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Abstract 

Advanced driver-assistance systems (ADASs) have become a salient feature 

for safety in modern vehicles. They are also a key underlying technology in 

emerging autonomous vehicles. State-of-the-art ADASs are primarily vision based, 

but light detection and ranging (lidar), radio detection and ranging (radar), and other 

advanced-sensing technologies are also becoming popular. In the first chapter, we 

present a survey of different hardware and software ADAS technologies and their 

capabilities and limitations. In the first chapter, we discuss approaches used for 

vision-based recognition and sensor fusion in ADAS solutions. We also highlight 

challenges for the next generation of ADASs. Then in the second chapter, we 

discuss the high-performance embedded platforms using in automotive domain. 

Since there is a tight relationship between trust of the costumers and comfort in 

autonomous vehicles with the higher autonomy levels, we focused on the most 

important issue of the comfort, motion sickness, that impacts on many people. The 

outcome of our research work in the thesis was two novel methods to mitigate the 

motion sickness that we discuss in the third and fourth chapters. To extend our 

work, we decided to use the machine learning techniques for motion prediction. 

The motion prediction techniques had conducted us to use the traffic rules for 

having the outperformance in the intersections. Therefore, we developed a state-of-

the-art motion prediction system that works in intersections that will be described 

in the fifth chapter.  

In the third chapter a Motion Sickness mitigation system is introduced. Current 

full- and semi- Autonomous car prototypes increasingly feature complex 

algorithms for lateral and longitudinal control of the vehicle. Unfortunately, in some 
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cases, they might cause fussy and unwanted effects on the human body, such as 

motion sickness, ultimately harnessing passengers' comfort, and driving 

experience. Motion sickness is due to conflict between visual and vestibular inputs, 

and in the worst case might causes loss of control over one’s movements, and 

reduced ability to anticipate the direction of movement. In the chapter two, we focus 

on the five main physical characteristics that affect motion sickness, including them 

in the function cost, to provide quality passengers' experience to vehicle passengers. 

We implemented our approach in a state-of-the-art Model Predictive Controller, to 

be used in a real Autonomous Vehicle. Preliminary tests using the Unreal Engine 

simulator have already shown that our approach is viable and effective, and we 

implemented and evaluated using Motion Sickness Dose Value and Illness Rating 

and then tested it in an embedded platform.  

We have also developed another novel alerting system to minimize the motion 

sickness describing in the fourth chapter. Current intelligent car prototypes 

increasingly move to become autonomous where no driver is required. If an automated 

vehicle has rearward and forward-facing seats and none of the passengers pay attention 

to the road, they increasingly experience the motion sickness because of the inability 

of passengers to anticipate the future motion trajectory.  In the chapter three, we focus 

on anticipatory audio and video cues using pleasant sounds and a Human Machine 

Interface to display and inform the passengers about the upcoming trajectories that may 

lead to make the passengers sick. To be able to anticipate the next moves, we require 

an evaluation system of the next 1 kilometer of the road using the map. The road is 

investigated based on the amount of the turns and the maximum speed allowed that 

lead to lateral accelerations that is high enough based on Motion Sickness Dose Value 

to make the passengers sick. The system alerts the passengers through a Human 

Machine Interface to focus on the road for prevention of the Motion Sickness. We 

evaluate our method by using Motion Sickness Dose Value. Based on this work, we 

can prevent the sickness due to lateral accelerations by making the passengers to focus 

on the road and decrease the vestibular conflict. 
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Finally, to extend our works into the machine learning techniques, in the fifth 

chapter, we started researching on motion prediction area and we developed a state-of-

the-art motion prediction model. As declared, one of the motion sickness sources is 

ability to anticipate the direction of movement. Therefore, having a trustable 

prediction on the next trajectories, can even help decreasing the motion sickness and 

increasing the comfort. In the other hand, autonomous driving motion forecasting is 

essential to have a correct and reliable planning. The influence of the road agents on 

each other makes it even more challenging. However, most prior works have not 

considered these interactions and planning against fixed predictions would reduce the 

ability to represent the future interaction possibilities between different agents. In this 

chapter of the thesis, we propose a model that predicts the agents’ behaviour in a jointly 

manner. We take advantage of using masking strategy as the query to our model. Our 

model architecture uses a unified Transformer architecture by employing attention 

across the road elements, agent interactions and traffic rules in intersections. We 

evaluate our approach on autonomous driving datasets for behavior prediction and test 

it on python. Our work demonstrates that motion forecasting by a model with a masking 

strategy and having attentions and traffic rules can lead us to a state-of-the-art model. 

For the last three chapters mentioned above, I succeeded to publish the related 

publication as bellow: 

1. Moazen, I., & Burgio, P. (2021). A Full-Featured, Enhanced Cost Function to 

Mitigate Motion Sickness in Semi-and Fully-autonomous Vehicles. In 

VEHITS (pp. 497-504). 

2. Moazen, I., Burgio, P., & Castellano, A. (2022, August). Motion Sickness 

Minimization Alerting System Using The Next Curvature Topology. In 2022 

IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 

635-640). IEEE. 

3. Submitted: The Advantage of Using Traffic Rules for Motion Prediction in 

Intersections (TRMPI), In 2023 IEEE International Conference on 

Mechatronics and Automation (ICMA) 
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Chapter 1 

Introduction to Advanced Driver 

Assistance Systems 

1.1 Introduction  

In modern vehicles advanced driver-assistance systems (ADASs) have become a 

crucial feature for safety. Developing them aims toward the technologies for 

autonomous vehicles. State-of-the-art ADASs are primarily vision based, but light 

detection and ranging (lidar), radio detection and ranging (radar), and other 

advanced-sensing technologies are also becoming popular. In this section, we try to 

categorize different hardware and software ADAS technologies and their 

capabilities and limitations. Finally, we introduce our embedded platform as a high-

performance embedded platform that we developed three different ADASs on it. 

1.1 How the safety impacts ADAS 

Safety is always a crucial concern in automotive systems the early days of on-road 

vehicles. Many different research and development have been completed to address 

this issue by developing various safety systems to protect occupants within a 

vehicle as well as prevent injuries to people outside the vehicle. The safety systems 

can be categorized in passive (or reactive) and active (or proactive). Passive safety 

systems are the systems to protect the passengers of the vehicle from injuries after 

a crash. Some of them can be seat belts, air bags, and padded dashboards. These 

systems due to a consistent consumer demand for safer vehicles, are under 

continuous development. Anyway, to make the vehicles even safer, it is required to 

augmented them by active safety systems that tries to prevent a crash from 
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happening altogether. Active systems are one of the main areas of interest and have 

seen major growth in today’s vehicles. Examples of such systems include lane 

keeping, automatic braking, and adaptive cruise control. These systems are 

commonly known as ADASs and are becoming increasingly popular as a way for 

automotive manufacturers to differentiate their offerings while promoting 

consumer safety. 

Recent studies from the World Health Organization indicate that 1.25 million 

deaths occur every year due to road traffic accidents [1]. Moreover, such accidents 

in recent years have an annual global cost of US$518 billion, which takes away 

approximately 1–2% of gross domestic product from all of the countries in the 

world [2]. These high fatality rates, monetary losses, and increasing customer 

demand for intelligent safety systems are some of the key reasons for OEMs to 

develop ADASs. Moreover, with the increasing number of electronic control units 

and integration of various types of sensors, there are now sufficient computing 

capabilities in vehicles to support ADAS deployments. The different types of 

sensors, such as cameras, lidar, radar, and ultrasonic sensors, enable a variety of 

different ADAS solutions. Among them, the vision-based ADAS, which primarily 

uses cameras as vision sensors, is popular in most modern-day vehicles. Figure 1 

shows some of the state-of-the art ADAS features and the sensors used to 

implement them. 

Modern ADASs are also key technologies to realize autonomous vehicles [3]. But 

several challenges with the design, implementation, and operation of ADASs 

remain to be overcome. Some of these challenges include minimizing energy 

consumption, reducing response latency, adapting to changing weather conditions, 

and security. In this chapter, we describe the different ADASs along with their 

required sensors. 

 

Fig. 1. The sensor ranges to fulfill the ADASs. 
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1.2 ADAS categories 

The ADASs can be categorized based on the next groups: 

1.2.1 Vision sensors 

Cameras are the most commonly used vision sensors in vehicles. Vision-based 

ADAS uses one or more cameras to capture images and an embedded system to 

detect, analyze, and track different objects in them. In high-end ADAS, cameras are 

used to monitor both the inside and outside of the vehicle as shown in figure 2. 

Camera integration in modern vehicles is becoming more common because of its 

low cost and easy installation. Laws such as [4] (that mandate all vehicles 

manufactured from 1 May 2018 onward use vision-based ADAS) will further aid 

in camera integration. Cameras capture information such as color, contrast, and 

texture, which gives them a unique advantage over other sensors. Three types of 

cameras as shown in Figure 3 are often used in vision-based ADAS: 1) monocular, 

2) stereo, and 3) IR cameras. 

 

Fig. 2. The different vision sensors used in an intelligent vehicle. 
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1.2.2 Monocular cameras 

These camera systems have only one lens. As these systems have only one image 

output at any point of time, they have low image-processing requirements compared 

to those of other camera types. These cameras can be used for multiple applications, 

such as the detection of obstacles, pedestrians, lanes, and traffic signs [5]. They can 

also be used for monitoring the driver inside a vehicle, e.g., for face- and eye-

detection and head-pose analysis [6]. But monocular camera images lack depth 

information and are, therefore, not reliable sensors for distance estimation. Some 

techniques [5] allow approximating distance by identifying key features in the 

captured image frame and tracking their position when the camera is in motion. 

Monocular vision systems are starting to emerge, but they are usually focusing 

only on one aspect of the problem e.g. lane departure warning. It turns out that in 

many situations providing warning based on one modality may be too limited. For 

example, lane departure system would gain a lot from insertion of information about 

vehicles on the road (blocking the view on the lanes). Furthermore, higher level of 

information about lanes can be of aid for example unstable driving within a lane 

(indicated by lateral velocity) may be an important indication of intelligent systems. 

Range to vehicles and range-rate are two important values required for any 

vision-based system. As the data is collected from a single camera range must be 

estimated by using perspective. There are two cues which can be used: size of the 

vehicle in the image and position of the bottom of the vehicle in the image. Since 

the width of a vehicle of unknown type (car, van, truck etc) can vary anywhere 

between 1.5m and 3m a range estimate based on width will have only about 30% 

accuracy. 

A much better estimate can be achieved using the road geometry and the point 

of contact of the vehicle with the road. We assume a planar road surface and a 

camera mounted so that the optical axis is parallel to the road surface. A point on 

the road at a distance Z in front of the camera will project to the image at a height 

y, where y is given by the equation: 

𝑦 =
𝑓𝐻

𝑍
                                                                                                   (1) 

where H is the camera height, and f is the focal length of the camera (both given 

in meters).  
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1.2.3 Stereo cameras 

These systems consist of two or more lenses, each with image sensors, separated 

by a certain distance (known as stereo base). Stereo cameras are useful in extracting 

three-dimensional (3-D) information from two or more two-dimensional images 

by matching stereo pairs (images from left and right sensors) and using a disparity 

map to estimate the relative depth of a scene. These cameras can be used for a 

variety of applications, such as traffic sign recognition, lane, pedestrian, and 

obstacle detection as well as distance estimation, with much greater accuracy 

compared to monocular cameras. 

Stereo systems can be relied upon for accurate distance (depth) estimation over 

short distances, up to 30 m. In most production vehicles with stereo cameras, the 

cameras are located inside the vehicle, behind the rear-view mirror, angled slightly 

downward, and facing the road. 

1.2.4 IR cameras 

There are two main types of IR cameras. Active IR cameras use a near-IR light 

source (with wavelengths from 750 to 1,400 nm) built in the vehicle to illuminate 

the scene (which cannot be seen by the human eye) and a standard digital camera 

sensor to capture the reflected light. Passive IR cameras use an IR sensor, where 

every pixel on the IR sensor can be considered as a temperature sensor that can 

capture the thermal radiation emitted by any material. Unlike active IR cameras, 

passive IR cameras do not require any special illumination of the scene. Still, 

popular night-vision solutions mainly use active IR cameras to assist the driver by 

displaying video data on a screen during low light conditions. 

 

Fig. 3. From left to right, there are monocular camera, stereo camera, and IR camera. 

1.2.5 LiDAR 

Lidar works by firing a laser beam at an object and then measuring the time taken 

for the light to bounce back to the sensor, to calculate the distance of an object. 

These systems can achieve high-resolution 3-D images and operate at longer 

ranges than camera systems. Some of the lidar scanners support surround-view 

sensors (that fire laser beams continuously in all directions), which can generate a 
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360° 3-D image of the surroundings with extremely accurate depth information. 

Lidar is becoming very popular in autonomous vehicles. Several prototype vehicles 

[7], [8] have demonstrated the advantages of using lidar in autonomous driving. 

Lidar is useful for systems implementing automatic braking, object detection, 

collision avoidance, and more. Depending on the type of sensor, lidars for cars can 

have a range of up to 60 m. Despite the aforementioned advantages, lidars are 

heavy, bulky in size, and expensive. Moreover, atmospheric conditions such as rain 

or fog can impact the coverage and accuracy of these systems. Emerging solid-state 

lidars [9] have opened the possibility of powerful lidars that are significantly 

smaller and relatively inexpensive.  

 

1.2.6 RADAR 

Radar systems emit microwaves and estimate the speed and distance of an object 

by measuring the change in the frequency of the reflected wave as per the Doppler 

effect. Due to the longer wavelength of microwaves, they can travel much farther 

than optical light (e.g., with lidar) and can detect objects at a longer distance. Unlike 

lidar, radar is not affected by foggy or rainy weather conditions and is relatively 

inexpensive. Depending on their operating distance range, radar systems can be 

classified as short range (0.2–30 m), medium range (30–80 m), or long range (80–

200 m) [10] as shown in Figure 4. Cross-traffic alerts and blind-spot detection are 

some of the applications of short-/medium-range radars. These systems are often 

located 

at the corners of a vehicle. Adaptive cruise control is a long-range radar application, 

with the system located behind the front grill or under the bumper. Researchers 

have been developing algorithms to improve the performance of radar and 

reliability all while attempting to reduce the cost and power of the system [11]. 
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Fig. 4. Different ranges of RADARs used for different porpuses in autonomous driving. 

1.2.7 Ultrasonic sensors  

Ultrasonic sensors use sound waves to measure the distance to an object. These 

sensors are mainly used for detecting objects very close to the vehicle. Some 

example applications include automatic parking and parallel parking assist. These 

sensors are mainly located under the front and rear bumper of the vehicle. 

The distance from the ground of a point of a vehicle body is computed as: 

𝐷 = 𝑘. 𝑇𝑓. 𝑉𝑠                                                                                                   (1) 

Where  

𝑇𝑓 time of flight of an ultrasonic pulse, i.e., the time the pulse takes to cover the 

distance D; 

k constant close to 0.5, which depends on the sensor geometry;  

𝑉𝑠 velocity of sound in air. 

 The ultrasonic pulse is generated using a piezoelectric transducer and the echo 

reflected by the ground is received by another piezoelectric transducer. The two 

transducers are mounted close to each other to make up the measuring head. The 

uncertainty contribution due to the constant k can be made negligible by means of 

a sensor calibration after mounting the measuring head. 

As the measured quantities 𝑇𝑓 and 𝑉𝑠  can be considered uncorrelated, the 

standard uncertainty 𝑢(𝐷) of the measured distance can be obtained from equation: 

𝑢(𝐷) =  √(𝑘. 𝑇𝑓)
2
. 𝑢2(𝑉𝑠) + (𝑘. 𝑉𝑠)2. 𝑢2(𝑇𝑓)    (2) 

where 𝑢(𝑉𝑠) and 𝑢(𝑇𝑓) are the standard uncertainties of the velocity of sound 

and of the time of flight. The velocity of sound in air depends on the temperature 

and, to a lesser extent, on the air humidity h: 

𝑉𝑠 = 𝑓(𝜃, ℎ)         (3)  

therefore, (2) becomes 
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𝑢(𝐷) =  √(𝑘. 𝑇𝑓)
2
. [(

𝜕𝑓

𝜕𝜃
)
2

. 𝑢2(𝜃) + (
𝜕𝑓

𝜕ℎ
)
2

. 𝑢2(ℎ)] + (𝑘. 𝑉𝑠)2. 𝑢2(𝑇𝑓)    (4) 

If the humidity is considered a random variable uniformly distributed in the 

range of 10%RH to 90%RH, its effect on the velocity of sound is of about 0.15% 

at 20 C. This leads to a standard uncertainty contribution of about 0.3 mm for a 

distance range of 0.3 m, hence a humidity sensor is not necessary. 

The velocity of sound in air depends on the temperature according to the 

approximated equation: 

𝑉𝑠 ≈ 20.055. √𝑇        (5) 

where is the absolute temperature, which is measured in kelvin.  

Velocity-of-sound changes in the range of 330–360 m/s have to, therefore, be 

expected for temperature changes in the range of 0–40 C. Such an effect must be 

taken into account in the determination of the distance, hence a temperature sensor 

is re quired. 

Another phenomenon that affects the uncertainty of the measured distance is 

the car speed, which has the same effect of the component of the wind that flows 

perpendicularly to the path of the ultrasonic pulse. Such effect consists in an 

increasing of the pulse path and, in turn, of the measured distance. As the maximum 

car-speed is of the order of 10% of the velocity of the sound, the distance error due 

to a car speed 𝑉𝑤  can be approximately estimated as 

∆𝐷

𝐷
≈

1

2
. (

𝑉𝑤

𝑉𝑠
)
2

        (6) 

For a car speed of 33 m/s (about 120 km/h), the distance error at 0 ℃ (𝑉𝑠 ≈

330 𝑚/𝑠) is of about 0.5%. One should note that this error could be easily corrected 

by the knowledge of the car speed. 

Distance measurement in the range of 0.1 m to 0.3 m requires the measurement 

of time of flights in the range of 0.5–2 ms. The required distance standard 

uncertainty of 1 mm can be achieved by measuring the time of flight with a standard 

uncertainty of 2.5 µs, the temperature with a standard uncertainty of 1 ℃, and 

avoiding the use of a humidity sensor. 
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Ultrasonic signals with frequencies in the range of 30 kHz to 5 MHz can be 

used to generate the pulse. Higher frequencies might be preferable since they imply 

lower wavelengths and thus a potentially better resolution, but the sound attenuation 

in the air dramatically increases as the frequency increases. In addition, higher 

frequencies require both costly transducers and fast electronic devices, therefore 

preventing a low-cost arrangement to be obtained. Lower frequencies have the 

advantage of low-scattering problems and can be obtained with low-cost 

transducers, but the wavelength in the air is several millimeters, thus requiring 

special care in order to obtain measurement uncertainties that are lower than the 

wavelength. 

1.2.8 Others 

A few other sensors are used to complement and improve the functionalities of 

those discussed earlier. For instance, photonic mixer device (PMD) cameras consist 

of an array of smart sensors that enable fast optical sensing and demodulation of 

incoherent light signals simultaneously [12]. PMDs can support parallel target 

pixel-wise distance measurement without scanning, thus resulting in faster imaging, 

high lateral resolution, and depth information. IMUs and GPSs are examples of 

systems that help improve the distance measurements with lidar and radar. 

1.3 Vision-based ADASs 

Vision-based ADASs rely on images from cameras and use computer vision 

principles to extract useful information. 

1.3.1 Computer vision data flow for ADASs 

Figure 5 shows the steps involved in a vision-based system, each of which is 

discussed. 

 

Fig. 5. The steps involved in a vision based system 
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1.3.2 Image acquisition  

This refers to the process of capturing a frame from a video. The frame is often 

represented as a matrix of pixel data where each frame contains three channels of 

information, e.g., red, green, and blue (RGB) sets of pixels. Typical frame rates in 

ADASs range from five frames per second (fps) to 60 fps depending on the 

application. Applications that involve detection of vehicle proximity need a higher 

frame rate due to the rapid change in distance for cars on the road. In contrast, traffic 

sign detection does not demand a higher frame rate because only one frame of the 

sign needs to be captured for the sign to be detected. 

1.3.3 Preprocessing 

There are several common preprocessing steps needed to prepare an image for  

various computer vision algorithms, e.g., denoising, color enhancement, color 

space conversion, and image stabilization. A typical example of color space 

conversion is to convert the RGB color space to hue, saturation, and  value to 

separate color from the intensity. Moreover, the hue channel is often used to 

separate out adverse effects (e.g., shadows, uneven lighting, and over- and 

underexposure) in the image to make tracking and detection easier. 

1.3.4 Segmentation 

This is the process of separating features from a frame. In analyzing an image, it is 

helpful to partition it into recognizable objects, e.g., identifying the road and sky in 

a frame as two different features. Various thresholding techniques are used to filter 

one class of pixels (e.g., the road) from another (e.g., the sky) as shown in Figure 

6. One of the methods, e.g., exploits color information to detect a stop sign, where 

an algorithm may look for red in the image (typical for stop signs in the United 

States). Any pixels in that red range will be turned white, and anything that is not 

will be turned black. This results in a binary image that is often used as a mask for 

finding the area of interest on the original image. 
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Fig. 6. The segmented objects that are categorized in different groups. 

1.3.5 Object detection and tracking 

This is the process of classifying an object in an image (e.g., determining if an object 

ahead is a vehicle, sign, or pedestrian) and predicting its movement. For instance as 

shown in figure 7, an object detection and tracking is done. It is often accomplished 

with various machine-learning (ML) algorithms. ML algorithms are provided large 

training data sets (thousands of images) to learn and differentiate between vehicles 

and common objects found around them. An example of an object detection method 

is called the cascade classifier, which was first presented in [13] for face detection, 

on low-performance hardware systems.  

Another common technique to train and classify images is using a convolutional 

neural network (CNN), which typically consists of an input layer, multiple hidden 

layers, and an output layer. The hidden layers consist of convolution and pooling 

layers that are used for feature extraction and a fully connected layer for 

classification. Examples of CNN frameworks used for vision applications include 

Caffe, Darknet, and MATLAB. An application of a CNN for object tracking is 

discussed in [14]. Kalman-filter-based object tracking is proposed in [15], where 

the filter tracks the object’s velocity.  
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Fig. 7. An example of object detection and tracking. 

1.3.6 Depth estimation  

This step involves estimating the distance of an object in the image frame relative 

to the camera. There are two common methods for depth estimation: 1) the use of 

a stereo camera to create a stereo pair and develop them to make a depth map and 

3-D point cloud that allow a real-world reconstruction of the scene [16]; and 2) the 

use of a monocular camera and several state-of-the art techniques that use a subset 

of optical flow, calibration, and least squares techniques [17]. An example of the 

depth estimation is shown in Figure 8. 

 
Fig. 8. Depth estimation helps understanding the distance of the different objects in images. 

1.3.7 System control 

This is the last step in the vision data flow, which involves interpretation of the 

outputs from previous layers. This step requires a weighting of each layer in the 

vision pipeline to come up with a confidence value that can be used to make 

decisions. A major challenge at this step is a false detection with high confidence 

that would take priority over other information obtained from the previous layers. 
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Thus, training with data that is correct and contains many orientations of the object 

to be classified is crucial to achieve high accuracy.  

In the third chapter we introduce an Adaptive Model Predictive Control that 

recently is used in autonomous driving. Model Predictive Control uses the dynamic 

model of the system. For nonlinear systems we use AMPC. The name is Adaptive 

MPC since it adjusts the prediction model at run time. 

1.4 Outdoor monitoring 

In this section, we will discuss the classification of objects that are outside a vehicle, 

e.g., pedestrians, vehicles, and roads. 

1.4.1 Pedestrian, Vehicle, sign, and lane detection  

Detecting pedestrians is done using various classifiers, e.g., [18]. Often more than 

one classifier is used for detecting people because of the varying orientation and 

configuration in which pedestrians may appear. Deep-learning networks such as 

CNNs have been helpful to not only identify pedestrians but also classify their 

actions. 

Vehicle detection is a major focus of object detection in ADASs. The fact that 

many vehicles share common features, such as having tires, brake lights, and license 

plates, allows the detection of these objects to indicate the presence of a car. These 

features are all used to distinguish the vehicle from other objects, such as signs, 

roads, and other miscellaneous objects. An example of vehicle detection is shown, 

using a CNN framework (Darknet) and a real-time detection system, You Only 

Look Once [19]. The orientation of vehicles can cause some issues with their 

identification. A vehicle being viewed from the front contains a different set of 

features than a vehicle from the side or back. Often vehicle classifiers consider 

various classes of vehicles, such as cars, trucks, and semis that are trained with 

many orientations.  

Many ADASs are beginning to support traffic sign detection. The most 

common use case is determining the speed limit on the road by reading a speed sign 

(an ADAS would alert the driver if the vehicle speed is over the limit). For instance, 

color thresholds can be used to find the location of a sign and optical character 

recognition to determine what that sign displays. Other methods include using 

CNNs and hybrid techniques, such as [20]. 

Another ADAS feature used in a few production vehicles is the ability to keep 

the vehicle within the lane lines on the road. However, lane lines are one of the 
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hardest road features to detect because of their inconsistencies, such as being 

different colors, faded, and sometimes not even present. Current methods to detect 

lane lines often use a Canny transform to find the edges in the image. Once the 

edges are found, a Hough transform is used to compare the lines to a single slope 

to determine if they are indeed lane lines [21]. The use of CNNs is also becoming 

popular for lane line detection. When all the detection parts techniques gather 

together, we will have a detection of different objects of the world as shown in 

Figure 9. 

 

Fig. 9. Object detection in different conditions of the roads. 

1.4.5 Collision avoidance 

ADASs are beginning to incorporate automatic braking and collision avoidance. 

This is done by combining many features discussed earlier, such as object tracking, 

vehicle detection, and distance estimation [14]. With this combination of data, a 

vehicle can predict a collision and stop it from happening by braking or even 

steering out of the way. A forward collision avoidance is shown in Figure 10. 
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Fig. 10. Forward collision avoidance using Radar.  

Sensor selection is the first and most crucial step towards designing a reliable 

and robust Forward Collision Avoidance. Active sensors perform well in different 

weather conditions and nighttime and their price is also in affordable range. The 

most common approaches to detect vehicles by active sensors include Radar-based 

and Laser or Lidar (Light Detection and Ranging) based. In the other hand, passive 

sensors with less common usage for Forward Collision Avoidance collect 

information by receiving the signals without emitting them and include acoustic 

and optical (camera) sensors. 

1.5 Indoor monitoring 

In a study conducted by the National Highway Traffic Security Administration [22], 

it was observed that driver fatigue, drowsiness, or distraction are the causes of 80% 

of vehicle accidents. As ADAS becomes prevalent in production vehicles, there has 

been an increase in focus on monitoring the driver using a camera pointed at him 

or her. If the driver accesses a phone or does not look at the road for a specific time 

duration, an alert or attempt to get off the road will be made [6]. Drowsiness-

fatigue-detection systems have also included the ability to detect if the driver has 

fallen asleep and can attempt to alert the driver though a sequence of seatbelt 

vibrations and speaker alerts [23]. 

1.6 Next generation ADASs  

Next-generation ADAS solutions are beginning to use sensor fusion and other 

advanced communication systems, such as vehicle-to-everything (V2X). 

1.6.1 Sensor fusion 

Sensor fusion refers to combining information from multiple homogenous or 

heterogeneous sensors to find a single best estimation of the state of the 
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environment. Fusion helps sensors complement each other’s limitations and offers 

greater leverage to the system compared to a system with individual sensors. Sensor 

fusion offers high precision, reliability, robustness to uncertainty, extended spatial 

and temporal coverage, and improved resolution, which are crucial in safety-critical 

systems, such as vehicles. Although this comes at a higher computation cost, the 

computation power available in modern-day cars and the reducing cost of the 

sensors are facilitating the widespread integration of these systems. 

The classification of different levels of sensor fusion along with the most commonly 

used techniques for fusing data are discussed in [24]. The growing interest in deep 

learning and other ML methods in recent years has driven researchers toward 

exploring more efficient and intelligent techniques that enhance ADASs with 

sensor fusion capabilities.  

1.6.2 V2X communication  

V2X communication represents a class of communication systems that provides the 

vehicle with an ability to exchange information with other systems in the 

environment. Examples include vehicle-to-vehicle (V2V) for collision avoidance, 

vehicle-to-infrastructure (V2I) for traffic signal timing, vehicle-to-network for real-

time traffic updates, and vehicle-to-pedestrian for pedestrian signaling. State-of-

the-art V2X communication is based on either dedicated short-range 

communications (DSRC) or cellular networks [25]. The IEEE 1609 family of 

standards for Wireless Access in Vehicular Environment (WAVE), which is 

developed based on the IEEE 802.11p standard, defines an architecture and a set of 

services and interfaces to enable DSRC-based secure V2V and V2I communication 

[26]. 

1.7 Autonomous vehicles 

Next-generation ADASs using sensor fusion and V2X communication are paving 

the way for autonomous driving. The Society of Automotive Engineers (SAE) 

J3016 standard [27] defines six different levels of driving automation for on-road 

vehicles. A vehicle is categorized as level zero if there are no ADASs assisting the 

driver in handling steering and acceleration/deceleration and everything is handled 

manually by the driver. Level one vehicles consist of DASs assisting the driver in 

handling either steering or acceleration/deceleration under certain cases with human 

driver input. ADASs in level two vehicles handle both steering and 

acceleration/deceleration under certain environments with human driver input. In 

general, in lower-level vehicles (levels zero to two), the driver monitors the driving 

environment. In contrast, ADAS monitors the driving environment in higher-level 

(levels three to five) vehicles. Modern vehicles with the top-of-the-line ADASs, 

such as the 2016 Tesla model S, are level three, where multiple safety systems are 

handled by the system, but the driver intervenes when needed. Level four vehicles 



 

17 

 

handle multiple safety systems and operate in a wider range of environments. Level 

five automation is the end goal of autonomous driving, where all of the systems in 

the car are operated by the ADAS, under all driving conditions (such as snow-

covered roads and unmarked dirt roads) and would not require any human 

intervention. This, however, still requires significant advances in multiple areas, 

such as sensor technology, computing systems, and automotive networks.  

1.8 Challenges with ADASs  

Despite significant advances in the field of ADASs, several important challenges 

remain to be overcome. 

1.8.1 Changing environmental conditions  

One of the major problems with today’s ADASs is that the performance of the 

system is significantly impacted by changing environmental and weather 

conditions. For example, vision-based ADASs have issues with sensing during 

rainy and extreme lighting conditions (too dark and/or too bright) [28]. One of the 

possible solutions to this problem includes sensor fusion, by relying on other sensor 

data depending on the weather conditions, e.g., relying on the camera and radar 

during low light conditions while using the camera and lidar during other times for 

accurate distance estimation. The inclusion of V2I and developing cost-effective 

smart roads could help mitigate this issue. 

1.8.2 Resource constrained system 

Embedded systems used in ADASs have a requirement for low power consumption. 

This is because ADASs involve running several complex algorithms that result in 

high power consumption and thermal dissipation. Due to the limited availability of 

energy in vehicles, it is essential to minimize the power consumption of the 

embedded system used in ADASs. 

Using more energy-efficient hardware than conventional general-purpose central 

processing units is important, which is why emerging ADAS hardware must rely 

on graphics processing units, digital signal processors, image signal processors, 

etc., that are customized to reduce power consumption for ADAS applications. 

Moreover, as the embedded systems for ADAS operate in real time, they have strict 

timing constraints, which establishes a latency minimization requirement. Hence, 

optimized hardware and software that results in minimal power consumption and 

greater performance (lower latency) predictability are highly desired in an ADAS. 
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1.8.3 Security 

Modern vehicles are becoming increasingly connected with a lot of different 

systems, such as Wi-Fi, near-field communication, and V2X. This enables the 

vehicle to sense and receive a variety of information but also makes it more 

vulnerable to attacks. Many vehicle hacks have been demonstrated, e.g., researchers 

in [29] used onboard diagnostics (OBD-II) to hack a GM vehicle. In [30], the 

telematics system in a Jeep Cherokee was hacked to accelerate, brake, and kill the 

engine. This problem is aggravated in ADASs and autonomous driving. Preventing 

hackers from gaining access to connected vehicles is becoming increasingly 

important. This involves securing both in-vehicle networks and external 

communication. 

1.8.4 Geospatial constraints 

Many of the modern ADAS solutions being developed are tested within a 

geographic location or a group of locations where they are sold. This limits the 

ADAS to one or a certain group of geographical locations. This is because not all 

countries (or some states in a country) adhere to the same sign and road conventions 

uniformly, which makes ADAS algorithms that are often trained under one location 

hard to work efficiently in other locations. There is a need to improve algorithms, 

e.g., by exploiting V2X technology deployments to overcome variations in road 

sign conventions.  

1.9 The developed ADASs 

In this thesis, we tried to gather three important ADASs that we developed. The 

system that we developed started by concerning about the comfort driving and its 

most common comfort issue in autonomous driving, Motion Sickness. Considering 

the sources of the motion sickness, which will be discussed in the third and fourth 

chapters, we developed two motion sickness minimization methods that covers 

most of the sources. These systems, that will be discussed in the third and fourth 

chapters, are A Full-Featured, Enhanced Cost Function to Mitigate Motion Sickness 

in Semi- and Fully-autonomous Vehicles, Motion Sickness Minimization Alerting 

System Using The Next Curvature Topology. The research on Motion Sickness 

made us concentrate on the anticipating the next moves of the vehicle that is a 

common source of the motion sickness. To aim predicting the next movements, we 

started research on Motion Forecasting and soon we developed a methodology that 

outperform in the intersections. This system that will be discussed in the fifth chaper 

is Motion Prediction using Attention Heads and Traffic rules in intersections.  

In the next chapters, after describing the high-performance embedded 

automotive platforms, we explain each ADAS we developed. There are five 
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potential sources of AV motion sickness; variation in horizontal and vertical 

acceleration, posture instability, loss of controllability and loss of anticipation of 

motion direction, Head downward inclination, and lack of synchronization between 

virtual motion and the vehicle motion profile [31]. First, A Full-Featured, Enhanced 

Cost Function to Mitigate Motion Sickness in Semi- and Fully-autonomous 

Vehicles [40] is explained as the state-of-the-art work that focuses on variation in 

horizontal and vertical acceleration and loss of controllability and loss and a control 

system is developed for it. Second, Motion Sickness Minimization Alerting System 

Using The Next Curvature Topology [41] is introduced that focuses on loss of 

controllability and loss of anticipation of motion direction and lack of 

synchronization between virtual motion and the vehicle motion profile. This system 

uses a Human Machine Interface (HMI) to alert the passengers. Finally, Motion 

Prediction using Attention Heads and Traffic rules in intersections is explained and 

this state-of-the-art work seeks to explain the improvements that can be done by 

adding the Traffic Rules into the Motion Prediction models. 
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Chapter 2   

High-performance Embedded 

Automotive Platform 

By developing the autonomous driving subsystem, the requirement of having novel 

embedded platforms with high speed and reliability increases. Each ADAS based 

on its functionality should be able to perform in real-time in the vehicle. As the 

complexity of the system increases, the need of the higher performance embedded 

platform rises. As discussed before, each ADAS needs fulfill some embedded 

platform capabilities and the systems that we designed also require a reliable setup 

for the implementation. In this chapter of the thesis, we investigate on the high-

performance embedded automotive platforms and find the best choice for the 

systems we developed. We investigate how the different platforms perform and 

finally we discuss why we choose the embedded platform for our systems.  

2.1 Introduction 

There is a clear trend in the automotive domain towards a new paradigm of 

centralized Electrical/Electronic (E/E) architectures, where large portions of 

formerly separated functionalities running on dedicated electronic control units 

(ECUs) are integrated into centralized vehicle integration platforms (VIP) [32]. At 

the same time, novel computation, and data-intensive algorithms, such as, for 

instance, predictive maintenance or automated driving (AD) functionalities, are 

being deployed on these centralized high-performance platforms. 

In order to satisfy the tremendous demand of “centralized” computing power, 

heterogeneous system on the chips (SoCs) are being increasingly deployed in 

automotive systems. These SoCs are microprocessor-based (μP-based), featuring a 

variety of integrated specialized accelerators, including graphics processing units 

(GPUs) and Field Programmable Gate Arrays (FPGAs). Examples of this class of 

SoCs include NXP’s S32V vision processor family, or the Tegra series offered by 

Nvidia. 

Compared to traditionally used micro-controllers, these heterogeneous SoCs 

are highly parallel and feature complex memory systems, composed of multiple 
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levels of on-chip shared SRAM memories (caches or scratch pads) and off-chip 

DRAMs. Obviously, the increased complexity of the memory system that is shared 

between multiple execution engines on the SoC leads to a strong performance 

correlation between parallel executed applications [33]. While programmatically 

data is accessed transparently through virtual address spaces, it is physically stored 

at different (shared) memory locations, with different access latencies that are 

dynamically influenced by complex access and caching schemes as well as 

mechanisms for ensuring data coherency and consistency. For instance, in [33] it 

has been shown that the average (sequential) read access latency can vary by a 

factor of up to 8x on an Nvidia Tegra X1 platform. 

In computer-science, a radical shift towards heterogeneous compute platforms 

is happening now, accelerated by the rise of Machine Learning and thus dedicated 

accelerators, and the plateauing of the Moore’s law applied to CPU compute power. 

In the real-time computing landscape, this shift has given rise to high-performance 

real-time applications. On high performing, heterogeneous systems co-location of 

multiple mixed criticality workloads on the same SoC can dramatically improve the 

utilization of system resources, enabling resource sharing (e.g., IO devices, 

hardware accelerators, etc.) and improving the efficiency of data sharing across 

workloads. 

However, co-location also comes at the cost of potential performance 

degradation, both average and worst-case, due to interference on shared resources, 

and increased uncertainty in terms of workload execution time. Both the academia 

and industry have been investigating the impact of shared resource contention on 

real-time and mixed critical software, on hardware requestors (e.g., CPU, GPU, 

other hardware accelerators) and on memory bandwidth availability, resources 

access latency, and jitter [34-36]. The advent of larger integrated platforms which 

will run real-time workloads alongside general-purpose operating system (GPOS) 

workloads now calls for those systems to being able to provision their resources in 

a quantifiable and predictable way. This becomes crucial to determine acceptable 

worst-case execution times (WCET) for real-time workloads and to ensure smooth 

and responsive operation of the GPOS workloads running alongside them. 

To aid compartmentalize traffic streams on shared resources, silicon hardware 

designers and manufacturers have introduced, primarily in the infrastructure 

market, technology that allows memory transactions to be labelled and then 

subsequently confined to partitions of shared resources: Arm, MPAM [37], and 

Intel, CAT.  
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2.2 The performance 

The traditional decentralized automotive E/E architectures are the result of multiple 

years of evolution of vehicle functionality. By using dedicated hardware for 

additional and possibly optional functionalities, decentralized architectures enabled 

and/or followed the distributed development paradigm between vehicle 

manufacturers and suppliers. They allow the structural partitioning of the vehicle 

system into functional domains. On the one hand, this is important for the planning, 

design and implementation of vehicle functionality in a parallel setup to minimize 

organizational interfaces. On the other hand, the corresponding functional 

partitioning (one function - one control unit) limits the functional interfaces and 

integration effects to the communication networks. In Figure 11, a regular E/E 

architecture with two embedded systems are shown. 

 

 

Fig. 11. From legt an example of E/E architecture of an intelligent vehicle and in the right two embedded 

platforms of NXP and Nvidia for developing the autonomous driving. 

This architectural approach obviously results in a very close link between 

hardware and software since relocation of functionality is not an architectural 

driver. While decentralized architectures have carried the industry so far, new 

architectural drivers have appeared as automotive mega-trends: electrified, 

autonomous, connected and shared are the keywords that describe future 

expectations to a vehicle that must be backed by the E/E architecture. Centralized 

E/E architectures bring the opportunity of cost and weight savings by reducing the 

number of control units and promise to reduce complexity in comparison to a 

distributed E/E architecture. However, the complexity of managing distributed 

logic with dedicated resources is merely replaced by the complexity of managing 

centralized logic on a parallel hardware platform with shared resources [32]. 
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In addition, these centralized control units need to host software categories 

which range from real-time safety-critical embedded software all the way up to 

”app”-like software that come with the concept of being rather easily updated in 

field without negative side effects to other co-located functionality.  

In this mixed-criticality setting, it is mandatory to have predictable performance 

and isolation of applications from each other, with respect to both space and time. 

This can be achieved by actively managing Quality of Service (QoS) and limiting 

the contention and interference on shared resources. Unfortunately, the currently 

available Commercial-Off-The-Shelf (COTS) platforms are rather optimized for 

high average performance and offer only coarse-grained support for configuring 

QoS for various shared resources, for instance, the interconnect or the DRAM. In 

order to achieve predictable performance, one has, thus, to resort to software-based 

methods. While spatial isolation is well supported, e.g. at the level of POSIX 

processes, several software measures have been introduced to limit the temporal 

interference on levels of scheduling, cache partitioning and memory bandwidth 

regulation. Scheduling is concerned with the distribution of CPU resources to 

applications. In comparison to the well-stablished priority-based scheduling 

approaches, reservation-based scheduling approaches show advantages in offering 

composable QoS guarantees to applications while allowing more flexibility than 

Time-division multiple access (TDMA)-based scheduling [38]. In general, 

partitioned scheduling, i.e., the pinning of application processes to cores, shows 

better predictability than global scheduling in multi-core settings as interference 

effects can be better localized. However, this approach has limitations as well, since 

in many SoCs the CPU cores are allocated in clusters of multiple cores (usually 2 

or 4). These clusters provide shared infrastructure, e.g., the L2 cache. So, pinning a 

process on one core of a cluster will still not resolve the interference between cores 

of the same cluster on the L2 cache, unless that cache is partitioned. Extreme 

isolation mechanisms such as a ”stop the world” approach, where the execution of 

ASIL-D (Automotive Safety Integrity Level D) safety application on a single CPU 

core will stall all other cores in the system in order to generate a single-core 

equivalent scenario, are not adequate due to their performance penalty. 

The previously mentioned issue of interference through caching can be 

addressed with cache coloring, exploiting the fact that (depending on the 

organization of the cache) certain address ranges will map to the same cache line. 

By choosing the mapping of virtual memory pages to physical pages with this in 

mind, performance-optimal memory allocation as well as cache partitioning can be 

achieved. However, this comes at the price of a factual smaller cache for each 
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partition and additionally fine-grained page-mapping that can cause side-effects in 

terms of page-table walks. Cache coloring can be supported by software on 

operating system or hypervisor level. Also, cache partitioning is directly supported 

by novel hardware (HW) mechanisms such as Arm DynamIQ as shown in Figure 

12. 

 
Fig. 12. Arm DynamIQ. 

In order to address interference topics outside of a CPU cluster, e.g. the access 

to DRAM, performance counters integrated in the SoC can be used to actively limit 

the number of requests and reserve memory bandwidths at the level of cores, 

hypervisor partitions or single applications, using software based mechanisms such 

as Memguard [39]. This is an effective mechanism to limit interference. However, 

the more fine grained the objects to be isolated get, the higher the overhead 

becomes. This overhead could be reduced if the SoC exposed more information, 

e.g., the source of a particular request, or implemented less coarse resource 

partitioning mechanisms than in current SoCs (where QoS mechanisms are 

available at the cluster level, if at all) directly in HW. 

All these concepts are sophisticated approaches with their individual 

drawbacks, such that their stand-alone configuration is already quite intricate for an 

industrial practitioner in real world application scenarios. However, there are 

additional interactions among these mechanisms. If you, e.g., use cache coloring to 

reserve cache for real-time critical applications in order to prevent cache thrashing 
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by non-real-time applications, you effectively reduce the cache size for all 

applications.  

This could in turn lead to more DRAM traffic which will increase the DRAM 

interference also towards the real-time applications. Finding an optimal 

configuration for these interacting mechanisms is highly dependent on the 

characteristics of applications and the HW platform. Thus, automated profiling as 

well as sophisticated configuration tools are required. Considering updates in the 

field at operation time, it is absolutely crucial that there is as little human 

intervention required in this as possible. 

In addition to these quantitative dependencies among these resources, the 

different resources (e.g., interconnect and memory) need also to be available at the 

same time in order to avoid interference due to resource contention. 

Power consumption, performance (typically average or peak performance), and 

chip area are widely utilized design metrics considered when designing a computing 

system. Such metrics are typically obtained through measurement under a set of 

conditions representative of the intended system production deployment operations 

(platform target workloads). When designing real-time systems, additional 

performance metrics should be considered, such as quantifying how much the 

system allows confident computation of worst-case execution times (WCET) for 

each of the real-time workloads it is being designed to execute [32]. Typically, the 

degree of uncertainty on computing the WCET that characterizes current high-

performance real-time compute platforms makes classical methods of computing 

the WCET unfeasible (such as analytical) [39]. Therefore, there would be the 

adoption of the following empirical performance metrics: i) Worst-case measured 

performance and ii) Time-predictability, defined as the quotient between the best-

case measured performance and the worst-case measured performance. 

2.3 Sources of uncertainty 

The reason for high uncertainty in determining the WCET is typically down to 

specific sources of uncertainty. The sources of uncertainty in the following affect 

the ability to predict or even precisely measure the timing characteristics of real-

time systems: 

• Workload input data or events: they cause uncertainty when influencing the 

software control flow or the amount of computation performed by it. In this 

case it is said that the workload is data-variant. For example, conditional 
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branches based on values provided by or calculated from input data can lead 

to different paths of execution. Also, the depth of loops or recursions may 

depend on the content or size of the input data. 

• Hardware state: state of the hardware resources at beginning of execution. 

Examples are initial cache contents or memory controller row buffer 

contents. 

• Interference: deviation in performance caused by workloads that contend 

for the same shared resources, alter the initial hardware state for other 

workloads or both.  

2.4 Shared resources and interference channels  

As interference arises from contention between workloads, on accessing or using 

shared resources, co-location of workloads on high-performance system is prone to 

be affected by such contention, which calls for its accurate quantification. Each 

hardware shared resource can exhibit one or more interference channel, each one 

corresponding to a place in the resource where a specific type of contention can 

happen. The following are examples of potential resource interference channels: 

• Internal hardware buffers between pipeline stages: a congested buffer may 

result in a general resource stall, delaying the service provided by the resource. 

• Arbitration policies: they govern which workload has access to the resource 

at any given time. Biased policies (e.g., strict priority ones) or generally non-work-

conserving ones can cause starvation of workload request flows. 

2.5 NVIDIA GPUs 

The graphics processing unit (GPU), first invented by NVIDIA in 1999, is the most 

pervasive parallel processor to date. Fueled by the insatiable desire for life-like real-

time graphics, the GPU has evolved into a processor with unprecedented floating-

point performance and programmability; today’s GPUs greatly outpace CPUs in 

arithmetic throughput and memory bandwidth, making them the ideal processor to 

accelerate a variety of data parallel applications. 

Efforts to exploit the GPU for non-graphical applications have been underway 

since 2003. By using high-level shading languages such as DirectX, OpenGL and 

Cg, various data parallel algorithms have been ported to the GPU. Problems such 

as protein folding, stock options pricing, Structured Query Language (SQL) 

queries, and MRI reconstruction achieved remarkable performance speedups on the 



 

27 

 

GPU. These early efforts that used graphics application programming interfaces 

(APIs) for general purpose computing were known as general-purpose computing 

on graphics processing units (GPGPU) programs. 

While the GPGPU model demonstrated great speedups, it faced several 

drawbacks. First, it required the programmer to possess intimate knowledge of 

graphics APIs and GPU architecture. Second, problems had to be expressed in 

terms of vertex coordinates, textures and shader programs, greatly increasing 

program complexity. Third, basic programming features such as random reads and 

writes to memory were not supported, greatly restricting the programming model. 

Lastly, the lack of double precision support (until recently) meant some scientific 

applications could not be run on the GPU. 

To address these problems, NVIDIA introduced two key technologies—the 

G80 unified graphics and compute architecture (first introduced in GeForce 8800®, 

Quadro FX 5600®, and Tesla C870® GPUs), and Compute Unified Device 

Architecture (CUDA), a software and hardware architecture that enabled the GPU 

to be programmed with a variety of high level programming languages. Together, 

these two technologies represented a new way of using the GPU. Instead of 

programming dedicated graphics units with graphics APIs, the programmer could 

now write C programs with CUDA extensions and target a general purpose, 

massively parallel processor. This new way of GPU programming is called “GPU 

Computing”—it signified broader application support, wider programming 

language support, and a clear separation from the early “GPGPU” model of 

programming. 

NVIDIA GPUs increase in complexity at each newer generation. Gaining a 

deep understanding of GPU memory hierarchy as they evolve is necessary to write 

efficient code. It is especially important to know the size of each cache memory 

level, whether that memory is co-located with another cache that might evict its 

contents, and whether each cache memory is private to a streaming multiprocessor 

or shared among all. Figure 13 shows one example of the NVIDIA GPUs. 
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Fig. 13. The volta’s architecture 

As published by NVIDIA, the V100 GPU employs HBM2 memory, which 

offers a bandwidth of 900 GB/s (at 877 MHz), in conjunction with a L2 cache of 

6,144 kibibyte. Data loaded from global memory is implicitly cached in L1 and L2. 

NVIDIA introduced several architecture as Hopper, Ampere, Turing, Volta, 

Pascal, Kepler, Maxwell, and Fermi. 

2.5 The conclusion 

As per the systems that we developed, we needed an embedded platform based 

on our needs to be powerful and high performance. The target embedded platform, 

NVIDIA Jetson AGX Xavier, shown in Figure 14, is representative of the next-

generation AV Domain Controller. This platform with a GPGPU of 512-core Volta 

with Tensor Core and a CPU of ARM 8-core v8.2 64-bit is an appropriate choice 

for the AD systems. 
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Fig. 14. Nvidia AGX-Xavier  

 

The NVIDIA® Jetson AGX Xavier™ module delivers up to 32 TOPS of 

accelerated computing capability in a compact form factor consuming under 30 

Watts. This gives you more than 20X the performance and 10X the energy 

efficiency of its predecessor, the NVIDIA Jetson™ TX2. 

This advanced system-on-module is powered by the NVIDIA Xavier SoC and 

designed specifically for autonomous machines. Heterogeneous accelerated 

computing architecture delivers advanced edge capabilities. Plus, it comes with 

integrated memory, storage, power management, and an innovative thermal design 

to enable faster time to market. Run modern AI workloads and solve problems in 

areas like manufacturing, logistics, retail, service, agriculture, smart cities, and 

healthcare. 

Jetson AGX Xavier is supported by NVIDIA JetPack, which includes a board 

support package (BSP), Linux OS, NVIDIA CUDA®, cuDNN, and TensorRT™ 

software libraries for deep learning, computer vision, GPU computing, multimedia 

processing, and much more. It’s also supported by the NVIDIA DeepStream SDK, 

which delivers a complete toolkit for real-time situational awareness through 

intelligent video analytics (IVA). This helps you boost performance and accelerate 

software development, while reducing development cost and effort. 



 

 

30 

 

Chapter 3   

A Full-Featured, Enhanced Cost 

Function to Mitigate Motion 

Sickness in Semi- and Fully-

autonomous Vehicles [40] 

Current full- and semi- Autonomous car prototypes increasingly feature complex 

algorithms for lateral and longitudinal control of the vehicle. Unfortunately, in some 

cases, they might cause fussy and unwanted effects on the human body, such as 

motion sickness, ultimately harnessing passengers' comfort, and driving 

experience. Motion sickness is due to conflict between visual and vestibular inputs, 

and in the worst case might causes loss of control over one’s movements, and 

reduced ability to anticipate the direction of movement. In this chapter, we focus 

on the five main physical characteristics that affect motion sickness, including them 

in the function cost, to provide quality passengers' experience to vehicle passengers. 

We implemented our approach in a state-of-the-art Model Predictive Controller, to 

be used in a real Autonomous Vehicle. Preliminary tests using the Unreal Engine 

simulator have already shown that our approach is viable and effective, and we 

implemented and evaluated using Motion Sickness Dose Value and Illness Rating 

and then tested it in an embedded platform. We implemented it on our embedded 

platform, NVIDIA Jetson AGX Xavier that is representative of the next-generation 

AV Domain Controller. 

3.1 Introduction 

In semi- and full AVs, vehicle control shall consider passengers’ stress, and not 

decrease their level of comfort [42]. It was proven that a tight relationship exists 

between comfort and trust, as well as the acceptance of automated vehicles [43]. 

The mostly known comfort issues for the passengers is probably Motion 

Sickness. Its common symptoms are: headache, pallor, sweating, nausea, vomiting, 

and disorientation, and they can be measured by Physiological signals, Vestibule 



 

31 

 

Ocular Reflex (VOR) parameters, and Posture stability. There are several ways to 

mitigate this, such as instance visual cues, Posture and vehicle controllability, and 

Immersive Experience [31].  

Motion is primarily sensed by the organs of balance located in the inner ear and 

our eyes, which are mainly or uniquely sensitive to accelerations. The vestibular 

section of the inner ear is partly comprised of three semi-circular canals that detect 

head angular acceleration. The main issue stems from the fact that our bodies are 

not used to low-frequency oscillating motion, and our “biological IMUs” are highly 

sensitive to this. In carsickness, the lateral accelerations (sway) in the low-

frequency bands (0.1-0.5 Hz) are most relevant and their effects increase in higher 

accelerations. In general, researchers proved [44] that it might happen when the 

frequency is below 1 Hz.  

The potential sources of AV motion sickness can be divided into five groups, 

namely, are variation in horizontal and vertical acceleration, posture instability, loss 

of controllability and loss of anticipation of motion direction, Head downward 

inclination, and lack of synchronization between virtual motion and the vehicle 

motion profile [31]. Although motion sickness is most frequently caused by a 

conflict between visual and vestibular inputs, loss of control over one’s movements 

and reduced ability to anticipate the direction of movement are also important in 

the etiology of motion sickness [45]. All three factors, to varying degrees, are more 

frequently experienced by vehicle passengers than by drivers, who rarely 

experience motion sickness [45]. Possible countermeasures can be categorized into 

two groups: prevention solutions and mitigation solutions. Roughly speaking, the 

degree of motion sickness may be predicted by an acceleration frequency weighting 

that is independent of frequency from 0.0315 to 0.25 Hz and reduces at 12 dB per 

octave (i.e., proportional to displacement) in the range 0.25 to 0.8 Hz [31]. 

We contribute to research with the original design of a control software 

component for AVs that minimizes the most important costs. Model Predictive 

Control (MPC) is a reference framework for vehicle control because it includes both 

kinematic and dynamic models on the vehicle in its formulation. For this reason, 

MPC-based Advanced Driver Assistance Systems and Autonomous Vehicles are 

important research directions for mitigating road accidents. The real-time 

trajectories based on the pre-defined model might not be optimal. Therefore, an 

adaptive MPC design with an on-line vehicle parameter estimator is needed to 

account for those unpredictable changes. In this chapter, we used an Adaptive 
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Model Predictive Control (AMPC) that can estimate and update the model in real-

time along with five constraints to build our cost function to minimize.  

We have chosen the constraints that are relevant to Motion Sickness and 

comfort, either direct (acceleration frequency, longitudinal acceleration, and lateral 

acceleration) or indirect (speed limitation and distance from the next vehicle). 

Acceleration frequency is one of the constraints that directly affects the Motion 

Sickness and the range of Frequency in which Motion Sickness occurs in 

acceleration frequency between 0.0315<F<0.8 Hz [46] so we need to avoid this 

range. Speed limitation is not directly related to Motion Sickness level. However, 

In the other hand, as the speed goes up, Acceleration Frequency for the speed 

regulation will arise. Therefore, we consider a speed limitation based on our 

Acceleration Frequency. The European New Car Assessment Program (Euro 

NCAP) performed standardizing tests on different autonomous vehicles with a 

constant speed of 20 – 60 km/h [47]. However, we challenge the work with the 

speed between 0-80 km/h. We also consider a threshold of acceleration because it 

affects both Motion Sickness and Comfort driving [47]. It is also one of the factors 

that increase Motion Sickness Dose Value (MSDV). Therefore, having the 

limitation with an appropriate planner can lower the MSDV and raise comfort.  We 

also consider the distance from the next vehicle to brake with a minimum 

acceleration, as we discussed before. In particular, with higher distance from the 

next vehicle, we require a lower braking acceleration. Finally, since the lateral 

acceleration is the other important source in MSDV [46], we need a lane keeper to 

reduce our lateral accelerations to a minimum quantity.  

The system is tested on MATLAB/Simulink [48] and then implemented on an 

NVIDIA Xavier AGX. We evaluate our work based on ISO 2631-1 [47] which a 

measure of the probability of nausea that is called motion sickness dose value 

(MSDV) and a simple linear approximation between MSDV and mean passenger 

named illness rating (IR) are considered as the evaluation methods.  

In the following sections, we first review the state-of-the-art in motion sickness 

and MPC controller. Then we describe the details of our controller. Finally, we 

show our implementation, and discuss experimental results with respect to the 

reference metrics of motion sickness.  
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3.2 Motion sickness in AV literature 

In the recent years some efforts have been done to mitigate and minimize the motion 

sickness. These works can be categorized in two different groups. The first group 

tries to minimize the MS by having a new motion planner with a library of costs. In 

this regard, In [40], five different main physical characteristics that can be effective 

on motion sickness, and defining them in a function cost, to improve quality 

passengers' experience and minimize the Motion Sickness to vehicle passengers is 

considered. In [42], the costs of consisting of progress, comfort, and safety are 

utilized for the evaluation of the strategies generated by the three modules of 

distance keeper, lane selector, and merge planner. In [45], on investigation with two 

strategies for decreasing the visual-vestibular conflict while watching videos is 

conducted. The first approach locates visual stimuli on or around the video screen 

to mimic the perceived motion and forces of the moving vehicle. The second 

method tries to control the position of displayed images synchronized with 

passenger's head motions produced by vehicle acceleration/deceleration and vehicle 

motions, then provides a video that appears to be stabilized in relation to the 

movement of the vehicle. In [52], they generate the optimal Path Planning using 

Clothoid Curves to increase the comfort of the passengers. They use the second 

clothoid length, the straight line to the goal at the end, made up of the first clothoid 

length, and the squared distance along the curve as their costs to control. To 

minimize the MSDV in autonomous vehicles, [53] presents an application of 

motion planning [53]. On the other hand, in the second group, the researchers try to 

have a anticipation alert to the passengers, so their brain will be ready to start the 

maneuvers. In this regard, in [54], they investigate the effects of peripheral 

information about upcoming maneuvers through a vibrotactile display  in  

increasing  the  fully-automated  driving  car  passengers’  awareness  of  situations  

and  mitigating their motion sickness level. This study concludes that in order to 

mitigate motion sickness inside a fully-automated driving car, more specific 

information need to be included in the peripheral information. In [55], they have 

progressed a prototype of a human– machine interface (HMI) that presents 

anticipatory ambient light cues for the AV’s next turn to the passenger. The HMI 

prototype was proven to be effective regarding highly susceptible users. In [56] 

average illness ratings were significantly lower for the condition that contained 

informative auditory cues, as compared to the condition without informative cues. 

One second in advance of each displacement a  sound clip was played over 

headphones communicating either “forward” or “backward” in the native language 

of the participant. In addition, recently, [57] resulted that if there is an additional 

effect of augmented visual stimulion MS, the effect is at best small. Therefore, 

having an augmented visual stimulion is not in our plan. 

Although using different methods can lower the MS level, most of them are not 

tested in a real autonomous vehicle. Furthermore, the sound cues should be in a way 

that the passengers do not disturb. Indeed, the visual cues should be in a way that 
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shows the regular view of the vehicle not an augmented one [57]. In this regard, we 

focus on anticipatory audio and video cues using pleasant sounds and a Human 

Machine Interface to display and inform the passengers about the upcoming 

trajectories that may lead to make the passengers sick. To be able to anticipate the 

next moves, we require an evaluation system of the next 500 meters of the road 

using the map. The road is investigated based on the amount of the turns and the 

maximum speed allowed that lead to lateral accelerations that is high enough based 

on Motion Sickness Dose Value to make the passengers sick. The system alerts the 

passengers through a Human Machine Interface to focus on the road for prevention 

of the Motion Sickness. 

Considering recent AMPC implementations in autonomous driving, 

concentrating on their cost functions, there are several efforts. In [58], an adaptive 

model predictive control with three constraints, Lane Change-Related Constraint, 

Location in Opposite Lane Constraint, and Maneuver Completion, is applied for 

tracking the references being generated for the Autonomous Vehicles on Two-Lane 

Highways.  In [59], they constructed an adaptive model predictive control trajectory 

tracking system with the four constraints that define as follows: (1) The radius of 

all planned paths should be greater than the minimum turning radius of the wheel 

loader; (2) The planning path and its curvature should be continuous to provide 

steering stability of the loader; (3) When the loader is at the loading and unloading 

points, the articulation angle should be as close to zero as possible to avoid rollover 

of the vehicle; (4) The maximum planned velocity of the loader should not exceed 

3m/s and rapid acceleration and deceleration should be avoided. In [60], an adaptive 

model predictive control (AMPC) scheme is developed to improve the yaw stability 

for four-wheel-independently actuated electric vehicles by minimizing the total 

longitudinal forces of all wheels. In [61], the side slip angle of the centre of mass 

and the side slip angle of the tire as hard constraints and the lateral acceleration as 

a soft constraint are considered to propose an Adaptive Model Predictive Control 

for Uncertain model (UMAMPC) algorithm to predict control variables for the next 

sampling time and alleviate the target angle discontinuity. In [62], they develop a 

fault tolerant path tracking control algorithm through combining the adaptive model 

predictive control algorithm for lateral path tracking control and Kalman filtering 

approach with two states chi-square detector and residual chi-square detector for 

detection and identification of sensor fault in autonomous vehicles by using the 

incremental constraint of tire and the incremental constraint of lateral acceleration.  

In all of the above works, that are proposed for controlling the autonomous 

vehicles by AMPC, below than five constraints are used. In this chapter of the 
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thesis, we use five constraints in an AMPC that minimize the MSDV with 

consideration of comfort. 

3.3 Control system 

To design the controller, we defined a Vehicle Model and used the tire forces to 

specify our state space. Then, we entered our state space in AMPC and defined our 

constraints in it. 

3.3.1 Vehicle Model 

For an MPC control design, we require to define our Vehicle Model. It was found 

that the vehicle side slip angle is less than 1◦ in the highway autonomous or 

manoeuvre driving under clothoid constraints [63]. Thus, it is considered that the 

tire slip angle is also negligible under highway driving conditions, including cases 

employing an advanced driver assistant system (ADAS). It makes it possible to use 

a standard dynamic “bicycle model” [64] to describe the Vehicle Dynamics. Such 

as a recent work [65] that uses the higher speed until 35 m/s (126 km/h) with a 

bicycle dynamic model, we use a bicycle dynamic model for our tests between the 

speed of 0 km/h to 80 km/h and we use them in our first scenario. In the bicycle 

model, the two left and right wheels are represented by one single wheel. The model 

is derived assuming both front and rear wheels can be steered by δf and δr angles 

and the distances of front and rear wheels are a and b. The model neglects roll and 

pitch motions. The Motion of the vehicle is represented by X, Y and ψ. Figure 15 

depicts a diagram of the vehicle model, which has the following longitudinal, 

lateral, and turning or yaw equations: 

𝑚�̈� = 𝑚𝑟�̇� + 2𝐹𝑥,𝑓 + 2𝐹𝑥,𝑟               (1) 

𝑚�̈� = −𝑚𝑥̇�̇� + 2𝐹𝑦,𝑓 + 2𝐹𝑦,𝑟               (2) 

𝐼𝑧𝑧�̈� = 2𝑎𝐹𝑦,𝑓 − 2𝑏𝐹𝑦,𝑟                (3) 

The vehicle’s equations of motion in an absolute inertial frame are 

�̇� = �̇� sin 𝜓 + �̇� cos𝜓                (4) 

�̇� = �̇� cos𝜓 − �̇� sin 𝜓                 (5) 

The following equations hold for rear and front axes by using the corresponding 

subscript for all the variables (it is correct either for δf  or δr). Longitudinal and 

lateral tire forces lead to the following forces acting on the center of gravity:   

Fy = Fl sin δ + Fc cos δ,                (6) 
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Fx = Fl cos δ − Fc sin δ.                (7) 

Tire forces for each tire are (accordingly α can be αr or αf)  

Fl = fl(α, s, μ, Fz),                      (8) 

Fc = fc(α, s, μ, Fz),                 (9) 

where α is the slip angle of the tire and s is the slip ratio. The tire model is considered 

as indicated in [66] velocities, respectively, are expressed as 

vl,f = vy,f sin δf + vx,f cos δf,              (10a) 

vc,f = vy,f cos δf − vx,f sin δf,                         (10b) 

vl,r = vy,r sin δr + vx,r cos δr,             (11a) 

vc,r = vy,r cos δr − vx,r sin δr,                         (11b) 

 

And 

vyf = ẏ + a�̇�   vyr = ẏ − b�̇�,              (12) 

vxf = ẋ    vxr = ẋ.             (13) 

 

Fig. 15. Bicycle Model of the Vehicle 

 

If we consider δr =0, then: 

�̈� = 𝑟ẏ +
𝐹𝑙,𝑓𝑐𝑜𝑠(𝛿𝑓)−𝐹𝑐,𝑓𝑠𝑖𝑛(𝛿𝑓)+𝐹𝑙,𝑟 

𝑚
             (14) 

ÿ = −𝑟ẏ +
𝐹𝑙,𝑓𝑠𝑖𝑛(𝛿𝑓)+ 𝐹𝑐,𝑓𝑐𝑜𝑠(𝛿𝑓)+𝐹𝑙,𝑟 

𝑚
             (15) 
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𝑟 =
𝑎(𝐹𝑙,𝑓𝑠𝑖𝑛(𝛿𝑓)−𝐹𝑐,𝑓𝑐𝑜𝑠(𝛿𝑓))−𝑏𝐹𝑐,𝑟 

𝐼𝑧𝑧
             (16) 

Using the equations (1)-(16), the nonlinear vehicle dynamics will have the states 

of [�̇� �̇� 𝑟 �̇�̇𝑥 �̇�̇𝑦 𝑟̇]. 

3.3.2 Adaptive Model Predictive Control System 

MPC [67] is a method for process control that actively uses the dynamic model of 

the system. If the nonlinearity is high, however, MPC performance could 

deteriorate. In this case, one can use an AMPC that constantly predicts the new 

operating conditions [68].  

An adaptive MPC algorithm is designed by using the recursively-identified state-

space models with dynamic adjustments of MPC constraints and objective function 

weights [69]. Adaptive MPC controllers adjust their prediction model at run time 

to compensate for nonlinear or time-varying plant characteristics. Furthermore, 

Adaptive control for constrained systems has mainly focused on improving 

performance with the adapted models, while the constraints are satisfied robustly 

for all possible model realizations and the worst disturbance bounds [70].  In this 

chapter of the thesis, we used an Adaptive MPC to update our state-space online 

and get the linear part of our nonlinear system. This approach is implemented with 

the most important costs that we wanted to control. 

In AMPC, the controller uses the time-varying Kalman filter (TVKF) instead of 

the static one to provide consistent estimation with the updated plant dynamics. The 

TVKF approach can be expressed as follows [102]: 

𝐿𝐾 = (𝐴𝑘𝑃𝑘|𝑘−1𝐶𝑚,𝑘
𝑇  +  𝑁)(𝐶𝑚,𝑘𝑃𝑘|𝑘−1𝐶𝑚,𝑘

𝑇  +  𝑅)
−1

 

𝑀𝐾 = 𝑃𝑘|𝑘−1𝐶𝑚,𝑘
𝑇 (𝐶𝑚,𝑘𝑃𝑘|𝑘−1𝐶𝑚,𝑘

𝑇  +  𝑅)
−1
            (17) 

𝑃𝑘|𝑘+1 = 𝐴𝑘𝑃𝑘|𝑘−1𝐴𝑘
𝑇 − (𝐴𝑘𝑃𝑘|𝑘−1𝐶𝑚,𝑘

𝑇  +  𝑁)𝐿𝑘
𝑇 +  𝑄 

In equation (17), 𝑄, 𝑅, and 𝑁 matrices are constant covariance matrices, and 𝐴𝑘 

and 𝐶𝑚,𝑘 are matrices depicting the state-space description of the system. The 

𝑃𝑘|𝑘−1 is the state estimate error covariance matrix at 𝑘 constructed from the 

information from time 𝑘 − 1. TVKF is constructed to update regularly the 𝐿 and 𝑀 

matrices with the updated plant dynamics. 

3.3.2.1 Constraints 

The Model Predictive Control can directly include constraints in the computation 

of the control moves which leads to linear program (LP) or quadratic program (QP) 
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to be solved at each sampling instance, with the constraints written directly as 

constraints in the LP/QP. 

The MPC algorithm solves a quadratic optimization problem at each time 

interval. The solution of the problem determines the so-called manipulated 

variables (MV), which are essentially the input variables adjusted dynamically to 

keep the controlled variables (CV) at their set-points. The AMPC approach follows 

the same cost optimization algorithm as MPC with the cost function 

𝐽𝑦(𝑧𝑘) = ∑ ∑ {
𝑤𝑖,𝑗
𝑗

𝑠
𝑗
𝑦 (𝑟𝑗(𝑘 + 𝑖|𝑘) − 𝑦𝑗(𝑘 + 𝑖|𝑘))}

2

          
𝑝
𝑖=1

𝑛𝑦
𝑗=1

 (18) 

where k represents the current control interval, p is the prediction horizon 

(interval number), 𝑛𝑦 is the number of plant output variables, 𝑧𝑘 is the quadratic 

problem (QP) selection which is depicted as the formula 𝑧𝑘
𝑇 = [𝑢(𝑘|𝑘)𝑇  𝑢(𝑘 +

1|𝑘)𝑇 …𝑢(𝑘 + 𝑝 − 1|𝑘)𝑇 𝑘],    𝑦𝑗(𝑘 + 𝑖|𝑘) is the jth CV at the ith prediction 

horizon step, 𝑟𝑗(𝑘 + 𝑖|𝑘) is the ith references variable at the ith prediction horizon 

step, 𝑠𝑗
𝑦

 is the scale factor for the jth plant output variable, and 𝑤𝑖,𝑗
𝑗
 is the tuning 

weight coefficient reflecting the relative importance of the plant output variable. 

Among these variables 𝑛𝑦, 𝑠𝑗
𝑦

, p, and 𝑤𝑖,𝑗
𝑗

, are determined during the controller 

design and stay constant. 

Acceleration Frequency. 

The frequency range of the tested Motion Sickness is 0.0315<F<0.8 Hz and this 

is very important to mention that the maximum Motion sickness occurs at 0.2 Hz 

[46]. Therefore, we tried to fix the frequency at 0.2 Hz (or T= 5s). In the other word, 

we try to prevent inserting acceleration in the period of 5 seconds.  

Speed limit.  

As discussed, the test speed is in the range of 20 – 60 km/h [47]. Since we need 

to consider having acceleration and braking in our work, we raised this limitation 

to 0 - 80 km/h and in our tests, we consider these values. 

Acceleration limit. 

Acceleration limitation is an important source for comfort and the different level 

of comfort is measured based on it [47]. Based on ISO 2631 [47] for determination 

of acceleration, the best range of the acceleration is <0.315 m/s2 that is named not 

uncomfortable. In this standard, the best range of acceleration is <1 m/s2 that is 

fairly uncomfortable, and it is the border of the uncomfortable range of 

measurements. So we maintain this range.  
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Distance to the front vehicle 

With a higher distance from the next vehicle, we decrease the braking 

acceleration. It means that we will have more time to plan smooth braking, with the 

consideration of our acceleration limit, and it lowers the MSDV.  There is a Two-

Second Distance rule from the next vehicle [71]. The mean deceleration is 2.5 m/s2 

[72] and our deceleration should not exceed 1 m/s2. Therefore, we raised the 

distance to Five-Seconds Distance to fulfil these requirements.  

Lane keeper 

As discussed, we have high importance in lateral acceleration to minimize the 

MSDV. Therefore, our system maintains the boundaries and controls the Y as the 

centre of the road lines. It is obtained by having a reference Y of the road and try to 

follow it. In the results, we show that our controller follows it properly. 

3.3.3 Motion Sickness Evaluation 

The total MSDV resulted from lateral and longitudinal motion is given as [47]: 

MSDV=√∫ (𝑎𝑥,𝑤
𝑇

0

2
(𝑡))2 + √∫ (𝑎𝑦,𝑤

𝑇

0

2
(𝑡))2             (19) 

Where 𝑎𝑥,𝑤(𝑡)  and 𝑎𝑦,𝑤(𝑡) are the frequency weight acceleration in the 

longitudinal and lateral direction. 

𝑎𝑥,𝑤(𝑡) = 𝑎𝑥(𝑡) ×𝑊𝑓            (20) 

𝑎𝑦,𝑤(𝑡) = 𝑎𝑦(𝑡) ×𝑊𝑓                (21) 

where 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡) are the longitudinal and lateral acceleration. 𝑊𝑓  is the 

weighting factor defined in British Standard 6841 [47] for evaluating low frequency 

motion with respect to motion sickness. From the standards [47], [73], a simple 

linear approximation between MSDV and mean passenger illness rating is given as: 

IR = K × MSDV                 (22) 

where IR is predicted illness rating and K is an empirically derived constant. The 

illness rating value is divided into four levels; 0 indicates feeling fine, 1 indicates 

slightly unwell, 2 indicates quite ill, and 3 indicates absolutely dreadful [47], [73]. 
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3.4 Implementation 

The system was tested in MATLAB/Simulink [48] and then implemented by an 

NVIDIA Xavier AGX.  This platform is representative of next-generation AV 

Domain Controller where AD software components, such as our controller, will 

execute. 

To verify the validity of the proposed AMPC controller. CarSim [49] is used to 

provide a vehicle dynamics model and MATLAB/Simulink is mainly for providing 

control function. 

Two different scenarios, straight and turn, were tested. The scenarios were 

designed in drivingScenarioDesigner and tested by using Unreal Engine [50] for 

the visualization of the output. 

3.4.1 Scenarios 

Since the MSDV is mainly a result of the lateral and longitude accelerations, we 

require to define the scenarios based on the existence of longitudinal acceleration, 

braking, and lateral acceleration. Therefore, we define a straight scenario that has 

the longitudinal acceleration and braking, and a turn scenario that has longitudinal 

and lateral accelerations.  

3.4.1.1 Straight road 

In the straight scenario, we made a velocity profile. As it has shown in Figure 16, 

there were two vehicles in the scenario that the front vehicle (the truck) had 60 km/h 

speed and our vehicle model was 200 meters back of this vehicle with 80 km/h.  

 

Fig. 16. Our scenario in the drivingScenarioDesigner schematic in MATLAB. 



 

41 

 

3.4.1.2 Turn 

We designed the other scenario for a comparison between our method and the other 

works. This scenario consists of different turns as shown in Figure 17. The speed 

limit of this scenario is between 0 to 40 km/h and at the first, the vehicle reaches 

the 40 km/h with our acceleration limitation that we discussed in constraints. 

 

Fig. 17. The Scenario visualization in Unreal Engine.   

3.4.2 Adaptive Model Predictive Controller design 

We designed our AMPC using mpcDesigner [48] and Simulink. For each time step, 

our controller updated to make new states for the next prediction horizon. In 

Simulink, as shown in Figure 18, we used the Adaptive MPC block for this 

implementation which in it, the constraints and the MPC parameters are attached to 

it by mpcDesigner tool. The different blocks are to build the requirements of the 

Adaptive MPC block. We also brought our reference scenarios as discussed before. 

To determine the prediction horizon and control horizon we did an experimental 

exercise. The tests led us to define prediction horizon considered as 10 seconds and 

the control horizon as 5 seconds. The tuning of weights was done by mpcDesigner 

tuning tool for closed-Loop Performance and State Estimation along with 

considering the system stability. The constraints, as discussed before, were defined 

in our controller using the mpcDesigner tuning tool. 
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Fig. 18. The Simulink implementation of Adaptive MPC 

3.4.3 Simulator 

The system is tested with the Unreal Engine simulator [50] which connects to the 

Simulink. Our simulator considered the scenario data made by 

drivingScenarioDesigner, and added the output of the system to visualize and 

evaluate our system.  

3.4.4 Embedded platform 

The target embedded platform, NVIDIA Jetson AGX Xavier is representative of 

the next-generation AV Domain Controller. This platform with a GPGPU of 512-

core Volta with Tensor Core and a CPU of ARM 8-core v8.2 64-bit is an appropriate 

choice for the AD systems. 

The NVIDIA® Jetson AGX Xavier™ module delivers up to 32 TOPS of 

accelerated computing capability in a compact form factor consuming under 30 

Watts. This gives you more than 20X the performance and 10X the energy 

efficiency of its predecessor, the NVIDIA Jetson™ TX2. 

This advanced system-on-module is powered by the NVIDIA Xavier SoC and 

designed specifically for autonomous machines. Heterogeneous accelerated 

computing architecture delivers advanced edge capabilities. Plus, it comes with 

integrated memory, storage, power management, and an innovative thermal design 

to enable faster time to market. Run modern AI workloads and solve problems in 

areas like manufacturing, logistics, retail, service, agriculture, smart cities, and 

healthcare. 

Jetson AGX Xavier is supported by NVIDIA JetPack, which includes a board 

support package (BSP), Linux OS, NVIDIA CUDA®, cuDNN, and TensorRT™ 

software libraries for deep learning, computer vision, GPU computing, multimedia 

processing, and much more. It’s also supported by the NVIDIA DeepStream SDK, 

which delivers a complete toolkit for real-time situational awareness through 

intelligent video analytics (IVA). This helps you boost performance and accelerate 

software development, while reducing development cost and effort. 

To have a realistic implementation, we can’t rely on the Matlab/Simulink 

implementatn, and we utilized embedded coder of MATLAB/Simulink to convert 

our algorithm into C++ source code, which is then compiled for the target platform.  
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3.5 Results and discussion 

Firstly, we calculated our results regarding of the first scenario, Straight scenario. 

Then, we investigated the results of the second scenario which is Turn. Finally, we 

tried to understand our timing results in the embedded platform to be able to use it 

along with other infrastructures. These plots demonstrate the control system 

reliability and the correct response. By having a good control system using AMPC 

we can have the reliable MSDV to evaluate our system. 

We evaluated the scenarios by MSDV and IR then we compared our work with 

the latest works in this area. Our results shown different advantages compared to 

the previous approaches. 

3.5.1 Results of the scenarios 

3.5.1.1 Straight road 

The straight scenario included two vehicles and a velocity profile. Our vehicle was 

behind a truck that was slightly far. It started from 0 and reached 80 km/h (22.22 

m/s) and as soon as founded the distance of 5 seconds, it started slowing down to 

maintain the 5 seconds of the distance. Afterwards, it followed the truck by the 

truck’s velocity. As shown in Figure 19, Figure 20, and Figure 21, the output of our 

controller follows the base-line with a small error. 

 

Fig. 19. The plot compares the Y position defined in the scenario (blue) and the result that we achieved in our 

simulation (orange). As it can be seen the difference in the preiod is almost zero. 
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Fig. 20. The plot compares the yaw angle defined in the scenario (blue) and the result that we achieved in our 

simulation (orange). This shows a high relaibility of the control system. 

 

Fig. 21. The plot compares the velocity defined in the scenario (blue) and the result that we achieved in our 

simulation (orange). The system follows the velocity profile as expected and in the three different changes it 

adapts itself to the target velocity.  

3.5.1.2 Turn 

In the turn scenario, we maintained the acceleration limitation based on AMPC 

algorithm designed by Simulink and mpcDesigner. Figure 22, Figure 23, and Figure 

24 show the results. 

 

Fig. 22. The plot compares the velocity defined in the scenario (blue) and the result that we achieved in our 

simulation (orange). The system follows the velocity profile as expected and in the three different changes it 

adapts itself to the target velocity.  

 

Fig. 23. The plot compares the Y position defined in the scenario (blue) and the result that we achieved in our 

simulation (orange). As it can be seen the difference in the preiod is almost zero. 
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Fig. 24. The plot compares the yaw angle defined in the scenario (blue) and the result that we achieved in our 

simulation (orange). This shows a high relaibility of the control system. 

3.5.2 MSDV and IR analysis 

Our evaluation is based on MSDV and IR. IR generally increases overtime during 

a motion sickening stimulus [51]. In [47], IR is considered as 0 when the passenger 

feels fine, 1 with a feeling of slightly unwell, 2 as quite ill, and 3 when the passenger 

is absolutely dreadful. As shown in Table 1, the output of the system more than 

having a small amount of IR which almost is zero, it has a comparison between the 

minimum IR of the previous work. 

Table 1: The results of the IR evaluation 

Scenario Time (s) IR (min) 

Straight 50 0.07 

Turn 32 0.0017 

Turn in [53] 29.73 0.044 

Table 1 shows that the IR of the Turn scenario is much lower than the straight 

one. It is exactly what we expected considering the accelerations used in both 

scenarios since the Turn scenario has a much lower time of accelerating.  

The results show that our performance is better since we try to use the 

acceleration as small as we can and we try to make it limited to 1 m/s2. Furthermore, 

our planner can make an IR near to zero. Therefore, it has a fine feeling according 

to [47]. It means the comfort criteria is satisfied and the vehicle 

acceleration/deceleration make the possibility of getting motion sickness lower.  
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3.5.3 Embedded platform performance 

To test the performance of the embedded platform, we ran the system and calculated 

the timing. When running on the production-like embedded domain controller, our 

controller achieves 8.7 FPS. It means we can run this motion sickness mitigation 

system in real-time. This is what exactly it would be needed for the motion sickness 

mitigation system.  

3.6 Conclusion 

In this chapter of the thesis, we showed that by having a complex cost function with 

an emphasis on Motion Sickness Mitigation and consideration of comfort, we can 

achieve a smooth controller that does not make people sick. This work showed that 

the AV can have an algorithm for Motion Sickness mitigation along with the other 

tasks and make the AV more reliable than before. 

For the next works, we can add other necessary features of AV such as LiDAR 

to detect and import the data for the Motion Sickness Mitigation Algorithm. It can 

finally be an algorithm which is used with the other infrastructures.   

We also plan to adopt more complex vehicle models, such as the kinematic and 

dynamic model, to validate our approach at highest speeds (i.e., > 150km/h), and to 

possibly include other classes of vehicles, such as busses and coaches, which 

potentially issue Motion Sickness much more than cars. 
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Chapter 4 

Motion Sickness Minimization 

Alerting System Using The Next 

Curvature Topology [41] 

Current intelligent car prototypes increasingly move to become autonomous where no driver is 
required. If an automated vehicle has rearward and forward facing seats and none of the passengers 
pay attention to the road, they increasingly experience the motion sickness because of the inability of 
passengers to anticipate the future motion trajectory.  In this chapter of the thesis, we focus on 
anticipatory audio and video cues using pleasant sounds and a Human Machine Interface to display 
and inform the passengers about the upcoming trajectories that may lead to make the passengers sick. 
To be able to anticipate the next moves, we require an evaluation system of the next 1 kilometer of 
the road using the map. The road is investigated based on the amount of the turns and the maximum 
speed allowed that lead to lateral accelerations that is hig.h enough based on Motion Sickness Dose 
Value to make the passengers sick. The system alerts the passengers through a Human Machine 
Interface to focus on the road for prevention of the Motion Sickness. We evaluate our method by 
using Motion Sickness Dose Value. Based on this work, we can prevent the sickness due to lateral 
accelerations by making the passengers to focus on the road and decrease the vestibular conflict. 

4.1 Introduction 

Vehicle control of the semi- and full Autonomous Vehicles should consider the 

passengers’ stress and try to maintain their comfort level [42]. Furthermore, there 

is a tight relationship between comfort and trust, as well as the automated vehicles’ 

acceptance [43]. 

One of the wide recognized comfort issues for the passengers probably is 

Motion Sickness. It starts appearing with headache, pallor, sweating, nausea, 

vomiting, and disorientation, and they are calculated by Vestibule Ocular Reflex 

(VOR) parameters, Physiological signals, and Posture stability. To mitigate it, 

Immersive Experience, Posture and vehicle controllability, and instance visual cues 

can be used [31].  

The potential sources of AV motion sickness can be divided into five groups, 

namely, loss of controllability and loss of anticipation of motion direction, variation 

in horizontal and vertical acceleration, Head downward inclination, posture 
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instability, and lack of synchronization between virtual motion and the vehicle 

motion profile [31]. The motion sickness is mostly occurred by a conflict between 

visual and vestibular inputs. However, the loss of controllability over one’s 

movements and unability to predict the movement direction are also crucial in 

motion sickness [45]. In the most of the cases, the motion sickness experience is for 

the passengers and the drivers rarely experience it [45]. Possible countermeasures 

are categorized in two groups: prevention solutions and mitigation solutions.  

One of the general ideas for overcoming the motion sickness is using human 

senses to provide sufficient situation awareness (SA). In the contexts of automotive 

and driving, SA is recognized as awareness of the current position of the car in 

relation to its destination, the relative positions, and behavior of other road users 

and potential hazards, and knowing how these critical variables are likely to change 

in the near future [74]. This is because the drivers less often get sick since they are 

able to anticipate the next moves [75] and can predict required actions based on 

previous experiences.  

If a passenger becomes aware of the required information about the road, we 

can avoid the sensory mismatch. One of the required information is the immediate 

intention of the AV that involves variation in the lateral and longitudinal forces. 

This information can be presented shortly before an important situation that is about 

to happen (for example when a junction is approaching). The virtual modality is 

one of the ways that the information can be delivered [57]. Furthermore, the 

informative auditory lowers the average illness ratings respect to the condition 

without informative cues [56].  

We contribute to research with the original design of a minimization system 

that predicts the road characteristics in one kilometer ahead and using the HMI 

instructions for the passengers to be ready for the next potential motion sickness. 

The system calculates in real time using an NVidia AGX and monitors the road all 

the time. The system is designed in a way that prevents the unnecessary interactions 

with the passengers both visual and sound cues and the system is on a real vehicle 

with a motion prediction algorithm to describe the next moves. Despite most of the 

works that are in a simulation phase, our work is tested in real vehicles in real 

scenarios. To evaluate our work, we use Motion Sickness Dose Value (MSDV) [47] 

for the evaluation. Our contributes can be categorize in the following groups: 

• A real time system that calculates the potential lateral accelerations based 

on the road characteristics in the next 1 km; 
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• An alert system that tries to interact with the passengers only at the time of 

the existing the potential motion sickness ahead and tries to minimize the 

interactions; 

• Defining a new equation to calculate the motion sickness in the curves; 

• The system can be used in fully autonomous vehicles as well as vehicles 

with less autonomy. 

In the following sections, we first review the state-of-the-art in motion sickness. 

Then we describe the details of our Human Machine Interface (HMI) and sound 

profile. Finally, we show how we implemented it and discuss the experimental 

results with respect to the reference metrics of motion sickness. 

 

4.2 Curvature and lateral analysis 

For having a correct lateral acceleration prediction, we need to the speed along with 

the maximum superelevation rate and the maximum allowable side friction demand 

(assumed in the Green Book [76] to be the friction between the tires and pavement) 

determine the minimum radius of curvature for each design speed [77]. This is 

necessary to go through these equations and describe them since we plan to use the 

final output in the MSDV equation to retrieve the final formula. Equation 1 is used 

to determine the minimum radius of a circular horizontal curve. 

 

𝑅𝑚𝑖𝑛 = 
𝑉𝑑
2

15(𝑒𝑚𝑎𝑥+ 𝑓𝑚𝑎𝑥)
    (1) 

where, 

𝑅𝑚𝑖𝑛  =  minimum radius of curvature (ft), 

𝑉𝑑=  design speed (mph), 

𝑒𝑚𝑎𝑥  =  specified maximum superelevation elevation rate (fit/100 ft),  

𝑓𝑚𝑎𝑥   =  specified maximum side friction demand. 

 

The tendency of a vehicle to either skid off the road or overturn must be resisted 

by either the friction developed between the vehicle tires and the pavement or the 

vehicle's roll stability, respectively.  A vehicle will skid off the road when the side 
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friction demand exceeds tire/pavement friction.  Also, a vehicle will overturn if the 

unbalanced lateral acceleration exceeds the rollover threshold of the vehicle. 

According to the Green Book [76], the maximum available side friction factor 

(friction developed by the tire-pavement interaction) should not be used directly for 

the design of a horizontal curve.  Instead, the value used in design should be a 

percentage of the maximum available side friction factor that can be used with 

comfort and safety by the majority of drivers.  This limiting value is described as 

the lateral acceleration that is sufficient to cause the driver to experience discomfort 

and to instinctively avoid higher speed.  Accordingly, the speed at which a driver 

feels discomfort due to the lateral acceleration generated while traversing a curve 

can be accepted as a design control for the maximum allowable amount of the side 

friction factor. 

The Green Book [76] provides side friction factors (J) for low-speed and high-

speed design of roadways. Currently, American Association of State Highway and 

Transportation Officials (AASHTO) bases these recommended values on the 

results of various.  AASHTO's recommended maximum allowable side friction 

factors for low-speed roads vary with the design speed from 0.38 at 10 mph (16 

km/h) to 0.14 at 45 mph (72 km/h), and then vary directly with the design speed to 

0.08 at 80 mph (128 km/hr).  These values for high speed provide a "reasonable 

margin of safety at high speeds."  The values for low-speed design are higher since 

drivers are more tolerant of discomfort at lower speeds. 

The coefficients of friction for forward skid on wet concrete pavement with 

tires having new treads.  The wet pavements have lower coefficients of friction than 

dry pavement.  Currently, the Green Book defines the margin of safety in horizontal 

curve design as the difference between f_design and fat impending skid. These 

values for at impending skid are assumed to be the ultimate side friction values for 

good tires on wet concrete pavement. These conditions are considered sufficiently 

representative for a meaningful analysis. 

4.2.1 The Point Mass Model 

Under the AASHTO policy, a point mass is used to represent a vehicle on a 

horizontal curve.  In this model, the vehicle’s suspension is ignored.  From basic 

physics, the lateral acceleration of a point mass traveling on a circular path at a 

constant speed can be represented by the following relationship: 
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𝑎 =  
𝑉2

15𝑅
     (2) 

where, 

𝑎 = lateral acceleration (g)  

𝑉 = vehicle speed (mph)  

𝑅 = radius of curve (ft) 

 
The lateral acceleration experienced by the vehicle is relative to g which is equal 

to 32.2 𝑓𝑡/𝑠2 (9.8 𝑚/𝑠2).   

In the Point Mass Model, all points in a vehicle are assumed to have the same 
acceleration; in other words, the entire vehicle is a "point mass."  Consider in Figure 
25. 

 
Fig. 25. The mass point of the vehicle and the radius (R) of the curve. 

where a vehicle is represented as a point with mass, m, and weight, mg, 

traversing at speed, V, around a curve with radius, R, and superelevation, e.  

Summing forces along the superelevated plane results in the following equation: 

𝑓𝑁 +𝑚𝑔𝑠𝑖𝑛𝜃 =
𝑚𝑉2

𝑅
𝑐𝑜𝑠𝜃                                (3) 

where, 

𝑓   = side friction demand, 

𝑁  = normal force resulting from force of vehicle due to gravity, mg, 

𝑊  =  force of vehicle due to gravity, mg, 



 

 

52 

 

𝑔  =  acceleration due to gravity, 32.3 fit/s2 (9.81  m/s2), 

𝜃  =  angle resulting from superelevation, e. 

Respect to this formula, 𝑓equals to: 

𝑓 =

𝑚𝑉2

𝑅 𝑐𝑜𝑠𝜃 −𝑚𝑔𝑠𝑖𝑛𝜃

𝑁
                                      (4) 

With small angle approximation where 𝑐𝑜𝑠𝜃 is 1 and 𝑠𝑖𝑛𝜃 is e, and based on the 
description provided in [103], results in: 

𝑓 =  
𝑉2

15𝑅
− 𝑒                                                              (5) 

 

4.2.2 Lateral acceleration 

When a vehicle moves in a circular path, it undergoes a centripetal acceleration that 

acts toward the center of curvature. This acceleration is sustained by a component 

of the vehicle’s weight related to the roadway superelevation, by the side friction 

developed between the vehicle’s tires and the pavement surface, or by a 

combination of the two. Centripetal acceleration is sometimes equated to 

centrifugal force. However, this is an imaginary force that motorists believe is 

pushing them outward while cornering when, in fact, they are truly feeling the 

vehicle being accelerated in an inward direction. In horizontal curve design, “lateral 

acceleration” is equivalent to “centripetal acceleration”; the term “lateral 

acceleration” is used in this policy as it is specifically applicable to geometric 

design. 

Based on [78], large radius curves, the drivers limit their speed by both their 

comfortable lateral acceleration and speed environment. On small curves, a 

comfortable or “easy ride” corresponded to an experienced lateral acceleration of 

0.35g to 0.40g. 

Based on the radius and maximum velocity defined in the road, we may find 

the actual acceleration that will be occurred in the curve and calculate the MSDV 

based on it. 

4.2.3 Radius calculation 

As discussed, for having the lateral acceleration in vehicle, we need the radius of 

the curve. To calculate the radius, we use the pure pursuit method. To use it we 

need to choose a proper look ahead distance, based on the Figure 26. 
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Fig. 26. Pure pursuit model geometry. This model is used to calculate the radius of the curvature. Based on the 

curvature’s radius along with the velocity and acceleration in the curvature, we will be able to calculate the MSDV 

and IR. 

The x and y axis construct the coordinate system of machine. The point (x, y) 

is a point some distance ahead of the machine. The L is the length of the cord of the 

arc connecting the origin to the point (x, y). r is the radius of curvature of the arc 

and a is the arc length of α angle. The relationship of x, L and r (the same as R in 

the previous section) is as follows: 

𝐷 + 𝑥 = 𝑟                       (6) 

𝐷2 + 𝑥2 = 𝑟     (7) 

𝑥2 + 𝑦2 = 𝐿2     (8) 

From Eq. (6), Eq. (7) and Eq. (8), 

𝑟2 − 2𝑟𝑥 + 𝑥2 + 𝑦2 = 𝑟2    (9) 

𝑟 =
𝐿2

2𝑥
      (10) 

𝑎 =
𝛼

360
(2𝜋𝑟)     (11) 

By choosing a look-ahead distance and calculating the path error x, the radius 

of the curvature required to get the machine on the required path can be calculated. 

4.2.4 Motion Sickness Dose Value 

The total MSDV resulted from lateral and longitudinal motion is given as [47]: 
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𝑀𝑆𝐷𝑉 = √∫ (𝑎𝑥,𝑤
𝑇

0

2
(𝑡))2 + √∫ (𝑎𝑦,𝑤

𝑇

0

2
(𝑡))2    (12)          

Where 𝑎𝑦,𝑤(𝑡) and 𝑎𝑥,𝑤(𝑡) are the frequency weight acceleration in the lateral 

and longitudinal direction. 

Where 𝑎𝑦,𝑤(𝑡) and 𝑎𝑥,𝑤(𝑡) are the frequency weight acceleration in the lateral 

and longitudinal direction. 

𝑎𝑥,𝑤(𝑡)= 𝑎𝑥(𝑡) × 𝑊𝑓     (13)  

𝑎𝑦,𝑤(𝑡)= 𝑎𝑦(𝑡) × 𝑊𝑓     (14)  

where 𝑎𝑥(𝑡)  is the longitudinal acceleration and 𝑎𝑦(𝑡) is the lateral one. In 

Standard 6841 [47] 𝑊𝑓  is defined as the weighting factor for evaluating low 

frequency motion with respect to motion sickness. Since we consider only the 

lateral accelerations, we consider just 𝑎𝑦(𝑡) in our calculations. From the standards 

[47], [73], a simple linear approximation between mean passenger illness rating and 

MSDV is defined as: 

𝐼𝑅 = 𝐾 ×𝑀𝑆𝐷𝑉     (15) 

where IR is defined as the predicted illness rating and K is an empirically 

derived constant. Based on [47] and [73], the illness rating value is in four levels; 

The illness rating of 0 demonstrates the feeling fine, 1 demonstrates slightly unwell, 

2 demonstrates quite ill, and 3 demonstrates absolutely dreadful.  

4.2.5 Motion Sickness in the curves 

The previous calculations show that we can calculate the MSDV using the lateral 

accelerations and the lateral accelerations can be defined based on the velocity and 

the radius of the curve. To achieve a single formula, we neglect the accelerations in 

x axis since we assume that we will have constant velocity in the curves. Therefore, 

MSDV will be: 

𝑀𝑆𝐷𝑉 = √∫ (𝑎𝑦(𝑡) ×𝑊𝑓
𝑇

0

2
)2    (16)            

Since we considered a constant velocity on the curve, our acceleration will not 
change in the curve and based on the Equation (2), the Equation (16) we will have: 

𝑀𝑆𝐷𝑉 = 
𝑉2

15𝑅
 × 𝑊𝑓√𝑇

2
    (17)             
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With this new MSDV equation that we have defined, we can calculate the MSDV 
before each curve. By calculating each MSDV before the curve, we will be able to 
decide whether it would be a road with potential motion sickness or not. 

4.3 The experimental setup 

For the experimental setup of our work, we used a simulator sending the data 

constantly to our Human Machine Interface (HMI) and embedded system to 

communicate with the passengers. The embedded platform has the responsibility of 

calculating the potential MSDV based on the next lateral acceleration and alert the 

passengers through the HMI about the upcoming condition that may lead to Motion 

Sickness. Figure 27 demonstrates the diagram of our system. 

 

Fig. 27. The diagram of the Motion Sickness minimization system. 

4.3.1 Embedded system 

We targeted NVIDIA Jetson AGX Xavier that is representative of the next-

generation AV Domain Controller as our embedded platform. This embedded 

platform has a GPGPU of 512-core Volta along with Tensor Core and a CPU of 

ARM 8-core v8.2 64-bit and would be a suitable choice for our system. 

4.3.2 Human Machine Interface 

We used a Human Machine Interface (HMI) to interact with the passenger. We do 

this on a window with message alerting the passenger about starting to focus on the 

upcoming road. In this way the passengers know about the potential upcoming 

motion sickness and try to concentrate on the road to minimize it. Figure 28 shows 

the HMI we used to interact with the passengers. 

Embedded System (Jetson AGX 
Xavier) 

HMI
Road waypoints and 

features
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Fig. 28. The HMI that interacts with the passengers. In this HMI we try to alert the passengers about the 

upcoming roads with potential motion sickness. 

4.3.3 Road waypoints and features 

For the testing of the work, we used the ego_pose of nuScences dataset [79]. The 

nuScenes dataset is the first dataset to carry the full autonomous vehicle sensor 

suite: 6 cameras, 5 radars and 1 lidar, all with full 360-degree field of view. 

nuScenes comprises 1000 scenes, each 20s long and fully annotated with 3D 

bounding boxes for 23 classes and 8 attributes. We used the ego pose of the dataset 

and gathered all the necessary information to test our work. The ego_pose has been 

extracted by the MATLAB drivingScenario tool. Then we created the waypoints by 

its poses. The features that should be received by the embedded system are the 

width and the waypoints of the center line of the road. The waypoints should include 

x, y, and z dimensions. Based on this information and the theory that we mentioned 

before, we calculate the potential lateral acceleration and MSDV. 

4.4 Tests and results 

Testing of our work was done by the nuScenes dataset and exporting the MSDV 

into the simulator. In MATLAB we extracted the results of the MSDV and exported 
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them to the simulator as explained in Figure 29. If the illness rating is more than 1, 

any symptoms, however slight [73], the HMI would show the MSDV alert. 

 

Fig. 29. The test procedure that starts with the getting the ego_pose of the nuScenes dataset. The ego_pose 

would be imported to Matlab and create the scenario by the driving Scenario tool. Then, the MSDV would be 

calculated in the Embedded system and sends the results to the HMI to show if the Motion Sickness is coming or 

no. 

4.4.1 The road testing 

The tests utilized the data acquired from the road dataset. The Figure 30. shows one 

of the tests that have been conducted through a real waypoint from dataset. In the 

Figure 30. can be seen a curvature that has been distinguished as a potential curve 

of motion sickness. 

 

 

Fig. 30. The potential curve of motion sickness. Each curvature that is a potential curve for the motion sickness, 

is investigated by the possible MSDV and IR based on the maximum velocity and the curvature’s radius. 

4.5 Conclusion 

In this chapter of the thesis, we demonstrated a novel way to alert the passengers 

for the upcoming motion sickness. This system aims the compatibility for using in 

fully or semi-autonomous vehicles. The new equation of the motion sickness made 

us enable to calculate the level of the motion sickness by the lateral acceleration for 
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the next curvatures. The alerting system can help the passengers to prevent the 

motion sickness. 

This work by its functionalities enables us to extend it in a real world. For the 

future improvements, we plan to use it in the real vehicles by the online mapping. 

The online map services, like google maps, would help us to use the ahead positions 

and with those positions and our equations we will be able to calculate the MSDV 

and alert the passengers online. 



 

59 

 

Chapter 5 

Motion Prediction using Attention 

Heads and Traffic rules in 

intersections 

In the past two chapters we introduced our novel methods for motion sickness 

mitigation. As declared before, one of the sources of the motion sickness is the 

ability to anticipate the direction of movement. It means that if we want to improve 

the ability of anticipation the movement direction, we need to have a correct 

methodology to do that. Therefore, the motion sickness mitigation led us to work 

on the motion prediction methodologies. In this regard, we tried to investigate the 

state-of-the-art motion prediction methods and implement some of the most 

important ones. This work opened a new are of working on motion prediction and 

a proposal of a new model to be compared with the state-of-the-art methods. In the 

other hand, autonomous driving motion forecasting is essential to have a correct 

and reliable planning. The influence of the road agents on each other makes it even 

more challenging. However, most prior works have not considered these 

interactions and planning against fixed predictions would reduce the ability to 

represent the future interaction possibilities between different agents. In this chapter 

of the thesis, we propose a model that predicts the agents’ behavior in a jointly 

manner. We take advantage of using masking strategy as the query to our model. 

Our model architecture uses a unified Transformer architecture by employing 

attention across the road elements, agent interactions and traffic rules in 

intersections. We evaluate our approach on autonomous driving datasets for 

behavior prediction and test it on Carla simulator. Our work demonstrates that 

motion forecasting by a model with a masking strategy and having attentions and 

traffic rules can lead us to a state-of-the-art model. The result of our work is 

compared with the state-of-the-art models from the leaderboard of Argoverse and 

nuScenes.  

5.1 Introduction 

Predicting the behavior of the road agents involves different factors and their 

behaviors of other agents may affect dramatically on the planning. A prerequisite 
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of such a multi-task system is that it needs to be able to jointly predict the futures 

of multiple agents (including the autonomous vehicle), while simultaneously taking 

into account their interactions. The interaction prediction tasks require that models 

predict the joint futures of multiple agents, and the models are expected to produce 

future predictions for all agents such that the agents’ futures are consistent within 

each future. A simple variant of self-attention [80] is employed in which the 

attention mechanism is efficiently factorized across the agent-time axes. The 

resulting architecture simply alternates attention between dimensions representing 

time and agents across the scene, resulting in a computationally efficient, uniform, 

and scalable architecture.  

In the other hand, High-Definition maps (HD-maps) provide extremely useful 

geometric and semantic information for motion forecasting, as the behaviours of 

actors largely depend on the map topology. For example, a vehicle is unlikely to 

take a left turn when there is not a left turn lane nearby. Effectively exploiting HD 

maps is essential for motion forecasting models to produce plausible and accurate 

trajectories. 

First attempts exploit HD maps as heuristics. Actors are first associated with 

lanes and all candidate motion paths are then generated based on map topology. In 

this way, the prediction results are constrained by the map. However, this approach 

cannot capture rare and non-compliant behaviours, which while not very likely, 

might be safety critical. 

Recent works use machine learning to learn semantic representations from 

maps. To enable HD maps to be processed by neural networks the map data is 

rasterized to create image-like raster inputs. Map topology is implicitly encoded as 

lines, masks or colours, which are then processed by a 2D Convolutional Neural 

Network (CNN). These learned map features were shown to provide useful context 

information for motion forecasting. However, these approaches have two 

disadvantages. First, the rasterization process inevitably results in information loss. 

Second, maps have a graph structure with complex topology which 2D convolution 

may be very inefficient to capture. For example, a lane of interest may extend for a 

long range in the lane direction. To capture this information, the receptive field has 

to be very large, covering not only the intended area, but also large areas outside 

the lane. Furthermore, lane pairs in the same or opposite directions have completely 

different semantic meanings and dependencies, although the lanes in both pairs are 

spatially close to each other. 

In a routable network, intersections are essential junctions that connect different 

roadways. Most of the algorithms treat intersections as points at which roadways 
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are connected, and the connectivity that guides approaching vehicles is not 

specified explicitly. However, an intersection represents a compact junction for 

which a set of turning paths and forbidden turning times are fundamental for the 

schedule of approaching vehicles. Even to adapt to changes in urban traffic flow, 

the layout of turning paths and traffic rules at intersections may be adjusted 

dynamically, i.e., left turn banned from during rush hour. A comprehensive 

approach focusing on the detection of both locations and turning paths, including 

the forbidden turning time, of intersections using a large number of vehicle GPS 

trajectories is used. 

An intersection is a road junction where two or more roadways either meet or 

cross. Various road markings, traffic lights and traffic signs schedule the 

approaches of vehicles to the intersection at appropriate speeds and prevent vehicle 

crashes. 

Our main contributions In this chapter of the thesis are: 

• Developing the previous works on Lane Graph Convolutional Network 

by adding the Traffic Rules as an attention mechanism, 

• Using a high demand road junctions and complex intersections, as the 

point of adding the Traffic Rules into the model, 

• A Transformer-based architecture factored over agents, time, and road 

graph elements that exploits the inherent dependencies of the problem 

and the traffic rules,  

• Using different datasets to evaluate our work such as nuScenes and 

Argoverse. 

• Achieving the state-of-the-art results comparing with the other works 

that their model works in the intersection areas. 

 

5.2 Motion forecasting in AV literature 

A common approach for short-term prediction of future motion is to assume that 

the driver will not change any control inputs (such as steering and acceleration) 

using techniques such as a Kalman filter (KF).  This approach first associates 

detected vehicles with one or more lanes from the map. Then, all possible paths are 

generated for each (vehicle, associated lane) pair based on map topology, lane 

connectivity, and vehicle’s state. Classical machine learning approaches such as 

Hidden Markov Model, Bayesian networks or Gaussian Processes have been 
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applied to motion prediction in autonomous driving. However, these methods 

require manually designed features and no longer provide state-of-the-art 

performance. Most recent research on motion prediction employs deep networks. 

In one line of research, recurrent neural networks (RNN) with Long Short-Term 

Memory (LSTM) or gated recurrent unit (GRU) were applied to predict future 

trajectories from past observed positions. Going beyond just using past observed 

positions as inputs, rasterize actor’s surrounding context and other scene 

information in a bird’s-eye view (BEV) image. 

Conventionally, three types of approaches exist for vehicle trajectory 

prediction. Physics-based, maneuver-based, and interaction-aware. Physics-based 

methods usually consider vehicle kinematic and dynamic constraints, such as yaw 

rate and acceleration rate, and environmental factors, such as the friction coefficient 

of a road surface. They assume that the vehicle’s motion depends only on physical 

equations of motion. They are the simplest models (e.g., constant velocity, constant 

acceleration) with low computational complexity and, as a result, their predictions 

are typically only reliable for a short horizon. This approach can achieve short-term 

predictions (<1 s). Maneuver-based motion models assume that the vehicle’s 

motion can be represented by a series of maneuvers executed independently of other 

vehicles. Maneuver-based approaches, the future trajectory of the target is predicted 

by identifying the maneuver in execution from a finite set of maneuvers contained 

in a database. Methods to identify the maneuver include Hidden Markov Models 

(HMM) [104] and Gaussian Processes (GP) [105]. Typically, these approaches also 

fail to consider the interactions between vehicles. Most physics-based and 

maneuver-based approaches do not account for interactions among vehicles. This 

has motivated the development of interaction-aware methods that take into account 

the interdependencies of vehicle maneuvers for trajectory prediction. Attention 

mechanisms can be naturally integrated with RNN to improve the model 

explainability. 

Algorithms for generating intersections from vehicle trajectories can be 

grouped into two basic types. One type directly extracts intersections using either 

the geometric characteristics of trajectories at intersections or the spatial 

relationships between multiple trajectories at intersections. For example, [81] 

identified intersections for the first time using an advanced shape descriptor to 

analyse the specific patterns of the heading changes in tracking points. [82] obtained 

the locations of crossings by intersecting two pedestrian trips. [83] detected 

intersections by analysing the densities of large-angle intersection points among 

neighbouring vehicle trajectories. [84] characterized the intersection features of an 
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urban transportation network with good connectivity, a high density of trajectories 

and multiple traversing trajectory patterns to detect intersection locations. 

The typical incremental method for generating road maps developed by [85] 

added a single trajectory to a graph by considering the relationship between the 

input points from the trajectory and the existing graph and by determining whether 

a new node and edge must be created. Clustering trajectories to generate road 

centrelines is another important approach [86-89]. 

5.3 Implementation of the State-Of-The-Art works 

After consideration the literature, we concluded to use some previous state-of-the-

art works to implement. In this way, we trained our model in the nuScenes [79] and 

Argoverse [90] datasets (description in section 5.4.2.3). First, we implemented 

Trajectron++ [91] and then, LaneGCN [92]. 

5.3.1 Trajectron++ 

Trajectron++ is an open and extensible approach built upon the Trajectron [93] 

framework which produces dynamically feasible trajectory forecasts from 

heterogeneous input data for multiple interacting agents of distinct semantic types. 

The Trajectron++ key contributions are twofold: First, they show how to effectively 

incorporate high-dimensional data through the lens of encoding semantic maps. 

Second, they propose a general method of incorporating dynamics constraints into 

learning-based methods for multi-agent trajectory forecasting. Trajectron++ is 

designed to be tightly integrated with downstream robotic modules, with the ability 

to produce trajectories that are optionally conditioned on future ego-agent motion 

plans. They present experimental results on a variety of datasets, which collectively 

demonstrate that Trajectron++ outperforms an extensive selection of state-of-the-

art deterministic and generative trajectory prediction methods, in some cases 

achieving 60% lower average prediction error. At a high level, a spatiotemporal 

graph representation of the scene in question is created from its topology. Then, a 

similarly-structured deep learning architecture is generated that forecasts the 

evolution of node attributes, producing agent trajectories as shown in Figure 31a. 

Figure 31b shows our implementation in Carla simulator. 
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a) b)  

Fig. 31. a) The trajectron++ architecture and b) its implementation in Carla simulator. 

As shown in Figure 31a, their approach represents a scene as a directed 

spatiotemporal graph. Nodes and edges represent agents and their interactions, 

respectively. Each note has its corresponding network architecture and all of these 

nodes have interactions based on the edges that are involved. 

5.3.2 LaneGCN 

They construct a lane graph from raw map data and use LaneGCN 

to extract map features. In parallel, ActorNet extracts actor features from observed 

past trajectories. Then FusionNet [94] is used to model the Interactions between 

actors themselves and the map and predict the future trajectories. Figure 32 shows 

our implementation in Carla simulator.  

In their model ActorNet receives the past actor trajectories as input, and uses 1D 

convolution to extract actor node features and MapNet constructs a lane graph from 

HD maps, and uses a LaneGCN to exact lane node features. Then FusionNet is a 

stack of 4 interaction blocks. The actor to lane block fuses real-time traffic 

information from actor nodes to lane nodes. The prediction header uses after-fusion 

actor features to produce multi-modal trajectories. 

 

Fig. 32. The LaneGCN implementation in Carla simulator 
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5.4 Motion Prediction Using Attention Heads and Traffic 

rules in Intersection 

5.4.1 Architecture 

To find the best trajectories ahead, we proposed a novel method to create a model 

using three most important modules. The three modules as shown in the Figure 33 

are Actor Features, Map Features, and Traffic Rules.  

 
Fig. 33. The topology of our method to develop the model using Trajectories, HD Maps, and the Traffic rules 

in the intersections. 

5.4.1.1 Actor Features 

It is assumed that actor data is composed of the observed past trajectories of all 

actors in the scene. Each trajectory is represented as a sequence of displacements 

{∆p−(T −1), . . . , ∆p−1, ∆p0}, where ∆pt is the 2D displacement from time step t 

− 1 to t, and T is the trajectory size. All coordinates are defined in the Bird’s Eye 

View (BEV), as this is the space of interest for traffic agents. For trajectories with 

sizes smaller than T, padding them with zeros. Adding a binary 1 × T mask to 

indicate if the element at each step is padded or not and concatenate it with the 

trajectory tensor, resulting in an input tensor of size 3 × T. 

While both CNNs and RNNs can be used for temporal data, here an 1D CNN 

is used to process the trajectory input for its effectiveness in extracting multi-scale 

features and efficiency in parallel computing. The output of ActorNet is a temporal 

feature map, whose element at t = 0 is used as the actor feature. The network has 3 

groups/scales of 1D convolutions. Each group consists of 2 residual blocks, with 

the stride of the first block as 2. A Feature Pyramid Network (FPN) [95](Lin et al., 

2017) is used to fuse the multi-scale features and apply another residual block to 

obtain the output tensor. For all layers, the convolution kernel size is 3 and the 
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number of output channels is 128. Layer normalization [96] and the Rectified 

Linear Unit (ReLU) [97] are used after each convolution. 

5.4.1.2 Map Features 

A novel deep model, called MapNet, to learn structured map representations 

from vectorized map data is used. This contrasts previous approaches, which 

encode the map as a raster image and apply 2D convolutions to extract features.  

Map Data: In this chapter of the thesis, it is adopted a simple form of vectorized 

map data as our representation of HD maps. Specifically, the map data is 

represented as a set of lanes and their connectivity. Each lane contains a centerline, 

i.e., a sequence of 2D BEV points, which are arranged following the lane direction 

(see Figure 33, top). For any two lanes which are directly reachable, 4 types of 

connections are given: predecessor, successor, left neighbor and right neighbor. 

Given a lane A, its predecessor and successor are the lanes which can directly travel 

to A and from A respectively. Left and right neighbors refer to the lanes which can 

be directly reached without violating traffic rules. This simple map format provides 

essential geometric and semantic information for motion forecasting, as vehicles 

generally plan their routes by reference to lane centerlines and their connectivity. 

Lane Graph Construction: Instead of encoding maps as raster images, it is 

derived a lane graph from the map data as the input. In designing the lane graph, it 

is expected of its nodes to have a fine resolution. Given any actor location, query 

the lane graph and find its nearest nodes to retrieve accurate map information is 

done. From this point of view, it is not an optimal choice to directly use the lane 

centerlines as the nodes. 

Referred to Figure 34 for an abstraction of the lane graph construction. It is first 

defined a lane node as the straight-line segment formed by any two consecutive 

points (grey circles in Figure 34) of the centerline. The location of a lane node is 

the averaged coordinates of its two end points. Following the connections between 

lane centerlines, it is also derived 4 connectivity types for the lane nodes, i.e., 

predecessor, successor, left neighbour and right neighbour. For any lane node A, its 

predecessor and successor are defined as the neighbouring lane nodes that can travel 

to A or from A respectively. Note that one can reach the first lane node of a lane lA 

from the last lane node of lane lB if lB is the predecessor of lA. Left and right 

neighbours are defined as the spatially closest lane node measured by `2 distance 

on the left and on the right neighbouring lane respectively. It is denoted the lane 

nodes with V ∈ RN ×2, where N is the number of lane nodes and the i-th row of V 
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is the BEV coordinates of the i-th node. It is represented the connectivity with 4 

adjacency matrices {Ai}i∈{pre,suc,left,right}, with Ai ∈ RN ×N . It is denoted 

Ai,jk, as the element in the j-th row and k-th column of Ai. Then Ai,jk = 1 if node 

k is an i-type neighbor of node j. 

LaneConv Operator [92]: A natural operator to handle lane graphs is the graph 

convolution. The most widely used graph convolution operator is defined as Y = 

LXW , where X ∈ RN ×F is the node feature, W ∈ RF ×O is the weight matrix, and 

Y ∈ RN ×O is the output. The graph Laplacian matrix L ∈ RN ×N takes the form L 

= D−1/2(I +A)D−1/2, where I, A and D are the identity, adjacency and degree 

matrices respectively. I and A account for self-connection and connections between 

different nodes. All connections share the same weight W, and the degree matrix D 

is used to normalize the output. However, this vanilla graph convolution is 

inefficient in our case due to the following reasons. First, it is not clear what kind 

of node feature will preserve the information in the lane graphs. Second, a single 

graph Laplacian cannot capture the connection type, i.e., losing the directional 

information carried by the connection type. Third, it is not straightforward to handle 

long range dependencies, e.g., akin dilated convolution, within this form of graph 

convolution. 

Node Feature: First, it is required to define the input feature of the lane nodes. 

Each lane node corresponds to a straight-line segment of a centerline. To encode all 

the lane node information, it is needed to take into account both the shape (size and 

orientation) and the location (the coordinates of the center) of the corresponding 

line segment.  

5.4.1.3 Traffic Rules 

The prediction would be even more precise if we consider some traffic rules. A 

traffic rule can change the prediction based on the conditions of the Agents specially 

in the intersections. The approach would be the predictions in the intersections to 

where a complex agent set are interacting with each other, and the traffic rules can 

impact on the trajectories.   

An intersection is a road junction where two or more roadways either meet or 

cross. Various road markings, traffic lights and traffic signs schedule the 

approaches of vehicles to the intersection at appropriate speeds and prevent vehicle 

crashes.  
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Figure 34 is an intersection diagram to allow for a visual understanding of our 

approach. To provide clear navigation information for routing, the intersection is 

represented as a network graph (Figure 34). In such a model, the location of an 

intersection and its traffic rules can be easily modelled by considering the 

spatiotemporal characteristics of the vehicle GPS trajectories near the intersection 

using the following scheme. 

Considering that intersections are strongly correlated to the curved parts of 

vehicle GPS trajectories (henceforth referred to as turns), it can be assumed that 

turns generally occur at intersections rather than on roadways. Based on this 

assumption, a comprehensive approach for detecting intersections and extracting 

traffic rules was developed, where three essential steps are illustrated. First, a 

density grid of turns is generated. The value of a cell represents the number of turns 

passing over the cell. Next, the locations and extensions of the intersections are 

detected using density analysis. Finally, the traffic rules of the intersections are 

determined by clustering the time series dataset of the tracking points. In the Figure 

34 an intersection is shown with its possible drivable paths. 

 

Fig. 34. The intersection topology. 

After consideration the intersection topology, we need to define the way of the 

detection of the intersections in the roads and including the traffic rules in our 

method. As discussed, we trained our model in nuScenes [79] and Argoverse[90] 

datastes. Considering the nuScenes, the map database consists of multiple layers 

where each layer is made up of records. Each record will have a token identifier. In 

this case, we used the traffic light token, a physical world's traffic light. This layer 

has some attributes like traffic_light_type that denotes whether the traffic light is 



 

69 

 

oriented horizontally or vertically, from_road_block_tokens that denotes from 

which road block the traffic light guides, items that are the bulbs for that traffic 

light, and pose that denotes the pose of the traffic light. We can also get the drivable 

area of the lanes. Collecting all these information, we build a network as shown in 

Figure 34.  

5.4.2 Implementation and results 

In this section, we describe how the implementation was done. We have used 

python with machine learning libraries for training and verifying our model and 

then we tested our model using the Carla simulator. In python we used the machine 

learning libraries and we used the nuScenes and Argoverse datasets to develop our 

model. Then the model has been tested using Xavier AGX as the embedded 

platform.  

5.4.2.1 Python implementation 

We have used Machine Learning libraries (Pytorch and Tensorflow) in python to 

develop our model. In this case, we were able to access the datasets to train the 

model and test it in the test datasets. 

Machine learning is a field in computer science where existing data are used to 

predict, or respond to, future data. It is closely related to the fields of pattern 

recognition, computational statistics, and artificial intelligence. Machine learning 

is important in areas like facial recognition, spam filtering, and others where it is 

not feasible, or even possible, to write algorithms to perform a task. 

To describe what we have implemented, it is necessary to introduce the 

elements of Machine learning that can be useful in our implementation. These 

components will be discussed as bellow. 

Data 

All learning methods are data driven. Sets of data are used to train the system. 

These sets may be collected by humans and used for training. The sets may be very 

large. Control systems may collect data from sensors as the systems operate and use 

that to identify parameters or train the system. 

Models 

Models are often used in learning systems. A model provides a mathematical 

framework for learning. A model is human derived and based on human 

observations and experiences. For example, a model of a car might be that it is 

rectangular shaped with dimensions that fit within a standard parking spot. Models 
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are usually thought of as human derived and providing a framework for machine 

learning. However, some forms of machine learning develop their own models 

without a human-derived structure. 

Training 

A system that maps an input to an output needs training to do this in a useful 

way. Just as people need to be trained to perform tasks, machine learning systems 

need to be trained. Training is accomplished by giving the system an input and the 

corresponding output and modifying the structure (models or data) in the learning 

machine so that mapping is learned. In some ways this is like curve fitting or 

regression. If we have enough training pairs, then the system should be able to 

produce correct outputs when new inputs are introduced. For example, if we give a 

face recognition system thousands of cat images and tell it that those are cats, we 

hope that when it is given new cat images, it will also recognize them as cats. 

Problems can arise when you don’t give it enough training sets or the training data 

are not sufficiently diverse, that is, do not represent the full range of cats in this 

example. 

Supervised Learning 

Supervised learning means that specific training sets of data are applied to the 

system. The learning is supervised in that the “training sets” are human derived. It 

does not necessarily mean that humans are actively validating the results. The 

process of classifying the system’s outputs for a given set of inputs is called 

labeling. That is, you explicitly say which results are correct or which outputs are 

expected for each set of inputs. 

The process of generating training sets can be time consuming. Great care must 

be taken to ensure that the training sets will provide sufficient training so that when 

real-world data are collected the system will produce correct results. They must 

cover the full range of expected inputs and desired outputs. The training is followed 

by test sets to validate the results. If the results aren’t good, then the test sets are 

cycled into the training sets and the process repeated. 

A human example would be a ballet dancer trained exclusively in classical 

ballet technique. If she were then asked to dance a modern dance, the results might 

not be as good as required because the dancer did not have the appropriate training 

sets; her training sets were not sufficiently diverse. 
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Unsupervised Learning 

Unsupervised learning does not utilize training sets. It is often used to discover 

patterns in data for which there is no “right” answer. For example, if you used 

unsupervised learning to train a face identification system, the system might cluster 

the data in sets, some of which might be faces. Clustering algorithms are generally 

examples of unsupervised learning. The advantage of unsupervised learning is that 

you can learn things about the data that you might not know in advance. It is a way 

of finding hidden structures in data. 

Semisupervised Learning 

With the semisupervised approach, some of the data is in the form of labeled 

training sets and other data are not. In fact, typically only a small amount of the 

input data is labeled while most is not, as the labeling may be an intensive process 

requiring a skilled human. The small set of labeled data is leveraged to interpret the 

unlabeled data. 

Online Learning 

The system is continually updated with new data. This is called “online” 

because many of the learning systems use data collected online. It could also be 

called “recursive learning.” It can be beneficial to periodically “batch” process data 

used up to a given time and then return to the online learning mode. 

Pytorch 

PyTorch is a Python library that performs immediate execution of dynamic tensor 

computations with automatic differentiation and GPU acceleration and does so 

while maintaining performance comparable to the fastest current libraries for deep 

learning. PyTorch builds on these trends by providing an array-based programming 

model accelerated by GPUs and differentiable via automatic differentiation 

integrated in the Python ecosystem. 

PyTorch maintains a strict separation between its control (i.e. program branches, 

loops) and data flow (i.e. tensors and the operations performed on them). The 

resolution of the control flow is handled by Python and optimized C++ code 

executed on the host CPU, and result in a linear sequence of operator invocations 

on the device. Operators can be run either on CPU or on GPU. 

PyTorch is designed to execute operators asynchronously on GPU by leveraging 

the CUDA stream mechanism to queue CUDA kernel invocations to the GPUs 

hardware FIFO. This allows the system to overlap the execution of Python code on 

CPU with tensor operators on GPU. Because the tensor operations usually take a 

significant amount of time, this lets us saturate the GPU and reach peak 



 

 

72 

 

performance even in an interpreted language with fairly high overhead like Python. 

This mechanism is nearly invisible to the user. Unless they implement their own 

multi-stream primitives all of the CPU-GPU synchronization is handled by the 

library. 

PyTorch could leverage a similar mechanism to also execute operators 

asynchronously on the CPU. However, the costs of cross-thread communication 

and synchronization would negate the performance benefit of such an optimization. 

5.4.2.3 Datasets 

The development of robust autonomous driving models depends on having access 

to large-scale training datasets, especially as more learning-based approaches are 

incorporated. Over the past decade, tens of datasets for autonomous driving have 

been collected and made public by multiple institutes around the world. These 

datasets are a valuable resource for the research community to develop benchmarks 

and consolidate research efforts. 

We have chosen nuScenes and Argoverse datasets to train our model. The 

largest dataset that provides the most sensor measurements is nuScenes, which 

contains 1000 20-second-long videos with LiDAR, Radar, camera, IMU and GPS 

data. It also provides 3D bounding boxes over 25 classes of objects annotated at 

2Hz. In the other hand, Argoverse includes sensor data collected by a fleet of 

autonomous vehicles in Pittsburgh and Miami as well as 3D tracking annotations, 

300k extracted interesting vehicle trajectories, and rich semantic maps. The sensor 

data consists of 360◦ images from 7 cameras with overlapping fields of view, 

forward-facing stereo imagery, 3D point clouds from long range LiDAR, and 6-dof 

pose. 

nuScenes dataset 

nuScenes represents a large leap forward in terms of data volumes and complexities 

and is the first dataset to provide 360◦ sensor coverage from the entire sensor suite. 

It is also the first AV dataset to include radar data and captured using an AV 

approved for public roads. It is further the first multimodal dataset that contains 

data from nighttime and rainy conditions, and with object attributes and scene 

descriptions in addition to object class and location. nuScenes is a holistic scene 

understanding benchmark for AVs. It enables research on multiple tasks such as 

object detection, tracking and behavior modeling in a range of conditions . 

There has been publishing the devkit, evaluation code, taxonomy, annotator 

instructions, and database schema for industry wide standardization. Recently, the 

Lyft L5 [98] dataset adopted this format to achieve compatibility between the 

different datasets. The nuScenes data is published under CC BY-NC-SA 4.0 

license, which means that anyone can use this dataset for non-commercial research 

purposes. All data, code, and information is made available online. 
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Here the description on how nuScenes planned drives, set upped the vehicles, 

selected interesting scenes, annotated the dataset and protected the privacy of third 

parties. 

Drive planning  

The vehicles drive in Boston (Seaport and South Boston) and Singapore (One 

North, Holland Village and Queenstown), two cities that are known for their dense 

traffic and highly challenging driving situations. The emphasizing was on the 

diversity across locations in terms of vegetation, buildings, vehicles, road markings 

and right versus left-hand traffic. From a large body of training data they manually 

select 84 logs with 15h of driving data (242km travelled at an average of 16km/h). 

Driving routes are carefully chosen to capture a diverse set of locations (urban, 

residential, nature and industrial), times (day and night) and weather conditions 

(sun, rain and clouds). 

Sensor Details 

The list of the sensors used to create the nuScenes dataset is as bellow:  

• 6x Camera: RGB, 12Hz capture frequency, 1/1.8” CMOS sensor, 1600 × 

900 resolution, auto exposure, JPEG compressed  

• 1x Lidar: Spinning, 32 beams, 20Hz capture frequency, 360◦ horizontal 

FOV, −30◦ to 10◦ vertical FOV, ≤ 70m range, ±2cm accuracy, up to 1.4M 

points per second. 

• 5x Radar ≤ 250m range, 77GHz, FMCW, 13Hz capture frequency, 

±0.1km/h vel. accuracy  

• GPS & IMU: GPS, IMU, AHRS. 0.2◦ heading, 0.1◦ roll/pitch, 20mm RTK 

positioning, 1000Hz update rate 

Car setup  

They used two Renault Zoe supermini electric cars with an identical sensor layout 

to drive in Boston and Singapore. Front and side cameras have a 70◦ FOV and are 

offset by 55◦. The rear camera has a FOV of 110◦. Sensor synchronization. To 

achieve good cross-modality data alignment between the lidar and the cameras, the 

exposure of a camera is triggered when the top lidar sweeps across the center of the 

camera’s FOV. The timestamp of the image is the exposure trigger time; and the 

timestamp of the lidar scan is the time when the full rotation of the current lidar 

frame is achieved. Given that the camera’s exposure time is nearly instantaneous, 

this method generally yields good data alignment5. They perform motion 

compensation using the localization algorithm described below. 
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Localization  

Most existing datasets provide the vehicle location based on GPS and IMU. Such 

localization systems are vulnerable to GPS outages. As they operate in dense urban 

areas, this problem is even more pronounced. To accurately localize the vehicle, 

they create a detailed HD map of lidar points in an offline step. While collecting 

data, they use a Monte Carlo Localization scheme from lidar and odometry 

information. This method is very robust, and they achieve localization errors of ≤ 

10cm. To encourage robotics research, they also provide the raw CAN bus data 

(e.g. velocities, accelerations, torque, steering angles, wheel speeds). 

 

Maps  

They provide highly accurate human-annotated semantic maps of the relevant areas. 

The original rasterized map includes only roads and sidewalks with a resolution of 

10px/m. The vectorized map expansion provides information on 11 semantic 

classes, making it richer than the semantic maps of other datasets published since 

the original release. The cameras run at 12Hz while the lidar runs at 20Hz. The 12 

camera exposures are spread as evenly as possible across the 20 lidar scans, so not 

all lidar scans have a corresponding camera frame. Finally, they provide the 

baseline routes - the idealized path an AV should take, assuming there are no 

obstacles. This route may assist trajectory prediction, as it simplifies the problem 

by reducing the search space of viable routes.  

     Scene selection 

After collecting the raw sensor data, they manually select 1000 interesting scenes 

of 20s duration each. Such scenes include high traffic density (e.g. intersections, 

construction sites), rare classes (e.g. ambulances, animals), potentially dangerous 

traffic situations (e.g. jay-walkers, incorrect behavior), maneuvers (e.g. lane 

change, turning, stopping) and situations that may be difficult for an AV. They also 

select some scenes to encourage diversity in terms of spatial coverage, different 

scene types, as well as different weather and lighting conditions. Expert annotators 

write textual descriptions or captions for each scene (e.g.: “Wait at intersection, 

peds on sidewalk, bicycle crossing, jaywalker, turn right, parked cars, rain”). 

Data annotation 

Having selected the scenes, they sample keyframes (image, lidar, radar) at 2Hz. 

They annotate each of the 23 object classes in every keyframe with a semantic 

category, attributes (visibility, activity, and pose) and a cuboid modeled as x, y, z, 

width, length, height and yaw angle. They annotate objects continuously throughout 



 

75 

 

each scene if they are covered by at least one lidar or radar point. Using expert 

annotators and multiple validation steps, they achieve highly accurate annotations. 

They also release intermediate sensor frames, which are important for tracking, 

prediction and object detection. At capture frequencies of 12Hz, 13Hz and 20Hz 

for camera, radar and nlidar, this makes this dataset unique. Only the Waymo Open 

dataset provides a similarly high capture frequency of 10Hz. 

Annotation statistics 

nuScenes dataset has 23 categories including different vehicles, types of 

pedestrians, mobility devices and other objects. They present statistics on geometry 

and frequencies of different classes. Per keyframe there are 7 pedestrians and 20 

vehicles on average. Moreover, 40k keyframes were taken from four different scene 

locations (Boston: 55%, SG-OneNorth: 21.5%, SG-Queenstown: 13.5%, SG-

HollandVillage: 10%) with various weather and lighting conditions (rain: 19.4%, 

night: 11.6%). Due to the finegrained classes in nuScenes, the dataset shows severe 

class imbalance with a ratio of 1:10k for the least and most common class 

annotations (1:36 in KITTI). This encourages the community to explore this long 

tail problem in more depth. 

Annotated objects contain up to 100 lidar points even at a radial distance of 80m 

and at most 12k lidar points at 3m. At the same time they contain up to 40 radar 

returns at 10m and 10 at 50m. The radar range far exceeds the lidar range at up to 

200m.  

Argoverse dataset 

Argoverse includes sensor data collected by a fleet of autonomous vehicles in 

Pittsburgh nand Miami as well as 3D tracking annotations, 300k extracted 

interesting vehicle trajectories, and rich semantic maps. The sensor data consists of 

360◦ images from 7 cameras with overlapping fields of view, forward-facing stereo 

imagery, 3D point clouds from long range LiDAR, and 6-dof pose. 290km of 

mapped lanes contain rich geometric and semantic metadata which are not currently 

available in any public dataset. 

Argoverse sensor data, maps, and annotations are the primary contribution of 

this work. They also develop an API which helps connect the map data with sensor 

information e.g. ground point removal, nearest centerline queries, and lane graph 

connectivity; see Supplemental Material for more details. They collect raw data 

from a fleet of autonomous vehicles in Pittsburgh, Pennsylvania, USA and Miami, 

Florida, USA. These cities have distinct climate, architecture, infrastructure, and 

behavior patterns. The captured data spans different seasons, weather conditions, 
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and times of day. The data used for this dataset traverses nearly 300km of mapped 

road lanes and comes from a subset of the fleet operating area. 

Sensors  

The cars are equipped with two roof-mounted VLP-32 LiDAR sensors with an 

overlapping 40◦ vertical field of view and a range of 200m, roughly twice that as 

the sensors used in nuScenes and KITTI. On average, the LiDAR sensors produce 

a point cloud at each sweep with three times the density of the LiDAR sweeps in 

the nuScenes dataset (Argoverse ∼ 107, 000 points vs. nuScenes’ ∼ 35, 000 points). 

The vehicles have 7 high-resolution ring cameras (1920 × 1200) recording at 30 Hz 

with overlapped field of view providing 360◦ coverage. In addition, there are 2 

front-facing stereo cameras (2056×2464) sampled at 5 Hz. Faces and license plates 

are procedurally blurred in camera data to maintain privacy. Finally, 6-DOF 

localization for each timestamp comes from a combination of GPS-based and 

sensor-based localization. Vehicle localization and maps use a city-specific 

coordinate system described in more detail in the Supplemental Material. Sensor 

measurements for particular driving sessions are stored in “logs”, and they provide 

intrinsic and extrinsic calibration data for the LiDAR sensors and all 9 cameras for 

each log. They place the origin of the vehicle coordinate system at the center of the 

rear axle. All sensors are roof-mounted, with a LiDAR sensor surrounded by 7 

“ring” cameras (clockwise: facing front center, front right, side right, rear right, rear 

left, side left, and front left) and 2 stereo cameras.  

Maps 

Argoverse contains three distinct maps – (1) a vector map of lane centerlines and 

their attributes, (2) a rasterized map of ground height, and (3) a rasterized map of 

driveable area and region of interest (ROI). 

Vector Map of Lane Geometry  

The vector map consists of semantic road data represented as a localized graph 

rather than rasterized into discrete samples. The vector map is a simplification of 

the map used in fleet operations. In the vector map, there are lane centerlines, split 

into lane segments. They observe that vehicle trajectories generally follow the 

center of a lane so this is a useful prior for tracking and forecasting. 

A lane segment is a segment of road where cars drive in single-file fashion in a 

single direction. Multiple lane segments may occupy the same physical space (e.g. 

in an intersection). Turning lanes which allow traffic to flow in either direction 

would be represented by two different lanes that occupy the same physical space. 
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For each lane centerline, they provide a number of semantic attributes. These 

lane attributes describe whether a lane is located within an intersection or has an 

associated traffic control measure (Boolean values that are not mutually inclusive). 

Other semantic attributes include the lane’s turn direction (left, right, or none) and 

the unique identifiers for the lane’s predecessors (lane segments that come before) 

and successors (lane segments that come after) of which there can be multiple (for 

merges and splits, respectively). Centerlines are provided as “polylines”, i.e. a 

sequence of straight segments. Each straight segment is defined by 2 vertices: (x, 

y, z) start and (x, y, z) end. Thus, curved lanes are approximated with a set of 

straight lines. 

In Miami, lane segments that could be used for route planning are on average 

3.84m ± 0.89 wide. In Pittsburgh, the average width is 3.97m ± 1.04 in width. Other 

types of lane segments that would not be suitable for self-driving, e.g. bike lanes, 

can be as narrow as 0.97m in Miami and as narrow as 1.06m in Pittsburgh. 

Rasterized Drivable Area Map 

The maps include binary drivable area labels at 1 meter grid resolution. A drivable 

area is an area where it is possible for a vehicle to drive (though not necessarily 

legal). Drivable areas can encompass a road’s shoulder in addition to the normal 

drivable area that is represented by a lane segment. The track annotations extend to 

5 meters beyond the drivable area. They call this larger area the region of interest 

(ROI). 

Rasterized Ground Height Map  

Finally, the maps include real-valued ground height at 1 meter resolution. 

Knowledge of ground height can be used to remove LiDAR returns on static ground 

surfaces and thus makes the 3D detection of dynamic objects easier.  

3D Track Annotations 

Argoverse-Tracking-Beta1 contains 100 vehicle log segments with human-

annotated data 3D tracks. These 100 segments vary in length from 15 to 60 seconds 

and collectively contain 10,572 tracked objects. For each log segment, they 

annotate all objects of interest (both dynamic and static) with bounding cuboids 

which follow the 3D LiDAR returns associated with each object over time. They 

only annotate objects within 5 meters of the drivable area as defined by the map. 

For objects that are not visible for the entire segment duration, tracks are 

instantiated as soon as the object becomes visible in the LiDAR point cloud and 



 

 

78 

 

tracks are terminated when the object ceases to be visible. They mark objects as 

“occluded” whenever they become invisible within the sequence. Each object is 

labeled with one of 17 categories, including OTHER_STATIC and 

OTHER_MOVER for static and dynamic objects that do not fit into other 

predefined categories. More than 70% of tracked objects are vehicles, but they also 

observe pedestrians, bicycles, mopeds, and more. All track labels pass through a 

manual quality assurance review process. They divide the annotated tracking data 

into 60 training, 20 validation, and 20 testing sequences. 

Mined Trajectories for Motion Forecasting 

They are also interested in studying the task of motion forecasting in which they 

predict the location of a tracked object sometime in the future. Motion forecasts can 

be critical to safe autonomous vehicle motion planning. While the human-annotated 

3D tracks are suitable training and test data for motion forecasting, the motion of 

many of vehicles is relatively uninteresting – in a given frame, most cars are either 

parked or traveling at nearly constant velocity. Such tracks are hardly a 

representation of real forecasting challenges. They would like a benchmark with 

more diverse scenarios e.g. managing an intersection, slowing for a merging 

vehicle, accelerating after a turn, stopping for a pedestrian on the road, etc. To 

sample enough of these interesting scenarios, they track objects from 1006 driving 

hours across both Miami and Pittsburgh and find vehicles with interesting behavior 

in 320 of those hours. In particular, they look for vehicles that are either (1) at 

intersections (2) taking left or right turns (3) changing to adjacent lanes or (4) in 

dense traffic. In total, they collect 333,441 five second sequences and use them in 

the forecasting benchmark. Each sequence contains the 2D, birds-eye-view centroid 

of each tracked object sampled at 10hz. The 333,441 sequences are split into 

211,691 train, 41,146 validation, and 80,604 test sequences. Each sequence has one 

challenging trajectory which is the focus of the forecasting benchmark. The train, 

val, and test sequences are taken from disjoint parts of the cities, i.e., roughly one 

eighth and one quarter of each city is set aside as validation and test data, 

respectively. This dataset is far larger than what could be mined from publicly 

available autonomous driving datasets, and they have the advantage of using the 

maps to make it easier to track objects. While data of this scale is appealing because 

it allows to see rare behaviors and train complex models, it is too large to 

exhaustively verify the accuracy of the mined trajectories and thus there is some 

noise and error inherent in the data. 
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5.4.3 The embedded platform 

We targeted NVIDIA Jetson AGX Xavier that is representative of the next-

generation AV Domain Controller as our embedded platform. This embedded 

platform has a GPGPU of 512-core Volta along with Tensor Core and a CPU of 

ARM 8-core v8.2 64-bit and would be a suitable choice for our system (for further 

description please refer to chapter 2). 

5.4.4 The results 

To evaluate our model, we use the standard metrics on the nuScenes leaderboard. 

The minimum average displacement error (ADE) over the top K predictions 

(MinADEK), the miss rate (MissRateK,2) only penalizes predictions that are 

further than 2 m from the ground truth, the offroad rate measures the fraction of 

predictions that are off the road, and for a set of k predictions for each agent a in a 

scene, we report the minimum Final Displacement Error (minFDEk) to the ground 

truth. Since all examples in nuScenes are on the road, this should be zero. The 

minimum Average Displacement Error computes the L2 norm between’s and the 

closest joint prediction. The minimum Final Displacement Error is equivalent to 

evaluating the minADE at a single time step T. The overlap rate is computed by 

taking the highest confidence joint prediction from each multimodal joint 

prediction. If any of the A agents in the jointly predicted trajectories overlap at any 

time with any other objects that were visible at the prediction time step (compared 

at each time step up to T) or with any of the jointly predicted trajectories, it is 

considered a single overlap. The overlap rate is computed as the total number of 

overlaps divided by the total number of predictions. The overlap is calculated using 

box intersection, with headings inferred from consecutive waypoint position 

differences. The formulation of minADE and minFDE can derived from [106]: 

𝑚𝑖𝑛𝐴𝐷𝐸𝑘 = 𝑚𝑖𝑛𝑚={1,2,...,k}
1

𝑡𝑓
∑ ‖�̂�𝑡

𝑚 + 𝑦𝑡‖2
𝑡𝑓
𝑡    (1)  

𝑚𝑖𝑛𝐹𝐷𝐸𝑘 = 𝑚𝑖𝑛𝑚={1,2,...,k}
1

𝑡𝑓
∑ ‖�̂�𝑡𝑓

𝑚 + 𝑦𝑡𝑓‖2

𝑡𝑓

𝑡
   (2) 

where k denotes the number of modalities that are the most probable trajectories 

according to the estimated scores. minADE and minFDE are the average of all target 

agents in the dataset. 

Although these metrics are widely used in the motion forecasting task, minADE 

and minFDE only depend on the error from the ground truth; therefore, it is 
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impractical to evaluate whether the predictions are realistic. Several works have 

thus proposed new metrics in addition to ADE/FDE to measure the feasibility of 

the outputs. The Off-Road Rate [107] evaluates the feasibility of multiple outputs 

by calculating the percentage of the outputs that lie out of drivable area. Finally 

MissRate (MR) can be calculated as follows: 

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒(�̂�) =
|�̂�|+|�̂�ℎ𝑖𝑡|

|�̂�|
       (3) 

where |�̂�| is the number of predicted and matched agents which have complete 

future trajectories across different scenes. |�̂�ℎ𝑖𝑡| is the number of hitted agents 

which belong to �̂�. 

Since our work is designed to outperform the predictions specifically in the 

intersections, we require to consider the works that are considering the intersections 

and compare our work with them. We demonstrate our results on some nuScenese 

leaderboard showing on table 2, comparing with the top performing entries on the 

nuScenes leaderboard. We achieve state of the art results on some metrics in this 

specific area.  

Table 2. The comparison of the motion prediction models from the nuScenes leaderboard 

that consider the intersections. 

Model MinADE 

(5) 

MinADE 

(10) 

MissRate 

Top-5 

(2m) 

MissRate 

Top-10 

(2m) 

MinFDE 

(1) 

Off Road 

Rate 

Trajectron++ 

[91] 

1.88 1.51 0.70 0.57 9.52 0.25 

Autobot [99]  1.43 1.05 0.66 0.45 8.66 0.03 

P2T [100] 1.45 1.16 0.64 0.46 10.50 0.03 

PGP [101]  1.30 1.00 0.61 0.37 7.17 0.03 

Our model 1.37 1.00 0.53 0.41 6.59 0.05 
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As it can be seen in Table 2, we have outperformed in MinFDE and MissRate. 

This is because the traffic rules help the Final Displacement Error to be less than 

the times of not considering the traffic rules. Traffic rules help to predict the final 

positions as better as it is possible. Therefore, we have outperformed in MinFDE. 

We have also competitive results with the state-of-the-art works in MinADE. Our 

contribution was to outperform the motion prediction model at the intersections as 

shown in Figure 35.   

 

Fig. 35. One example of our implementation in the nuScenes dataset at the intersection. 

5.5 Conclusion 

In this chapter, the new method of the motion prediction has been discussed. 

Furthermore, two most recent works have been implemented with the results on 

Carla simulator. We have discussed the motion prediction in the intersections and 

demonstrated that if we include the traffic rules into the model, we can achieve and 

outperformance respect to the other works.  

Including the traffic rules into the models for the motion prediction can enhance 

the metrics of the motion prediction and outperforms the previous works. In this 

regard, we have included the traffic rules in the intersections and by comparing it 

with the similar works, we have identified the better performance.  

The traffic rules are not limited to the intersections, and it can be extended to 

the other traffic rules in the round abouts, entering and exiting lines, and the other 

ones. By activating each traffic rule and including it in the model, we can 

outperform the previous works in that area. Therefore, the next works are 

considering the other traffic rules in the other areas and including them in the model. 



 

 

82 

 

After considering the other traffic rules, we can have a unified model that includes 

the implemented traffic rules in the model, and we can use that model in the 

different conditions. Indeed, combining this methodology with an HMI for the next 

movements would be another possible work to complete the usage of motion 

forecasting method for the motion sickness mitigation. 

Overall, the new area that has been opened by our novel research of having the 

traffic rules in the models not only improves the results of the motion prediction 

model, but also opens a new area of researching with different traffic rules in 

various conditions and places. It is very important to remind that if the traffic rules 

increase in a model, we would require a more powerful embedded platform to 

execute the model in real-time. Therefore, a new research area will be also using 

the new embedded platforms that are appropriate for this work. 
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Chapter 6 

Conclusion and Future Works  

In this thesis, I introduced my research work as the title of Advanced Driver 

Assistance Systems for high-performance Embedded Automotive Platforms. I 

started with the first chapter of Introduction to Advanced Driver Assistance 

Systems. In this chapter, I went through different ADASs and introduced the main 

requirements for having an ADAS. At the end of this chapter, I introduced the 

ADASs that I developed. Since one of the main required components in designing 

the ADASs is their embedded platform, in the second chapter, I introduced the high-

performance automotive embedded platforms, and I described what embedded 

platform I used for the implementation of my work. Then, in the third chapter, I 

described A Full-Featured, Enhanced Cost Function to Mitigate Motion Sickness 

in Semi- and Fully-autonomous Vehicles. In this chapter, we focused on the five 

main physical characteristics that affect motion sickness, including them in the 

function cost, to provide quality passengers' experience to vehicle passengers. We 

implemented our approach in a state-of-the-art Model Predictive Controller, to be 

used in a real Autonomous Vehicle. The potential sources of AV motion sickness 

can be divided into five groups, namely, variation in horizontal and vertical 

acceleration, posture instability, loss of controllability and loss of anticipation of 

motion direction, Head downward inclination, and lack of synchronization between 

virtual motion and the vehicle motion profile. In this work, which I presented in 

VEHITS 2021, we focused on the three sources, namely, variation in horizontal and 

vertical acceleration, posture instability, and loss of controllability. Anyway, in the 

fourth chapter, I described the second research work for motion sickness mitigation 

considering the other sources, lack of synchronization between virtual motion and 

the vehicle motion profile and loss of anticipation of motion direction. In this 

chapter I described Motion Sickness Minimization Alerting System Using The Next 

Curvature Topology that tries to interact with the passengers for preventing the 

motion sickness. I presented this research work in IEEE ICMA 2022. Finally, to 

conclude the thesis, I introduced the last research work on the motion prediction 

focusing on the traffic rules injection in the intersection. I started the chapter of  

Motion Prediction using Attention Heads and Traffic rules in intersections by two 
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tryout of implementation of the state-of-the-art works and then introduced my new 

approach for outperforming the previous works in the intersections. Therefore, we 

demonstrated that by injecting the traffic rules in the model we can have even better 

results. This work is submitted in IEEE ICMA 2023.  

The research work that I did, started from researching about the comfort issues 

of the autonomous driving and led me to introduce two different work to mitigate 

the motion sickness. Researching on the motion sickness also pursued me to start 

researching on the motion prediction and proposing a novel method for 

outperforming in the intersections.  

In the other hand, these research works have opened a window to the future 

works. The most interesting future works can be started by implementation the first 

two methods of the motion sickness in the real vehicle and facing the real vehicle 

issues. To do so, we need to consider also the more complex vehicle models, such as 

the kinematic and dynamic vehicle model, to validate our approach at highest speeds 

(i.e., > 150km/h), and to possibly include other classes of vehicles, such as busses and 

coaches, which potentially issue Motion Sickness much more than cars using the online 

services like google maps to give us the best results real-time.  

Furthermore, the mixture of the motion prediction model with the motion sickness 

mitigation systems can be a very interesting and challenging area to follow. Since with 

a better prediction model, we will have a better interactive system with the passengers 

in real-time. To do so, we need to extend our model to the other traffic rules. It also 

requires a research work on a higher performance embedded platform to be able to 

execute the model in real-time.  
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