRaWAN open network operated by
an Italian regional public administration, aiming to provide an open IoT network for
both citizens and companies. In this case the network inlcudes both a LoRaWAN
backend system and several physical LoRaWAN gateways deployed within the re-
gional area. We connected two temperature and humidity sensors (Dragino LHT6540)
and Arduino-based LoRaWAN devices, and we used the REST API provided by the
RetePAIoT for interacting between the application server and a client included within
our RetePaloT-to-MQTT proxy depicted in Fig. 4.7.

In addition, we set up a LoORaWAN backend platform based on ChirpStack that
we have used to connect a Raspberry Pi based LoRaWAN gateway and Arduino Lo-
RaWAN devices. We also connected other virtual devices (digital twins of LHT65
and LSEO1 sensors) to this backend through a virtual gateway.

ChirpStack LoRaWAN platform:

The aforementioned scenario also implemented with ChirpStack LoRaWAN plat-
form too as a local platform instead of TTN platform which is on the cloud. Here just
implementation of ChirpStack Local LoRaWAN Platform described.

After setting up prerequisites and their related configurations to store data of
application server and network server we set up the mentioned backend components
and their related configuration files. Steps are as follows:

* set up postgre SQL database and related configurations to store data of appli-

cation server and network server; Setup ChirpStack software repository

* set up following components and their configuration files; chirpstack gateway
bridge; chirp network Server; chirpstack Application Server

* check that the server is running; check if packet forwarder sends data

https://github.com/thingsstack/ttnapi
4Ohttps://dragino.com/products/temperature-humidity-sensor/item/151-1ht65.html
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 generate the data from the virtual LoRa gateway (e.g. device-counter)

* set up and start a web interface for application server using its configuration,
inside the application server: Define a network server; Define organization;
Create service profile; Create a device profile; Define gateway, application and
device

* receive the payload of the virtual device on the web interface (application-

server) also in the logs of virtual gateway in the terminal;

A java-script function also added for decoding the received sensor data. More-
over by accessing the ChirpStack REST API we were able to receive the application
payload from a different web application.

Description of the Graphs in Fig. 4.8

* Graphs 1 and 4 report outdoor temperature and humidity measured at the uni-
versity Campus in Parma. The values are captured using a LoRaWAN sensor
and transmitted to the TheThinksNetwork (TTN) platform (via a LoORaWAN
Gateway (Dragino DLOSS) placed at the Department of Engineering and Ar-
chitecture Using a TTN webhook, data is automatically push to a server of our
laboratory that resends it to the Data Server (AllThingsTalk)

e Graph 2 shows temperature sent by a virtual LoRaWAN sensor to TTN via
a virtual LoRaWAN gateway temperature values are obtained from a remote
service (OpenWeather) Using TTN webhook, data is re-sent real-time to WEB
api (AllThingsTalk)

e Graph 3 shows the outdoor temperature measured in Downtown Parma by a
LoRaWAN sensor Connected to the RetePAIoT LoRaWAN (via the LoRaWAN
gateway present on top of the Parma’s City Hall) Values are automatically re-
layed by the application server (using the RetePAIoT REST PUSH API) to
a server inside our laboratory. the graph plots values captured during the last
year, stored in a DB and sent to the Data Server via a RetePAloT-to-Data-

Server proxy
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» As Data Server we used the AllThigsTalk platform






Chapter 5

Conclusions

LoRaWAN is an efficient and easy-to-deploy complete solution for LPWAN IoT sce-
narios. The main advantages of LoORaWAN are in terms of long range connectivity
and indoor coverage, long battery life, high capacity in term of number of connected
devices, low-cost for devices and infrastructure hardware, standard architecture from
end devices to application servers.

In this thesis novel IoT technologies and security aspects including threats and
vulnerabilities in [oT and LoRaWAN has been described besides the corresponding
countermeasures counted. We found that deep learning using anomaly detection is
most proper approach to combat IoT attacks so we designed a model within the fol-
lowing steps to discover attacks in existed IoT traffic datasets. A large dataset of IoT
concludes benign and malicious flows analyzed, it has been built by integrating four
different recent datasets. The analysis has been carried out using both traditional ma-
chine learning algorithms and a proper Deep Leaning architecture that resulted to
achieve very good results and to outperform traditional machine learning techniques,
in terms of overall accuracy, precision, recall and F-measure, for both a binary and
multi-classification.

As application scenario, we considered the case when heterogeneous sensors have
to be connected to a backend IoT system. In particular we focused on an access sce-

nario based on LoRaWAN technology. However, in order to let different IoT access
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technologies to coexist we designed and implemented an interworking IoT platform
which is able to connect heterogeneous loT devices and networks to gather via virtual
components. We tried to face the interoperability issue by proposing different inter-
working solutions. We considered both cases where one or more non-LoRaWAN
devices have to be connected to a LoORaWAN backend system, and where a set Lo-
RaWAN devices, connected to a LoRaWAN backend, have to interact with a non-
LoraWAN IoT system. The case where different LoRaWAN and non-LoRaWAN net-
works have to be interconnected forming a larger heterogeneous IoT system has been
also considered. The proposed solution have been implemented and tested. The code
of the developed systems has been publicly and freely released. Finally we created
an online graph from our testbed. It demonstrates the aggregated data from different
categories of sensors (Adhoc devices, Off-the-shelf devices and Virtual devices) and

explained each flow of the data.

5.1 Future Work

In future work, we will focus on integrating much more datasets and instances to
apply the proposed Deep leaning model with much more layers, and on techniques
of feature selection to verify whether all the considered features are useful or not for
the classification tasks we considered. A further future improvement may also regard
the consideration of different types of neural networks, such as LSTM, and different
architectures of the neural network itself.

Intrusion is defined as an unauthorized task that is executed by an intruder (ad-
versary) in a network. Based on the adversary’s capabilities, an attack can be passive
(i.e., eaves- dropping of information during communication) or active (i.e., malicious
packet injection and packet dropping). An intrusion detection system (IDS) is treated
as a device (software) application that can detect any suspicious event happening in
the network. Once a malicious IoT device is detected by an adversary, so a feature
needed to be added in future IDS to quickly detect the identity of that device so that
further damage in the system cannot occur.

Moreover we expect that future IDS systems need to be designed and deployed
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in resource-constrained IoT devices. Due to resource limitations of IoT devices, we
need to design lightweight IDS mechanisms for securing the IoT environment. Thus,
managing machine-to-machine authorization mechanisms among IoT devices using
the IDS system will be another interesting future work.

Experimentation showing the overhead in terms of performance added by the
architecture could be an improvement so solving the problem of overhead besides
increase accuracy of the neural network model is one of the future aims.

Increasing the end-to-end data security with LoRaWAN by dealing with the re-
generation (and installation) of the secret key when the application server changes is
a future direction.

Larger deployment of outdoor sensors and data collection is another plan for the
future.

According to the all-in-one architecture of LoRaWAN lacks in interoperability
with non-LoRa IoT systems, that is left to the users therefore, designing lightweight
and secure privacy-preserving techniques in resource-constrained IoT devices is an
interesting future research work.

As there are very few approach to detect MQTT exploit it could be possible way
to use machine learning approaches to over come this issue.

In the future, IoT will play a significant role in the next-generation agriculture.
IoT connects monitoring devices to cloud platforms thereby enabling a agriculture
systems in real-time and in a non-invasive way. Since the information is confidential,
the information collected by the IoT devices must not be disclosed to any unautho-
rized party. Hence, secure the monitoring system by leveraging novel lightweight and
secure device authentication for device-to-device communications is desired.

Another improvement method to come over threats is anomaly detection which

performed directly onto the possibly large dataset formed by the sensor data.

5.2 Publications

* Riccardo Pecori, Amin Tayebi, Armando Vannucci and Luca Veltri. "loT At-
tack Detection with Deep Learning Analysis" IEEE WCCI-IJCNN 2020.
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¢ Amin TAYEBI, Luca VELTRI, Francesco ZANICHELLI and Stefano CASELLI.
"Interworking between LoRaWAN and non-LoRa IoT systems" IEEE PerCom-
IoT-PROD 2022.
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