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Abstract

Advanced driver-assistance systems (ADASSs) have become a salient feature
for safety in modern vehicles. They are also a key underlying technology in
emerging autonomous vehicles. State-of-the-art ADASs are primarily vision based,
but light detection and ranging (lidar), radio detection and ranging (radar), and other
advanced-sensing technologies are also becoming popular. In the first chapter, we
present a survey of different hardware and software ADAS technologies and their
capabilities and limitations. In the first chapter, we discuss approaches used for
vision-based recognition and sensor fusion in ADAS solutions. We also highlight
challenges for the next generation of ADASs. Then in the second chapter, we
discuss the high-performance embedded platforms using in automotive domain.
Since there is a tight relationship between trust of the costumers and comfort in
autonomous vehicles with the higher autonomy levels, we focused on the most
important issue of the comfort, motion sickness, that impacts on many people. The
outcome of our research work in the thesis was two novel methods to mitigate the
motion sickness that we discuss in the third and fourth chapters. To extend our
work, we decided to use the machine learning techniques for motion prediction.
The motion prediction techniques had conducted us to use the traffic rules for
having the outperformance in the intersections. Therefore, we developed a state-of-
the-art motion prediction system that works in intersections that will be described
in the fifth chapter.

In the third chapter a Motion Sickness mitigation system is introduced. Current
full- and semi- Autonomous car prototypes increasingly feature complex

algorithms for lateral and longitudinal control of the vehicle. Unfortunately, in some



cases, they might cause fussy and unwanted effects on the human body, such as
motion sickness, ultimately harnessing passengers' comfort, and driving
experience. Motion sickness is due to conflict between visual and vestibular inputs,
and in the worst case might causes loss of control over one’s movements, and
reduced ability to anticipate the direction of movement. In the chapter two, we focus
on the five main physical characteristics that affect motion sickness, including them
in the function cost, to provide quality passengers' experience to vehicle passengers.
We implemented our approach in a state-of-the-art Model Predictive Controller, to
be used in a real Autonomous Vehicle. Preliminary tests using the Unreal Engine
simulator have already shown that our approach is viable and effective, and we
implemented and evaluated using Motion Sickness Dose Value and IlIness Rating

and then tested it in an embedded platform.

We have also developed another novel alerting system to minimize the motion
sickness describing in the fourth chapter. Current intelligent car prototypes
increasingly move to become autonomous where no driver is required. If an automated
vehicle has rearward and forward-facing seats and none of the passengers pay attention
to the road, they increasingly experience the motion sickness because of the inability
of passengers to anticipate the future motion trajectory. In the chapter three, we focus
on anticipatory audio and video cues using pleasant sounds and a Human Machine
Interface to display and inform the passengers about the upcoming trajectories that may
lead to make the passengers sick. To be able to anticipate the next moves, we require
an evaluation system of the next 1 kilometer of the road using the map. The road is
investigated based on the amount of the turns and the maximum speed allowed that
lead to lateral accelerations that is high enough based on Motion Sickness Dose Value
to make the passengers sick. The system alerts the passengers through a Human
Machine Interface to focus on the road for prevention of the Motion Sickness. We
evaluate our method by using Motion Sickness Dose Value. Based on this work, we
can prevent the sickness due to lateral accelerations by making the passengers to focus

on the road and decrease the vestibular conflict.



Finally, to extend our works into the machine learning techniques, in the fifth
chapter, we started researching on motion prediction area and we developed a state-of-
the-art motion prediction model. As declared, one of the motion sickness sources is
ability to anticipate the direction of movement. Therefore, having a trustable
prediction on the next trajectories, can even help decreasing the motion sickness and
increasing the comfort. In the other hand, autonomous driving motion forecasting is
essential to have a correct and reliable planning. The influence of the road agents on
each other makes it even more challenging. However, most prior works have not
considered these interactions and planning against fixed predictions would reduce the
ability to represent the future interaction possibilities between different agents. In this
chapter of the thesis, we propose a model that predicts the agents’ behaviour in a jointly
manner. We take advantage of using masking strategy as the query to our model. Our
model architecture uses a unified Transformer architecture by employing attention
across the road elements, agent interactions and traffic rules in intersections. We
evaluate our approach on autonomous driving datasets for behavior prediction and test
it on python. Our work demonstrates that motion forecasting by a model with a masking

strategy and having attentions and traffic rules can lead us to a state-of-the-art model.

For the last three chapters mentioned above, | succeeded to publish the related

publication as bellow:

1. Moazen, I., & Burgio, P. (2021). A Full-Featured, Enhanced Cost Function to
Mitigate Motion Sickness in Semi-and Fully-autonomous Vehicles. In
VEHITS (pp. 497-504).

2. Moazen, I., Burgio, P., & Castellano, A. (2022, August). Motion Sickness
Minimization Alerting System Using The Next Curvature Topology. In 2022
IEEE International Conference on Mechatronics and Automation (ICMA) (pp.
635-640). IEEE.

3. Submitted: The Advantage of Using Traffic Rules for Motion Prediction in
Intersections (TRMPI), In 2023 IEEE International Conference on
Mechatronics and Automation (ICMA)
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Chapter 1

Introduction to Advanced Driver
Assistance Systems

1.1 Introduction

In modern vehicles advanced driver-assistance systems (ADASSs) have become a
crucial feature for safety. Developing them aims toward the technologies for
autonomous vehicles. State-of-the-art ADASSs are primarily vision based, but light
detection and ranging (lidar), radio detection and ranging (radar), and other
advanced-sensing technologies are also becoming popular. In this section, we try to
categorize different hardware and software ADAS technologies and their
capabilities and limitations. Finally, we introduce our embedded platform as a high-
performance embedded platform that we developed three different ADASSs on it.

1.1 How the safety impacts ADAS

Safety is always a crucial concern in automotive systems the early days of on-road
vehicles. Many different research and development have been completed to address
this issue by developing various safety systems to protect occupants within a
vehicle as well as prevent injuries to people outside the vehicle. The safety systems
can be categorized in passive (or reactive) and active (or proactive). Passive safety
systems are the systems to protect the passengers of the vehicle from injuries after
a crash. Some of them can be seat belts, air bags, and padded dashboards. These
systems due to a consistent consumer demand for safer vehicles, are under
continuous development. Anyway, to make the vehicles even safer, it is required to
augmented them by active safety systems that tries to prevent a crash from



happening altogether. Active systems are one of the main areas of interest and have
seen major growth in today’s vehicles. Examples of such systems include lane
keeping, automatic braking, and adaptive cruise control. These systems are
commonly known as ADASs and are becoming increasingly popular as a way for
automotive manufacturers to differentiate their offerings while promoting
consumer safety.

Recent studies from the World Health Organization indicate that 1.25 million
deaths occur every year due to road traffic accidents [1]. Moreover, such accidents
in recent years have an annual global cost of US$518 billion, which takes away
approximately 1-2% of gross domestic product from all of the countries in the
world [2]. These high fatality rates, monetary losses, and increasing customer
demand for intelligent safety systems are some of the key reasons for OEMs to
develop ADASs. Moreover, with the increasing number of electronic control units
and integration of various types of sensors, there are now sufficient computing
capabilities in vehicles to support ADAS deployments. The different types of
sensors, such as cameras, lidar, radar, and ultrasonic sensors, enable a variety of
different ADAS solutions. Among them, the vision-based ADAS, which primarily
uses cameras as vision sensors, is popular in most modern-day vehicles. Figure 1
shows some of the state-of-the art ADAS features and the sensors used to
implement them.

Modern ADAS:S are also key technologies to realize autonomous vehicles [3]. But
several challenges with the design, implementation, and operation of ADASs
remain to be overcome. Some of these challenges include minimizing energy
consumption, reducing response latency, adapting to changing weather conditions,
and security. In this chapter, we describe the different ADASs along with their
required sensors.

Surround View

Blind-Spot
Traffic Sign Detection
Recognitionl

Adaptive ~ Automatic Braking
Cruise  Pedestrian Detection
Control  Collision Avoidance

Surround
View

Cross-Traffic Alert
Park Assist
Park Assist
Rear Collision Warning

Lane-
Keeping

4 Blind-Spot
System Detection
> Surround View
Long-Range Radar Lidar Camera Short-/Medium-Range Radar Ultrasonic
Fig. 1. The sensor ranges to fulfill the ADASs.



1.2 ADAS categories

The ADASS can be categorized based on the next groups:
1.2.1 Vision sensors

Cameras are the most commonly used vision sensors in vehicles. Vision-based
ADAS uses one or more cameras to capture images and an embedded system to
detect, analyze, and track different objects in them. In high-end ADAS, cameras are
used to monitor both the inside and outside of the vehicle as shown in figure 2.
Camera integration in modern vehicles is becoming more common because of its
low cost and easy installation. Laws such as [4] (that mandate all vehicles
manufactured from 1 May 2018 onward use vision-based ADAS) will further aid
in camera integration. Cameras capture information such as color, contrast, and
texture, which gives them a unique advantage over other sensors. Three types of
cameras as shown in Figure 3 are often used in vision-based ADAS: 1) monocular,
2) stereo, and 3) IR cameras.

Rearview Camera

E-Mirror Camera

Around View Monitor Camera

Frontview Camera

Fig. 2. The different vision sensors used in an intelligent vehicle.



1.2.2 Monocular cameras

These camera systems have only one lens. As these systems have only one image
output at any point of time, they have low image-processing requirements compared
to those of other camera types. These cameras can be used for multiple applications,
such as the detection of obstacles, pedestrians, lanes, and traffic signs [5]. They can
also be used for monitoring the driver inside a vehicle, e.g., for face- and eye-
detection and head-pose analysis [6]. But monocular camera images lack depth
information and are, therefore, not reliable sensors for distance estimation. Some
techniques [5] allow approximating distance by identifying key features in the
captured image frame and tracking their position when the camera is in motion.

Monocular vision systems are starting to emerge, but they are usually focusing
only on one aspect of the problem e.g. lane departure warning. It turns out that in
many situations providing warning based on one modality may be too limited. For
example, lane departure system would gain a lot from insertion of information about
vehicles on the road (blocking the view on the lanes). Furthermore, higher level of
information about lanes can be of aid for example unstable driving within a lane
(indicated by lateral velocity) may be an important indication of intelligent systems.

Range to vehicles and range-rate are two important values required for any
vision-based system. As the data is collected from a single camera range must be
estimated by using perspective. There are two cues which can be used: size of the
vehicle in the image and position of the bottom of the vehicle in the image. Since
the width of a vehicle of unknown type (car, van, truck etc) can vary anywhere
between 1.5m and 3m a range estimate based on width will have only about 30%
accuracy.

A much better estimate can be achieved using the road geometry and the point
of contact of the vehicle with the road. We assume a planar road surface and a
camera mounted so that the optical axis is parallel to the road surface. A point on
the road at a distance Z in front of the camera will project to the image at a height
y, where y is given by the equation:

_fH

Z (D

y

where H is the camera height, and f is the focal length of the camera (both given
in meters).



1.2.3 Stereo cameras

These systems consist of two or more lenses, each with image sensors, separated
by a certain distance (known as stereo base). Stereo cameras are useful in extracting
three-dimensional (3-D) information from two or more two-dimensional images
by matching stereo pairs (images from left and right sensors) and using a disparity
map to estimate the relative depth of a scene. These cameras can be used for a
variety of applications, such as traffic sign recognition, lane, pedestrian, and
obstacle detection as well as distance estimation, with much greater accuracy
compared to monocular cameras.

Stereo systems can be relied upon for accurate distance (depth) estimation over
short distances, up to 30 m. In most production vehicles with stereo cameras, the
cameras are located inside the vehicle, behind the rear-view mirror, angled slightly
downward, and facing the road.

1.2.4 IR cameras

There are two main types of IR cameras. Active IR cameras use a near-IR light
source (with wavelengths from 750 to 1,400 nm) built in the vehicle to illuminate
the scene (which cannot be seen by the human eye) and a standard digital camera
sensor to capture the reflected light. Passive IR cameras use an IR sensor, where
every pixel on the IR sensor can be considered as a temperature sensor that can
capture the thermal radiation emitted by any material. Unlike active IR cameras,
passive IR cameras do not require any special illumination of the scene. Still,
popular night-vision solutions mainly use active IR cameras to assist the driver by
displaying video data on a screen during low light conditions.

Fig. 3. From left to right, there are monocular camera, stereo camera, and IR camera.

1.2.5 LiDAR

Lidar works by firing a laser beam at an object and then measuring the time taken
for the light to bounce back to the sensor, to calculate the distance of an object.
These systems can achieve high-resolution 3-D images and operate at longer
ranges than camera systems. Some of the lidar scanners support surround-view
sensors (that fire laser beams continuously in all directions), which can generate a



360° 3-D image of the surroundings with extremely accurate depth information.
Lidar is becoming very popular in autonomous vehicles. Several prototype vehicles
[7], [8] have demonstrated the advantages of using lidar in autonomous driving.
Lidar is useful for systems implementing automatic braking, object detection,
collision avoidance, and more. Depending on the type of sensor, lidars for cars can
have a range of up to 60 m. Despite the aforementioned advantages, lidars are
heavy, bulky in size, and expensive. Moreover, atmospheric conditions such as rain
or fog can impact the coverage and accuracy of these systems. Emerging solid-state
lidars [9] have opened the possibility of powerful lidars that are significantly
smaller and relatively inexpensive.

1.2.6 RADAR

Radar systems emit microwaves and estimate the speed and distance of an object
by measuring the change in the frequency of the reflected wave as per the Doppler
effect. Due to the longer wavelength of microwaves, they can travel much farther
than optical light (e.g., with lidar) and can detect objects at a longer distance. Unlike
lidar, radar is not affected by foggy or rainy weather conditions and is relatively
inexpensive. Depending on their operating distance range, radar systems can be
classified as short range (0.2—30 m), medium range (30-80 m), or long range (80—
200 m) [10] as shown in Figure 4. Cross-traffic alerts and blind-spot detection are
some of the applications of short-/medium-range radars. These systems are often
located

at the corners of a vehicle. Adaptive cruise control is a long-range radar application,
with the system located behind the front grill or under the bumper. Researchers
have been developing algorithms to improve the performance of radar and
reliability all while attempting to reduce the cost and power of the system [11].

RADAR
Park Assist
Cross-Traffic Alert
Junction Assist

®

MEDIUM RANGE
RADAR
Blind Side Detection

LONG RANGE
RADAR
Adaptive Cruise Control
Automatic Emergency Braking
Forward Collision Warning

Driver Monitor
RADAR
3D Positioning
Driver Alertness
Driver Awareness




Fig. 4. Different ranges of RADARSs used for different porpuses in autonomous driving.

1.2.7 Ultrasonic sensors

Ultrasonic sensors use sound waves to measure the distance to an object. These
sensors are mainly used for detecting objects very close to the vehicle. Some
example applications include automatic parking and parallel parking assist. These
sensors are mainly located under the front and rear bumper of the vehicle.

The distance from the ground of a point of a vehicle body is computed as:
D =k.T;.V, (1D
Where

T, time of flight of an ultrasonic pulse, i.e., the time the pulse takes to cover the
distance D;

k constant close to 0.5, which depends on the sensor geometry;
I, velocity of sound in air.

The ultrasonic pulse is generated using a piezoelectric transducer and the echo
reflected by the ground is received by another piezoelectric transducer. The two
transducers are mounted close to each other to make up the measuring head. The
uncertainty contribution due to the constant k can be made negligible by means of
a sensor calibration after mounting the measuring head.

As the measured quantities T and V; can be considered uncorrelated, the
standard uncertainty u(D) of the measured distance can be obtained from equation:

u(D) = J(k. T,) . u2() + (k. V)2 u?(Ty) )

where u(V;) and u(Ty) are the standard uncertainties of the velocity of sound

and of the time of flight. The velocity of sound in air depends on the temperature
and, to a lesser extent, on the air humidity h:

Vs = f(6,h) (3)

therefore, (2) becomes



u(D) = \[ (k.T;)". [(j—{;)z w0 +(2) .uZ(h)] + (k)2 u(Ty) (@)

If the humidity is considered a random variable uniformly distributed in the
range of 10%RH to 90%RH, its effect on the velocity of sound is of about 0.15%
at 20 C. This leads to a standard uncertainty contribution of about 0.3 mm for a
distance range of 0.3 m, hence a humidity sensor is not necessary.

The velocity of sound in air depends on the temperature according to the
approximated equation:

V, ~ 20.055.VT (5)
where is the absolute temperature, which is measured in kelvin.

Velocity-of-sound changes in the range of 330-360 m/s have to, therefore, be
expected for temperature changes in the range of 0—40 C. Such an effect must be
taken into account in the determination of the distance, hence a temperature sensor
is re quired.

Another phenomenon that affects the uncertainty of the measured distance is
the car speed, which has the same effect of the component of the wind that flows
perpendicularly to the path of the ultrasonic pulse. Such effect consists in an
increasing of the pulse path and, in turn, of the measured distance. As the maximum
car-speed is of the order of 10% of the velocity of the sound, the distance error due
to a car speed Vj, can be approximately estimated as

) ©

For a car speed of 33 m/s (about 120 km/h), the distance error at 0 °C (V; =
330 m/s) is of about 0.5%. One should note that this error could be easily corrected
by the knowledge of the car speed.

Distance measurement in the range of 0.1 m to 0.3 m requires the measurement
of time of flights in the range of 0.5-2 ms. The required distance standard
uncertainty of 1 mm can be achieved by measuring the time of flight with a standard
uncertainty of 2.5 ps, the temperature with a standard uncertainty of 1 °C, and
avoiding the use of a humidity sensor.



Ultrasonic signals with frequencies in the range of 30 kHz to 5 MHz can be
used to generate the pulse. Higher frequencies might be preferable since they imply
lower wavelengths and thus a potentially better resolution, but the sound attenuation
in the air dramatically increases as the frequency increases. In addition, higher
frequencies require both costly transducers and fast electronic devices, therefore
preventing a low-cost arrangement to be obtained. Lower frequencies have the
advantage of low-scattering problems and can be obtained with low-cost
transducers, but the wavelength in the air is several millimeters, thus requiring
special care in order to obtain measurement uncertainties that are lower than the
wavelength.

1.2.8 Others

A few other sensors are used to complement and improve the functionalities of
those discussed earlier. For instance, photonic mixer device (PMD) cameras consist
of an array of smart sensors that enable fast optical sensing and demodulation of
incoherent light signals simultaneously [12]. PMDs can support parallel target
pixel-wise distance measurement without scanning, thus resulting in faster imaging,
high lateral resolution, and depth information. IMUs and GPSs are examples of
systems that help improve the distance measurements with lidar and radar.

1.3 Vision-based ADASSs

Vision-based ADASs rely on images from cameras and use computer vision
principles to extract useful information.

1.3.1 Computer vision data flow for ADASs

Figure 5 shows the steps involved in a vision-based system, each of which is
discussed.

—»| Preprocessing —»| Segmentation —l

L — —> System Control

Fig. 5. The steps involved in a vision based system



1.3.2 Image acquisition

This refers to the process of capturing a frame from a video. The frame is often
represented as a matrix of pixel data where each frame contains three channels of
information, e.g., red, green, and blue (RGB) sets of pixels. Typical frame rates in
ADASs range from five frames per second (fps) to 60 fps depending on the
application. Applications that involve detection of vehicle proximity need a higher
frame rate due to the rapid change in distance for cars on the road. In contrast, traffic
sign detection does not demand a higher frame rate because only one frame of the
sign needs to be captured for the sign to be detected.

1.3.3 Preprocessing

There are several common preprocessing steps needed to prepare an image for
various computer vision algorithms, e.g., denoising, color enhancement, color
space conversion, and image stabilization. A typical example of color space
conversion is to convert the RGB color space to hue, saturation, and value to
separate color from the intensity. Moreover, the hue channel is often used to
separate out adverse effects (e.g., shadows, uneven lighting, and over- and
underexposure) in the image to make tracking and detection easier.

1.3.4 Segmentation

This is the process of separating features from a frame. In analyzing an image, it is
helpful to partition it into recognizable objects, e.g., identifying the road and sky in
a frame as two different features. Various thresholding techniques are used to filter
one class of pixels (e.g., the road) from another (e.g., the sky) as shown in Figure
6. One of the methods, e.g., exploits color information to detect a stop sign, where
an algorithm may look for red in the image (typical for stop signs in the United
States). Any pixels in that red range will be turned white, and anything that is not
will be turned black. This results in a binary image that is often used as a mask for
finding the area of interest on the original image.
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Fig. 6. The segmented objects that are categorized in different groups.

1.3.5 Object detection and tracking

This is the process of classifying an object in an image (e.g., determining if an object
ahead is a vehicle, sign, or pedestrian) and predicting its movement. For instance as
shown in figure 7, an object detection and tracking is done. It is often accomplished
with various machine-learning (ML) algorithms. ML algorithms are provided large
training data sets (thousands of images) to learn and differentiate between vehicles
and common objects found around them. An example of an object detection method
is called the cascade classifier, which was first presented in [13] for face detection,
on low-performance hardware systems.

Another common technique to train and classify images is using a convolutional
neural network (CNN), which typically consists of an input layer, multiple hidden
layers, and an output layer. The hidden layers consist of convolution and pooling
layers that are used for feature extraction and a fully connected layer for
classification. Examples of CNN frameworks used for vision applications include
Caffe, Darknet, and MATLAB. An application of a CNN for object tracking is
discussed in [14]. Kalman-filter-based object tracking is proposed in [15], where
the filter tracks the object’s velocity.
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Fig. 7. An example of object detection and tracking.

1.3.6 Depth estimation

This step involves estimating the distance of an object in the image frame relative
to the camera. There are two common methods for depth estimation: 1) the use of
a stereo camera to create a stereo pair and develop them to make a depth map and
3-D point cloud that allow a real-world reconstruction of the scene [16]; and 2) the
use of a monocular camera and several state-of-the art techniques that use a subset
of optical flow, calibration, and least squares techniques [17]. An example of the
depth estimation is shown in Figure 8.

= . : l-l
> A 4 A

Fig. 8. Depth estimation helps understanding the distance of the different objects in images.

1.3.7 System control

This is the last step in the vision data flow, which involves interpretation of the
outputs from previous layers. This step requires a weighting of each layer in the
vision pipeline to come up with a confidence value that can be used to make
decisions. A major challenge at this step is a false detection with high confidence
that would take priority over other information obtained from the previous layers.
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Thus, training with data that is correct and contains many orientations of the object
to be classified is crucial to achieve high accuracy.

In the third chapter we introduce an Adaptive Model Predictive Control that
recently is used in autonomous driving. Model Predictive Control uses the dynamic
model of the system. For nonlinear systems we use AMPC. The name is Adaptive
MPC since it adjusts the prediction model at run time.

1.4 Outdoor monitoring

In this section, we will discuss the classification of objects that are outside a vehicle,
e.g., pedestrians, vehicles, and roads.

1.4.1 Pedestrian, Vehicle, sign, and lane detection

Detecting pedestrians is done using various classifiers, e.g., [18]. Often more than
one classifier is used for detecting people because of the varying orientation and
configuration in which pedestrians may appear. Deep-learning networks such as
CNNs have been helpful to not only identify pedestrians but also classify their
actions.

Vehicle detection is a major focus of object detection in ADASs. The fact that
many vehicles share common features, such as having tires, brake lights, and license
plates, allows the detection of these objects to indicate the presence of a car. These
features are all used to distinguish the vehicle from other objects, such as signs,
roads, and other miscellaneous objects. An example of vehicle detection is shown,
using a CNN framework (Darknet) and a real-time detection system, You Only
Look Once [19]. The orientation of vehicles can cause some issues with their
identification. A vehicle being viewed from the front contains a different set of
features than a vehicle from the side or back. Often vehicle classifiers consider
various classes of vehicles, such as cars, trucks, and semis that are trained with
many orientations.

Many ADASs are beginning to support traffic sign detection. The most
common use case is determining the speed limit on the road by reading a speed sign
(an ADAS would alert the driver if the vehicle speed is over the limit). For instance,
color thresholds can be used to find the location of a sign and optical character
recognition to determine what that sign displays. Other methods include using
CNNs and hybrid techniques, such as [20].

Another ADAS feature used in a few production vehicles is the ability to keep
the vehicle within the lane lines on the road. However, lane lines are one of the
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hardest road features to detect because of their inconsistencies, such as being
different colors, faded, and sometimes not even present. Current methods to detect
lane lines often use a Canny transform to find the edges in the image. Once the
edges are found, a Hough transform is used to compare the lines to a single slope
to determine if they are indeed lane lines [21]. The use of CNNs is also becoming
popular for lane line detection. When all the detection parts techniques gather
together, we will have a detection of different objects of the world as shown in
Figure 9.

Fig. 9. Object detection in different conditions of the roads.

1.4.5 Collision avoidance

ADASs are beginning to incorporate automatic braking and collision avoidance.
This is done by combining many features discussed earlier, such as object tracking,
vehicle detection, and distance estimation [14]. With this combination of data, a
vehicle can predict a collision and stop it from happening by braking or even
steering out of the way. A forward collision avoidance is shown in Figure 10.
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Fig. 10. Forward collision avoidance using Radar.

Sensor selection is the first and most crucial step towards designing a reliable
and robust Forward Collision Avoidance. Active sensors perform well in different
weather conditions and nighttime and their price is also in affordable range. The
most common approaches to detect vehicles by active sensors include Radar-based
and Laser or Lidar (Light Detection and Ranging) based. In the other hand, passive
sensors with less common usage for Forward Collision Avoidance collect
information by receiving the signals without emitting them and include acoustic
and optical (camera) sensors.

1.5 Indoor monitoring

In a study conducted by the National Highway Traffic Security Administration [22],
it was observed that driver fatigue, drowsiness, or distraction are the causes of 80%
of vehicle accidents. As ADAS becomes prevalent in production vehicles, there has
been an increase in focus on monitoring the driver using a camera pointed at him
or her. If the driver accesses a phone or does not look at the road for a specific time
duration, an alert or attempt to get off the road will be made [6]. Drowsiness-
fatigue-detection systems have also included the ability to detect if the driver has
fallen asleep and can attempt to alert the driver though a sequence of seatbelt
vibrations and speaker alerts [23].

1.6 Next generation ADASs

Next-generation ADAS solutions are beginning to use sensor fusion and other
advanced communication systems, such as vehicle-to-everything (V2X).

1.6.1 Sensor fusion

Sensor fusion refers to combining information from multiple homogenous or
heterogeneous sensors to find a single best estimation of the state of the
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environment. Fusion helps sensors complement each other’s limitations and offers
greater leverage to the system compared to a system with individual sensors. Sensor
fusion offers high precision, reliability, robustness to uncertainty, extended spatial
and temporal coverage, and improved resolution, which are crucial in safety-critical
systems, such as vehicles. Although this comes at a higher computation cost, the
computation power available in modern-day cars and the reducing cost of the
sensors are facilitating the widespread integration of these systems.

The classification of different levels of sensor fusion along with the most commonly
used techniques for fusing data are discussed in [24]. The growing interest in deep
learning and other ML methods in recent years has driven researchers toward
exploring more efficient and intelligent techniques that enhance ADASs with
sensor fusion capabilities.

1.6.2 V2X communication

V2X communication represents a class of communication systems that provides the
vehicle with an ability to exchange information with other systems in the
environment. Examples include vehicle-to-vehicle (V2V) for collision avoidance,
vehicle-to-infrastructure (\V21) for traffic signal timing, vehicle-to-network for real-
time traffic updates, and vehicle-to-pedestrian for pedestrian signaling. State-of-
the-art V2X communication is based on either dedicated short-range
communications (DSRC) or cellular networks [25]. The IEEE 1609 family of
standards for Wireless Access in Vehicular Environment (WAVE), which is
developed based on the IEEE 802.11p standard, defines an architecture and a set of
services and interfaces to enable DSRC-based secure V2V and V21 communication
[26].

1.7 Autonomous vehicles

Next-generation ADASs using sensor fusion and V2X communication are paving
the way for autonomous driving. The Society of Automotive Engineers (SAE)
J3016 standard [27] defines six different levels of driving automation for on-road
vehicles. A vehicle is categorized as level zero if there are no ADASS assisting the
driver in handling steering and acceleration/deceleration and everything is handled
manually by the driver. Level one vehicles consist of DASs assisting the driver in
handling either steering or acceleration/deceleration under certain cases with human
driver input. ADASs in level two vehicles handle both steering and
acceleration/deceleration under certain environments with human driver input. In
general, in lower-level vehicles (levels zero to two), the driver monitors the driving
environment. In contrast, ADAS monitors the driving environment in higher-level
(levels three to five) vehicles. Modern vehicles with the top-of-the-line ADASS,
such as the 2016 Tesla model S, are level three, where multiple safety systems are
handled by the system, but the driver intervenes when needed. Level four vehicles
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handle multiple safety systems and operate in a wider range of environments. Level
five automation is the end goal of autonomous driving, where all of the systems in
the car are operated by the ADAS, under all driving conditions (such as snow-
covered roads and unmarked dirt roads) and would not require any human
intervention. This, however, still requires significant advances in multiple areas,
such as sensor technology, computing systems, and automotive networks.

1.8 Challenges with ADASSs

Despite significant advances in the field of ADASs, several important challenges
remain to be overcome.

1.8.1 Changing environmental conditions

One of the major problems with today’s ADASs is that the performance of the
system is significantly impacted by changing environmental and weather
conditions. For example, vision-based ADASs have issues with sensing during
rainy and extreme lighting conditions (too dark and/or too bright) [28]. One of the
possible solutions to this problem includes sensor fusion, by relying on other sensor
data depending on the weather conditions, e.g., relying on the camera and radar
during low light conditions while using the camera and lidar during other times for
accurate distance estimation. The inclusion of V2I and developing cost-effective
smart roads could help mitigate this issue.

1.8.2 Resource constrained system

Embedded systems used in ADASSs have a requirement for low power consumption.
This is because ADASs involve running several complex algorithms that result in
high power consumption and thermal dissipation. Due to the limited availability of
energy in vehicles, it is essential to minimize the power consumption of the
embedded system used in ADASS.

Using more energy-efficient hardware than conventional general-purpose central
processing units is important, which is why emerging ADAS hardware must rely
on graphics processing units, digital signal processors, image signal processors,
etc., that are customized to reduce power consumption for ADAS applications.
Moreover, as the embedded systems for ADAS operate in real time, they have strict
timing constraints, which establishes a latency minimization requirement. Hence,
optimized hardware and software that results in minimal power consumption and
greater performance (lower latency) predictability are highly desired in an ADAS.
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1.8.3 Security

Modern vehicles are becoming increasingly connected with a lot of different
systems, such as Wi-Fi, near-field communication, and V2X. This enables the
vehicle to sense and receive a variety of information but also makes it more
vulnerable to attacks. Many vehicle hacks have been demonstrated, e.g., researchers
in [29] used onboard diagnostics (OBD-II) to hack a GM vehicle. In [30], the
telematics system in a Jeep Cherokee was hacked to accelerate, brake, and kill the
engine. This problem is aggravated in ADASs and autonomous driving. Preventing
hackers from gaining access to connected vehicles is becoming increasingly
important. This involves securing both in-vehicle networks and external
communication.

1.8.4 Geospatial constraints

Many of the modern ADAS solutions being developed are tested within a
geographic location or a group of locations where they are sold. This limits the
ADAS to one or a certain group of geographical locations. This is because not all
countries (or some states in a country) adhere to the same sign and road conventions
uniformly, which makes ADAS algorithms that are often trained under one location
hard to work efficiently in other locations. There is a need to improve algorithms,
e.g., by exploiting V2X technology deployments to overcome variations in road
sign conventions.

1.9 The developed ADASs

In this thesis, we tried to gather three important ADASs that we developed. The
system that we developed started by concerning about the comfort driving and its
most common comfort issue in autonomous driving, Motion Sickness. Considering
the sources of the motion sickness, which will be discussed in the third and fourth
chapters, we developed two motion sickness minimization methods that covers
most of the sources. These systems, that will be discussed in the third and fourth
chapters, are A Full-Featured, Enhanced Cost Function to Mitigate Motion Sickness
in Semi- and Fully-autonomous Vehicles, Motion Sickness Minimization Alerting
System Using The Next Curvature Topology. The research on Motion Sickness
made us concentrate on the anticipating the next moves of the vehicle that is a
common source of the motion sickness. To aim predicting the next movements, we
started research on Motion Forecasting and soon we developed a methodology that
outperform in the intersections. This system that will be discussed in the fifth chaper
is Motion Prediction using Attention Heads and Traffic rules in intersections.

In the next chapters, after describing the high-performance embedded
automotive platforms, we explain each ADAS we developed. There are five
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potential sources of AV motion sickness; variation in horizontal and vertical
acceleration, posture instability, loss of controllability and loss of anticipation of
motion direction, Head downward inclination, and lack of synchronization between
virtual motion and the vehicle motion profile [31]. First, A Full-Featured, Enhanced
Cost Function to Mitigate Motion Sickness in Semi- and Fully-autonomous
Vehicles [40] is explained as the state-of-the-art work that focuses on variation in
horizontal and vertical acceleration and loss of controllability and loss and a control
system is developed for it. Second, Motion Sickness Minimization Alerting System
Using The Next Curvature Topology [41] is introduced that focuses on loss of
controllability and loss of anticipation of motion direction and lack of
synchronization between virtual motion and the vehicle motion profile. This system
uses a Human Machine Interface (HMI) to alert the passengers. Finally, Motion
Prediction using Attention Heads and Traffic rules in intersections is explained and
this state-of-the-art work seeks to explain the improvements that can be done by
adding the Traffic Rules into the Motion Prediction models.
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Chapter 2

High-performance Embedded
Automotive Platform

By developing the autonomous driving subsystem, the requirement of having novel
embedded platforms with high speed and reliability increases. Each ADAS based
on its functionality should be able to perform in real-time in the vehicle. As the
complexity of the system increases, the need of the higher performance embedded
platform rises. As discussed before, each ADAS needs fulfill some embedded
platform capabilities and the systems that we designed also require a reliable setup
for the implementation. In this chapter of the thesis, we investigate on the high-
performance embedded automotive platforms and find the best choice for the
systems we developed. We investigate how the different platforms perform and
finally we discuss why we choose the embedded platform for our systems.

2.1 Introduction

There is a clear trend in the automotive domain towards a new paradigm of
centralized Electrical/Electronic (E/E) architectures, where large portions of
formerly separated functionalities running on dedicated electronic control units
(ECUs) are integrated into centralized vehicle integration platforms (VIP) [32]. At
the same time, novel computation, and data-intensive algorithms, such as, for
instance, predictive maintenance or automated driving (AD) functionalities, are
being deployed on these centralized high-performance platforms.

In order to satisfy the tremendous demand of “centralized” computing power,
heterogeneous system on the chips (SoCs) are being increasingly deployed in
automotive systems. These SoCs are microprocessor-based (uP-based), featuring a
variety of integrated specialized accelerators, including graphics processing units
(GPUs) and Field Programmable Gate Arrays (FPGASs). Examples of this class of
SoCs include NXP’s S32V vision processor family, or the Tegra series offered by
Nvidia.

Compared to traditionally used micro-controllers, these heterogeneous SoCs
are highly parallel and feature complex memory systems, composed of multiple
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levels of on-chip shared SRAM memories (caches or scratch pads) and off-chip
DRAMs. Obviously, the increased complexity of the memory system that is shared
between multiple execution engines on the SoC leads to a strong performance
correlation between parallel executed applications [33]. While programmatically
data is accessed transparently through virtual address spaces, it is physically stored
at different (shared) memory locations, with different access latencies that are
dynamically influenced by complex access and caching schemes as well as
mechanisms for ensuring data coherency and consistency. For instance, in [33] it
has been shown that the average (sequential) read access latency can vary by a
factor of up to 8x on an Nvidia Tegra X1 platform.

In computer-science, a radical shift towards heterogeneous compute platforms
is happening now, accelerated by the rise of Machine Learning and thus dedicated
accelerators, and the plateauing of the Moore’s law applied to CPU compute power.
In the real-time computing landscape, this shift has given rise to high-performance
real-time applications. On high performing, heterogeneous systems co-location of
multiple mixed criticality workloads on the same SoC can dramatically improve the
utilization of system resources, enabling resource sharing (e.g., 10 devices,
hardware accelerators, etc.) and improving the efficiency of data sharing across
workloads.

However, co-location also comes at the cost of potential performance
degradation, both average and worst-case, due to interference on shared resources,
and increased uncertainty in terms of workload execution time. Both the academia
and industry have been investigating the impact of shared resource contention on
real-time and mixed critical software, on hardware requestors (e.g., CPU, GPU,
other hardware accelerators) and on memory bandwidth availability, resources
access latency, and jitter [34-36]. The advent of larger integrated platforms which
will run real-time workloads alongside general-purpose operating system (GPOS)
workloads now calls for those systems to being able to provision their resources in
a quantifiable and predictable way. This becomes crucial to determine acceptable
worst-case execution times (WCET) for real-time workloads and to ensure smooth
and responsive operation of the GPOS workloads running alongside them.

To aid compartmentalize traffic streams on shared resources, silicon hardware
designers and manufacturers have introduced, primarily in the infrastructure
market, technology that allows memory transactions to be labelled and then
subsequently confined to partitions of shared resources: Arm, MPAM [37], and
Intel, CAT.

21



2.2 The performance

The traditional decentralized automotive E/E architectures are the result of multiple
years of evolution of vehicle functionality. By using dedicated hardware for
additional and possibly optional functionalities, decentralized architectures enabled
and/or followed the distributed development paradigm between vehicle
manufacturers and suppliers. They allow the structural partitioning of the vehicle
system into functional domains. On the one hand, this is important for the planning,
design and implementation of vehicle functionality in a parallel setup to minimize
organizational interfaces. On the other hand, the corresponding functional
partitioning (one function - one control unit) limits the functional interfaces and
integration effects to the communication networks. In Figure 11, a regular E/E
architecture with two embedded systems are shown.

Fig. 11. From legt an example of E/E architecture of an intelligent vehicle and in the right two embedded
platforms of NXP and Nvidia for developing the autonomous driving.

This architectural approach obviously results in a very close link between
hardware and software since relocation of functionality is not an architectural
driver. While decentralized architectures have carried the industry so far, new
architectural drivers have appeared as automotive mega-trends: electrified,
autonomous, connected and shared are the keywords that describe future
expectations to a vehicle that must be backed by the E/E architecture. Centralized
E/E architectures bring the opportunity of cost and weight savings by reducing the
number of control units and promise to reduce complexity in comparison to a
distributed E/E architecture. However, the complexity of managing distributed
logic with dedicated resources is merely replaced by the complexity of managing
centralized logic on a parallel hardware platform with shared resources [32].
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In addition, these centralized control units need to host software categories
which range from real-time safety-critical embedded software all the way up to
“app”-like software that come with the concept of being rather easily updated in
field without negative side effects to other co-located functionality.

In this mixed-criticality setting, it is mandatory to have predictable performance
and isolation of applications from each other, with respect to both space and time.
This can be achieved by actively managing Quality of Service (QoS) and limiting
the contention and interference on shared resources. Unfortunately, the currently
available Commercial-Off-The-Shelf (COTS) platforms are rather optimized for
high average performance and offer only coarse-grained support for configuring
QoS for various shared resources, for instance, the interconnect or the DRAM. In
order to achieve predictable performance, one has, thus, to resort to software-based
methods. While spatial isolation is well supported, e.g. at the level of POSIX
processes, several software measures have been introduced to limit the temporal
interference on levels of scheduling, cache partitioning and memory bandwidth
regulation. Scheduling is concerned with the distribution of CPU resources to
applications. In comparison to the well-stablished priority-based scheduling
approaches, reservation-based scheduling approaches show advantages in offering
composable QoS guarantees to applications while allowing more flexibility than
Time-division multiple access (TDMA)-based scheduling [38]. In general,
partitioned scheduling, i.e., the pinning of application processes to cores, shows
better predictability than global scheduling in multi-core settings as interference
effects can be better localized. However, this approach has limitations as well, since
in many SoCs the CPU cores are allocated in clusters of multiple cores (usually 2
or 4). These clusters provide shared infrastructure, e.g., the L2 cache. So, pinning a
process on one core of a cluster will still not resolve the interference between cores
of the same cluster on the L2 cache, unless that cache is partitioned. Extreme
isolation mechanisms such as a “’stop the world” approach, where the execution of
ASIL-D (Automotive Safety Integrity Level D) safety application on a single CPU
core will stall all other cores in the system in order to generate a single-core
equivalent scenario, are not adequate due to their performance penalty.

The previously mentioned issue of interference through caching can be
addressed with cache coloring, exploiting the fact that (depending on the
organization of the cache) certain address ranges will map to the same cache line.
By choosing the mapping of virtual memory pages to physical pages with this in
mind, performance-optimal memory allocation as well as cache partitioning can be
achieved. However, this comes at the price of a factual smaller cache for each
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partition and additionally fine-grained page-mapping that can cause side-effects in
terms of page-table walks. Cache coloring can be supported by software on
operating system or hypervisor level. Also, cache partitioning is directly supported
by novel hardware (HW) mechanisms such as Arm DynamlIQ as shown in Figure
12.

[N

Fig. 12. Arm DynamlQ.

In order to address interference topics outside of a CPU cluster, e.g. the access
to DRAM, performance counters integrated in the SoC can be used to actively limit
the number of requests and reserve memory bandwidths at the level of cores,
hypervisor partitions or single applications, using software based mechanisms such
as Memguard [39]. This is an effective mechanism to limit interference. However,
the more fine grained the objects to be isolated get, the higher the overhead
becomes. This overhead could be reduced if the SoC exposed more information,
e.g., the source of a particular request, or implemented less coarse resource
partitioning mechanisms than in current SoCs (where QoS mechanisms are
available at the cluster level, if at all) directly in HW.

All these concepts are sophisticated approaches with their individual
drawbacks, such that their stand-alone configuration is already quite intricate for an
industrial practitioner in real world application scenarios. However, there are
additional interactions among these mechanisms. If you, e.g., use cache coloring to
reserve cache for real-time critical applications in order to prevent cache thrashing
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by non-real-time applications, you effectively reduce the cache size for all
applications.

This could in turn lead to more DRAM traffic which will increase the DRAM
interference also towards the real-time applications. Finding an optimal
configuration for these interacting mechanisms is highly dependent on the
characteristics of applications and the HW platform. Thus, automated profiling as
well as sophisticated configuration tools are required. Considering updates in the
field at operation time, it is absolutely crucial that there is as little human
intervention required in this as possible.

In addition to these quantitative dependencies among these resources, the
different resources (e.g., interconnect and memory) need also to be available at the
same time in order to avoid interference due to resource contention.

Power consumption, performance (typically average or peak performance), and
chip area are widely utilized design metrics considered when designing a computing
system. Such metrics are typically obtained through measurement under a set of
conditions representative of the intended system production deployment operations
(platform target workloads). When designing real-time systems, additional
performance metrics should be considered, such as quantifying how much the
system allows confident computation of worst-case execution times (WCET) for
each of the real-time workloads it is being designed to execute [32]. Typically, the
degree of uncertainty on computing the WCET that characterizes current high-
performance real-time compute platforms makes classical methods of computing
the WCET unfeasible (such as analytical) [39]. Therefore, there would be the
adoption of the following empirical performance metrics: i) Worst-case measured
performance and ii) Time-predictability, defined as the quotient between the best-
case measured performance and the worst-case measured performance.

2.3 Sources of uncertainty

The reason for high uncertainty in determining the WCET is typically down to
specific sources of uncertainty. The sources of uncertainty in the following affect
the ability to predict or even precisely measure the timing characteristics of real-
time systems:

e Workload input data or events: they cause uncertainty when influencing the
software control flow or the amount of computation performed by it. In this
case it is said that the workload is data-variant. For example, conditional
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branches based on values provided by or calculated from input data can lead
to different paths of execution. Also, the depth of loops or recursions may
depend on the content or size of the input data.

e Hardware state: state of the hardware resources at beginning of execution.
Examples are initial cache contents or memory controller row buffer
contents.

e Interference: deviation in performance caused by workloads that contend
for the same shared resources, alter the initial hardware state for other
workloads or both.

2.4 Shared resources and interference channels

As interference arises from contention between workloads, on accessing or using
shared resources, co-location of workloads on high-performance system is prone to
be affected by such contention, which calls for its accurate quantification. Each
hardware shared resource can exhibit one or more interference channel, each one
corresponding to a place in the resource where a specific type of contention can
happen. The following are examples of potential resource interference channels:

* Internal hardware buffers between pipeline stages: a congested buffer may
result in a general resource stall, delaying the service provided by the resource.

« Arbitration policies: they govern which workload has access to the resource
at any given time. Biased policies (e.g., strict priority ones) or generally non-work-
conserving ones can cause starvation of workload request flows.

2.5 NVIDIA GPUs

The graphics processing unit (GPU), first invented by NVIDIA in 1999, is the most
pervasive parallel processor to date. Fueled by the insatiable desire for life-like real-
time graphics, the GPU has evolved into a processor with unprecedented floating-
point performance and programmability; today’s GPUs greatly outpace CPUs in
arithmetic throughput and memory bandwidth, making them the ideal processor to
accelerate a variety of data parallel applications.

Efforts to exploit the GPU for non-graphical applications have been underway
since 2003. By using high-level shading languages such as DirectX, OpenGL and
Cg, various data parallel algorithms have been ported to the GPU. Problems such
as protein folding, stock options pricing, Structured Query Language (SQL)
queries, and MRI reconstruction achieved remarkable performance speedups on the
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GPU. These early efforts that used graphics application programming interfaces
(APIs) for general purpose computing were known as general-purpose computing
on graphics processing units (GPGPU) programs.

While the GPGPU model demonstrated great speedups, it faced several
drawbacks. First, it required the programmer to possess intimate knowledge of
graphics APIs and GPU architecture. Second, problems had to be expressed in
terms of vertex coordinates, textures and shader programs, greatly increasing
program complexity. Third, basic programming features such as random reads and
writes to memory were not supported, greatly restricting the programming model.
Lastly, the lack of double precision support (until recently) meant some scientific
applications could not be run on the GPU.

To address these problems, NVIDIA introduced two key technologies—the
G80 unified graphics and compute architecture (first introduced in GeForce 8800®,
Quadro FX 5600®, and Tesla C870® GPUs), and Compute Unified Device
Architecture (CUDA), a software and hardware architecture that enabled the GPU
to be programmed with a variety of high level programming languages. Together,
these two technologies represented a new way of using the GPU. Instead of
programming dedicated graphics units with graphics APIs, the programmer could
now write C programs with CUDA extensions and target a general purpose,
massively parallel processor. This new way of GPU programming is called “GPU
Computing”—it signified broader application support, wider programming
language support, and a clear separation from the early “GPGPU” model of
programming.

NVIDIA GPUs increase in complexity at each newer generation. Gaining a
deep understanding of GPU memory hierarchy as they evolve is necessary to write
efficient code. It is especially important to know the size of each cache memory
level, whether that memory is co-located with another cache that might evict its
contents, and whether each cache memory is private to a streaming multiprocessor
or shared among all. Figure 13 shows one example of the NVIDIA GPUs.
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Fig. 13. The volta’s architecture

As published by NVIDIA, the V100 GPU employs HBM2 memory, which
offers a bandwidth of 900 GB/s (at 877 MHz), in conjunction with a L2 cache of
6,144 kibibyte. Data loaded from global memory is implicitly cached in L1 and L2.

NVIDIA introduced several architecture as Hopper, Ampere, Turing, Volta,
Pascal, Kepler, Maxwell, and Fermi.

2.5 The conclusion

As per the systems that we developed, we needed an embedded platform based
on our needs to be powerful and high performance. The target embedded platform,
NVIDIA Jetson AGX Xavier, shown in Figure 14, is representative of the next-
generation AV Domain Controller. This platform with a GPGPU of 512-core Volta
with Tensor Core and a CPU of ARM 8-core v8.2 64-bit is an appropriate choice
for the AD systems.
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Fig. 14. Nvidia AGX-Xavier

The NVIDIA® Jetson AGX Xavier™ module delivers up to 32 TOPS of
accelerated computing capability in a compact form factor consuming under 30
Watts. This gives you more than 20X the performance and 10X the energy
efficiency of its predecessor, the NVIDIA Jetson™ TX2.

This advanced system-on-module is powered by the NVIDIA Xavier SoC and
designed specifically for autonomous machines. Heterogeneous accelerated
computing architecture delivers advanced edge capabilities. Plus, it comes with
integrated memory, storage, power management, and an innovative thermal design
to enable faster time to market. Run modern Al workloads and solve problems in
areas like manufacturing, logistics, retail, service, agriculture, smart cities, and
healthcare.

Jetson AGX Xavier is supported by NVIDIA JetPack, which includes a board
support package (BSP), Linux OS, NVIDIA CUDA®, cuDNN, and TensorRT™
software libraries for deep learning, computer vision, GPU computing, multimedia
processing, and much more. It’s also supported by the NVIDIA DeepStream SDK,
which delivers a complete toolkit for real-time situational awareness through
intelligent video analytics (IVA). This helps you boost performance and accelerate
software development, while reducing development cost and effort.
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Chapter 3

A Full-Featured, Enhanced Cost
Function to Mitigate Motion
Sickness In Semi- and Fully-
autonomous Vehicles [40]

Current full- and semi- Autonomous car prototypes increasingly feature complex
algorithms for lateral and longitudinal control of the vehicle. Unfortunately, in some
cases, they might cause fussy and unwanted effects on the human body, such as
motion sickness, ultimately harnessing passengers' comfort, and driving
experience. Motion sickness is due to conflict between visual and vestibular inputs,
and in the worst case might causes loss of control over one’s movements, and
reduced ability to anticipate the direction of movement. In this chapter, we focus
on the five main physical characteristics that affect motion sickness, including them
in the function cost, to provide quality passengers' experience to vehicle passengers.
We implemented our approach in a state-of-the-art Model Predictive Controller, to
be used in a real Autonomous Vehicle. Preliminary tests using the Unreal Engine
simulator have already shown that our approach is viable and effective, and we
implemented and evaluated using Motion Sickness Dose Value and IlIness Rating
and then tested it in an embedded platform. We implemented it on our embedded
platform, NVIDIA Jetson AGX Xavier that is representative of the next-generation
AV Domain Controller.

3.1 Introduction

In semi- and full AVs, vehicle control shall consider passengers’ stress, and not
decrease their level of comfort [42]. It was proven that a tight relationship exists
between comfort and trust, as well as the acceptance of automated vehicles [43].

The mostly known comfort issues for the passengers is probably Motion
Sickness. Its common symptoms are: headache, pallor, sweating, nausea, vomiting,
and disorientation, and they can be measured by Physiological signals, Vestibule
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Ocular Reflex (VOR) parameters, and Posture stability. There are several ways to
mitigate this, such as instance visual cues, Posture and vehicle controllability, and
Immersive Experience [31].

Motion is primarily sensed by the organs of balance located in the inner ear and
our eyes, which are mainly or uniquely sensitive to accelerations. The vestibular
section of the inner ear is partly comprised of three semi-circular canals that detect
head angular acceleration. The main issue stems from the fact that our bodies are
not used to low-frequency oscillating motion, and our “biological IMUs” are highly
sensitive to this. In carsickness, the lateral accelerations (sway) in the low-
frequency bands (0.1-0.5 Hz) are most relevant and their effects increase in higher
accelerations. In general, researchers proved [44] that it might happen when the
frequency is below 1 Hz.

The potential sources of AV motion sickness can be divided into five groups,
namely, are variation in horizontal and vertical acceleration, posture instability, loss
of controllability and loss of anticipation of motion direction, Head downward
inclination, and lack of synchronization between virtual motion and the vehicle
motion profile [31]. Although motion sickness is most frequently caused by a
conflict between visual and vestibular inputs, loss of control over one’s movements
and reduced ability to anticipate the direction of movement are also important in
the etiology of motion sickness [45]. All three factors, to varying degrees, are more
frequently experienced by vehicle passengers than by drivers, who rarely
experience motion sickness [45]. Possible countermeasures can be categorized into
two groups: prevention solutions and mitigation solutions. Roughly speaking, the
degree of motion sickness may be predicted by an acceleration frequency weighting
that is independent of frequency from 0.0315 to 0.25 Hz and reduces at 12 dB per
octave (i.e., proportional to displacement) in the range 0.25 to 0.8 Hz [31].

We contribute to research with the original design of a control software
component for AVs that minimizes the most important costs. Model Predictive
Control (MPC) is a reference framework for vehicle control because it includes both
kinematic and dynamic models on the vehicle in its formulation. For this reason,
MPC-based Advanced Driver Assistance Systems and Autonomous Vehicles are
important research directions for mitigating road accidents. The real-time
trajectories based on the pre-defined model might not be optimal. Therefore, an
adaptive MPC design with an on-line vehicle parameter estimator is needed to
account for those unpredictable changes. In this chapter, we used an Adaptive
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Model Predictive Control (AMPC) that can estimate and update the model in real-
time along with five constraints to build our cost function to minimize.

We have chosen the constraints that are relevant to Motion Sickness and
comfort, either direct (acceleration frequency, longitudinal acceleration, and lateral
acceleration) or indirect (speed limitation and distance from the next vehicle).
Acceleration frequency is one of the constraints that directly affects the Motion
Sickness and the range of Frequency in which Motion Sickness occurs in
acceleration frequency between 0.0315<F<0.8 Hz [46] so we need to avoid this
range. Speed limitation is not directly related to Motion Sickness level. However,
In the other hand, as the speed goes up, Acceleration Frequency for the speed
regulation will arise. Therefore, we consider a speed limitation based on our
Acceleration Frequency. The European New Car Assessment Program (Euro
NCAP) performed standardizing tests on different autonomous vehicles with a
constant speed of 20 — 60 km/h [47]. However, we challenge the work with the
speed between 0-80 km/h. We also consider a threshold of acceleration because it
affects both Motion Sickness and Comfort driving [47]. It is also one of the factors
that increase Motion Sickness Dose Value (MSDV). Therefore, having the
limitation with an appropriate planner can lower the MSDV and raise comfort. We
also consider the distance from the next vehicle to brake with a minimum
acceleration, as we discussed before. In particular, with higher distance from the
next vehicle, we require a lower braking acceleration. Finally, since the lateral
acceleration is the other important source in MSDV [46], we need a lane keeper to
reduce our lateral accelerations to a minimum quantity.

The system is tested on MATLAB/Simulink [48] and then implemented on an
NVIDIA Xavier AGX. We evaluate our work based on ISO 2631-1 [47] which a
measure of the probability of nausea that is called motion sickness dose value
(MSDV) and a simple linear approximation between MSDV and mean passenger
named illness rating (IR) are considered as the evaluation methods.

In the following sections, we first review the state-of-the-art in motion sickness
and MPC controller. Then we describe the details of our controller. Finally, we
show our implementation, and discuss experimental results with respect to the
reference metrics of motion sickness.
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3.2 Motion sickness in AV literature

In the recent years some efforts have been done to mitigate and minimize the motion
sickness. These works can be categorized in two different groups. The first group
tries to minimize the MS by having a new motion planner with a library of costs. In
this regard, In [40], five different main physical characteristics that can be effective
on motion sickness, and defining them in a function cost, to improve quality
passengers' experience and minimize the Motion Sickness to vehicle passengers is
considered. In [42], the costs of consisting of progress, comfort, and safety are
utilized for the evaluation of the strategies generated by the three modules of
distance keeper, lane selector, and merge planner. In [45], on investigation with two
strategies for decreasing the visual-vestibular conflict while watching videos is
conducted. The first approach locates visual stimuli on or around the video screen
to mimic the perceived motion and forces of the moving vehicle. The second
method tries to control the position of displayed images synchronized with
passenger's head motions produced by vehicle acceleration/deceleration and vehicle
motions, then provides a video that appears to be stabilized in relation to the
movement of the vehicle. In [52], they generate the optimal Path Planning using
Clothoid Curves to increase the comfort of the passengers. They use the second
clothoid length, the straight line to the goal at the end, made up of the first clothoid
length, and the squared distance along the curve as their costs to control. To
minimize the MSDV in autonomous vehicles, [53] presents an application of
motion planning [53]. On the other hand, in the second group, the researchers try to
have a anticipation alert to the passengers, so their brain will be ready to start the
maneuvers. In this regard, in [54], they investigate the effects of peripheral
information about upcoming maneuvers through a vibrotactile display in
increasing the fully-automated driving car passengers’ awareness of situations
and mitigating their motion sickness level. This study concludes that in order to
mitigate motion sickness inside a fully-automated driving car, more specific
information need to be included in the peripheral information. In [55], they have
progressed a prototype of a human— machine interface (HMI) that presents
anticipatory ambient light cues for the AV’s next turn to the passenger. The HMI
prototype was proven to be effective regarding highly susceptible users. In [56]
average illness ratings were significantly lower for the condition that contained
informative auditory cues, as compared to the condition without informative cues.
One second in advance of each displacement a sound clip was played over
headphones communicating either “forward” or “backward” in the native language
of the participant. In addition, recently, [57] resulted that if there is an additional
effect of augmented visual stimulion MS, the effect is at best small. Therefore,
having an augmented visual stimulion is not in our plan.

Although using different methods can lower the MS level, most of them are not
tested in a real autonomous vehicle. Furthermore, the sound cues should be in a way
that the passengers do not disturb. Indeed, the visual cues should be in a way that
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shows the regular view of the vehicle not an augmented one [57]. In this regard, we
focus on anticipatory audio and video cues using pleasant sounds and a Human
Machine Interface to display and inform the passengers about the upcoming
trajectories that may lead to make the passengers sick. To be able to anticipate the
next moves, we require an evaluation system of the next 500 meters of the road
using the map. The road is investigated based on the amount of the turns and the
maximum speed allowed that lead to lateral accelerations that is high enough based
on Motion Sickness Dose Value to make the passengers sick. The system alerts the
passengers through a Human Machine Interface to focus on the road for prevention
of the Motion Sickness.

Considering recent AMPC implementations in autonomous driving,
concentrating on their cost functions, there are several efforts. In [58], an adaptive
model predictive control with three constraints, Lane Change-Related Constraint,
Location in Opposite Lane Constraint, and Maneuver Completion, is applied for
tracking the references being generated for the Autonomous Vehicles on Two-Lane
Highways. In [59], they constructed an adaptive model predictive control trajectory
tracking system with the four constraints that define as follows: (1) The radius of
all planned paths should be greater than the minimum turning radius of the wheel
loader; (2) The planning path and its curvature should be continuous to provide
steering stability of the loader; (3) When the loader is at the loading and unloading
points, the articulation angle should be as close to zero as possible to avoid rollover
of the vehicle; (4) The maximum planned velocity of the loader should not exceed
3m/s and rapid acceleration and deceleration should be avoided. In [60], an adaptive
model predictive control (AMPC) scheme is developed to improve the yaw stability
for four-wheel-independently actuated electric vehicles by minimizing the total
longitudinal forces of all wheels. In [61], the side slip angle of the centre of mass
and the side slip angle of the tire as hard constraints and the lateral acceleration as
a soft constraint are considered to propose an Adaptive Model Predictive Control
for Uncertain model (UMAMPC) algorithm to predict control variables for the next
sampling time and alleviate the target angle discontinuity. In [62], they develop a
fault tolerant path tracking control algorithm through combining the adaptive model
predictive control algorithm for lateral path tracking control and Kalman filtering
approach with two states chi-square detector and residual chi-square detector for
detection and identification of sensor fault in autonomous vehicles by using the
incremental constraint of tire and the incremental constraint of lateral acceleration.

In all of the above works, that are proposed for controlling the autonomous
vehicles by AMPC, below than five constraints are used. In this chapter of the
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thesis, we use five constraints in an AMPC that minimize the MSDV with
consideration of comfort.

3.3 Control system

To design the controller, we defined a Vehicle Model and used the tire forces to
specify our state space. Then, we entered our state space in AMPC and defined our
constraints in it.

3.3.1 Vehicle Model

For an MPC control design, we require to define our Vehicle Model. It was found
that the vehicle side slip angle is less than 1 in the highway autonomous or
manoeuvre driving under clothoid constraints [63]. Thus, it is considered that the
tire slip angle is also negligible under highway driving conditions, including cases
employing an advanced driver assistant system (ADAS). It makes it possible to use
a standard dynamic “bicycle model” [64] to describe the Vehicle Dynamics. Such
as a recent work [65] that uses the higher speed until 35 m/s (126 km/h) with a
bicycle dynamic model, we use a bicycle dynamic model for our tests between the
speed of 0 km/h to 80 km/h and we use them in our first scenario. In the bicycle
model, the two left and right wheels are represented by one single wheel. The model
is derived assuming both front and rear wheels can be steered by Jf'and Jr angles
and the distances of front and rear wheels are a and b. The model neglects roll and
pitch motions. The Motion of the vehicle is represented by X, Y and . Figure 15
depicts a diagram of the vehicle model, which has the following longitudinal,
lateral, and turning or yaw equations:

mxX =mry + 2F, ; + 2F, (1)
my = —mxy + 2F,  + 2F,, (2)
I,,\) = 2aF, ; — 2bF,, (3)

The vehicle’s equations of motion in an absolute inertial frame are

Y =xsiny + ycosy (4)

X =xcosy —ysiny (5)

The following equations hold for rear and front axes by using the corresponding
subscript for all the variables (it is correct either for J¢ or ¢r). Longitudinal and
lateral tire forces lead to the following forces acting on the center of gravity:

Fy = Fisin ¢ + F¢ cos 4, (6)
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Fx = Ficos § — Fcsin 4. (7)
Tire forces for each tire are (accordingly a can be ar or of)
Fi=fi(a, s, 1, F2), (8)
Fec =fc(a, s, 1, F2), 9)

where a is the slip angle of the tire and s is the slip ratio. The tire model is considered
as indicated in [66] velocities, respectively, are expressed as

Vif = Vy SIN Ot + Vyt COS Of, (10a)
Vet = Vyf COS Jf — vt SiN o, (10b)
Vir = Vy,r SIN Or + Vxr COS Or, (11a)
Ve,r = Vyr COS Or — vyr SIN I, (11b)
And

Vyt =y + ay Vyr =y — b, (12)
Vxf = X

Fig. 15. Bicycle Model of the Vehicle

If we consider &r =0, then:

Fl’fCOS(é‘f)—FC’fSin(é‘f)+Fl‘T

X=ry+ (14)

m

n Fl’fsin(é‘f)+ FC’fCOS(é‘f)+Fl‘T

y=-ry (15)

m
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__a(Fygsin(6f)—Fc gcos(6))—bFcr
- 1zz (16)
Using the equations (1)-(16), the nonlinear vehicle dynamics will have the states

of[X Y r wvx vy 7l
3.3.2 Adaptive Model Predictive Control System

MPC [67] is a method for process control that actively uses the dynamic model of
the system. If the nonlinearity is high, however, MPC performance could
deteriorate. In this case, one can use an AMPC that constantly predicts the new
operating conditions [68].

An adaptive MPC algorithm is designed by using the recursively-identified state-
space models with dynamic adjustments of MPC constraints and objective function
weights [69]. Adaptive MPC controllers adjust their prediction model at run time
to compensate for nonlinear or time-varying plant characteristics. Furthermore,
Adaptive control for constrained systems has mainly focused on improving
performance with the adapted models, while the constraints are satisfied robustly
for all possible model realizations and the worst disturbance bounds [70]. In this
chapter of the thesis, we used an Adaptive MPC to update our state-space online
and get the linear part of our nonlinear system. This approach is implemented with
the most important costs that we wanted to control.

In AMPC, the controller uses the time-varying Kalman filter (TVKF) instead of
the static one to provide consistent estimation with the updated plant dynamics. The
TVKEF approach can be expressed as follows [102]:

-1
LK = (Akpk|k—1CT’1;1,k + N)(Cm,kpk|k—1c‘;l,k + R)
-1
My = Pyp—1Ch i (Con Pej—1Ch i + R) (17)
Pije+r = ArPiji-14% — (AxPiye—1Chy + N)LE + Q

In equation (17), Q, R, and N matrices are constant covariance matrices, and A4,
and C,,, are matrices depicting the state-space description of the system. The
Py k-1 is the state estimate error covariance matrix at k constructed from the

information from time k — 1. TVKF is constructed to update regularly the L and M
matrices with the updated plant dynamics.

3.3.2.1 Constraints

The Model Predictive Control can directly include constraints in the computation
of the control moves which leads to linear program (LP) or quadratic program (QP)
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to be solved at each sampling instance, with the constraints written directly as
constraints in the LP/QP.

The MPC algorithm solves a quadratic optimization problem at each time
interval. The solution of the problem determines the so-called manipulated
variables (MV), which are essentially the input variables adjusted dynamically to
keep the controlled variables (CV) at their set-points. The AMPC approach follows
the same cost optimization algorithm as MPC with the cost function

Jy@) =57, 5P, {W— (e + 1) — ;e + i|k>)} (18)

where k represents the current control interval, p is the prediction horizon
(interval number), n,, is the number of plant output variables, z is the quadratic
problem (QP) selection which is depicted as the formula z! = [u(k|k)T u(k +
11T ulk+p—1/k)" k],  y;(k +ilk) is the jth CV at the ith prediction
horizon step, r;(k + i|k) is the ith references variable at the ith prediction horizon

step, 57 is the scale factor for the jth plant output variable, and w;; is the tuning
weight coefficient reflecting the relative importance of the plant output variable.
Among these variables n,, sjy, p, and Wi],.j’ are determined during the controller
design and stay constant.

Acceleration Frequency.

The frequency range of the tested Motion Sickness is 0.0315<F<0.8 Hz and this
is very important to mention that the maximum Motion sickness occurs at 0.2 Hz
[46]. Therefore, we tried to fix the frequency at 0.2 Hz (or T=5s). In the other word,
we try to prevent inserting acceleration in the period of 5 seconds.

Speed limit.

As discussed, the test speed is in the range of 20 — 60 km/h [47]. Since we need
to consider having acceleration and braking in our work, we raised this limitation
to 0 - 80 km/h and in our tests, we consider these values.

Acceleration limit.

Acceleration limitation is an important source for comfort and the different level
of comfort is measured based on it [47]. Based on I1SO 2631 [47] for determination
of acceleration, the best range of the acceleration is <0.315 m/s? that is named not
uncomfortable. In this standard, the best range of acceleration is <1 m/s? that is
fairly uncomfortable, and it is the border of the uncomfortable range of
measurements. So we maintain this range.
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Distance to the front vehicle

With a higher distance from the next vehicle, we decrease the braking
acceleration. It means that we will have more time to plan smooth braking, with the
consideration of our acceleration limit, and it lowers the MSDV. There is a Two-
Second Distance rule from the next vehicle [71]. The mean deceleration is 2.5 m/s?
[72] and our deceleration should not exceed 1 m/s?. Therefore, we raised the
distance to Five-Seconds Distance to fulfil these requirements.

Lane keeper

As discussed, we have high importance in lateral acceleration to minimize the
MSDV. Therefore, our system maintains the boundaries and controls the Y as the
centre of the road lines. It is obtained by having a reference Y of the road and try to
follow it. In the results, we show that our controller follows it properly.

3.3.3 Motion Sickness Evaluation

The total MSDV resulted from lateral and longitudinal motion is given as [47]:

MSDV="] [ (g ()2 + [ f] (@ ()2 (19)

Where a,,(t) and a,,(t)are the frequency weight acceleration in the
longitudinal and lateral direction.

A, w (t) = Ay (t) x VVf (20)

ayw(t) = a,(t) X W (21)

where a,(t) and a,(t) are the longitudinal and lateral acceleration. W is the

weighting factor defined in British Standard 6841 [47] for evaluating low frequency
motion with respect to motion sickness. From the standards [47], [73], a simple
linear approximation between MSDV and mean passenger illness rating is given as:

IR = K x MSDV (22)

where IR is predicted illness rating and K is an empirically derived constant. The
illness rating value is divided into four levels; O indicates feeling fine, 1 indicates
slightly unwell, 2 indicates quite ill, and 3 indicates absolutely dreadful [47], [73].
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3.4 Implementation

The system was tested in MATLAB/Simulink [48] and then implemented by an
NVIDIA Xavier AGX. This platform is representative of next-generation AV
Domain Controller where AD software components, such as our controller, will
execute.

To verify the validity of the proposed AMPC controller. CarSim [49] is used to

provide a vehicle dynamics model and MATLAB/Simulink is mainly for providing
control function.

Two different scenarios, straight and turn, were tested. The scenarios were
designed in drivingScenarioDesigner and tested by using Unreal Engine [50] for
the visualization of the output.

3.4.1 Scenarios

Since the MSDV is mainly a result of the lateral and longitude accelerations, we
require to define the scenarios based on the existence of longitudinal acceleration,
braking, and lateral acceleration. Therefore, we define a straight scenario that has
the longitudinal acceleration and braking, and a turn scenario that has longitudinal
and lateral accelerations.

34.1.1  Straight road

In the straight scenario, we made a velocity profile. As it has shown in Figure 16,
there were two vehicles in the scenario that the front vehicle (the truck) had 60 km/h
speed and our vehicle model was 200 meters back of this vehicle with 80 km/h.

=

Fig. 16. Our scenario in the drivingScenarioDesigner schematic in MATLAB.
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3.4.1.2 Turn

We designed the other scenario for a comparison between our method and the other
works. This scenario consists of different turns as shown in Figure 17. The speed
limit of this scenario is between 0 to 40 km/h and at the first, the vehicle reaches
the 40 km/h with our acceleration limitation that we discussed in constraints.

Fig. 17. The Scenario visualization in Unreal Engine.

3.4.2 Adaptive Model Predictive Controller design

We designed our AMPC using mpcDesigner [48] and Simulink. For each time step,
our controller updated to make new states for the next prediction horizon. In
Simulink, as shown in Figure 18, we used the Adaptive MPC block for this
implementation which in it, the constraints and the MPC parameters are attached to
it by mpcDesigner tool. The different blocks are to build the requirements of the
Adaptive MPC block. We also brought our reference scenarios as discussed before.
To determine the prediction horizon and control horizon we did an experimental
exercise. The tests led us to define prediction horizon considered as 10 seconds and
the control horizon as 5 seconds. The tuning of weights was done by mpcDesigner
tuning tool for closed-Loop Performance and State Estimation along with
considering the system stability. The constraints, as discussed before, were defined
in our controller using the mpcDesigner tuning tool.
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Fig. 18. The Simulink implementation of Adaptive MPC

3.4.3 Simulator

The system is tested with the Unreal Engine simulator [50] which connects to the
Simulink.  Our simulator considered the scenario data made by
drivingScenarioDesigner, and added the output of the system to visualize and
evaluate our system.

3.4.4 Embedded platform

The target embedded platform, NVIDIA Jetson AGX Xavier is representative of
the next-generation AV Domain Controller. This platform with a GPGPU of 512-
core Volta with Tensor Core and a CPU of ARM 8-core v8.2 64-bit is an appropriate
choice for the AD systems.

The NVIDIA® Jetson AGX Xavier™ module delivers up to 32 TOPS of
accelerated computing capability in a compact form factor consuming under 30
Watts. This gives you more than 20X the performance and 10X the energy
efficiency of its predecessor, the NVIDIA Jetson™ TX2.

This advanced system-on-module is powered by the NVIDIA Xavier SoC and
designed specifically for autonomous machines. Heterogeneous accelerated
computing architecture delivers advanced edge capabilities. Plus, it comes with
integrated memory, storage, power management, and an innovative thermal design
to enable faster time to market. Run modern Al workloads and solve problems in
areas like manufacturing, logistics, retail, service, agriculture, smart cities, and
healthcare.

Jetson AGX Xavier is supported by NVIDIA JetPack, which includes a board
support package (BSP), Linux OS, NVIDIA CUDA®, cuDNN, and TensorRT™
software libraries for deep learning, computer vision, GPU computing, multimedia
processing, and much more. It’s also supported by the NVIDIA DeepStream SDK,
which delivers a complete toolkit for real-time situational awareness through
intelligent video analytics (IVA). This helps you boost performance and accelerate
software development, while reducing development cost and effort.

To have a realistic implementation, we can’t rely on the Matlab/Simulink

implementatn, and we utilized embedded coder of MATLAB/Simulink to convert
our algorithm into C++ source code, which is then compiled for the target platform.
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3.5 Results and discussion

Firstly, we calculated our results regarding of the first scenario, Straight scenario.
Then, we investigated the results of the second scenario which is Turn. Finally, we
tried to understand our timing results in the embedded platform to be able to use it
along with other infrastructures. These plots demonstrate the control system
reliability and the correct response. By having a good control system using AMPC
we can have the reliable MSDV to evaluate our system.

We evaluated the scenarios by MSDV and IR then we compared our work with
the latest works in this area. Our results shown different advantages compared to
the previous approaches.

3.5.1 Results of the scenarios

3.5.1.1  Straight road

The straight scenario included two vehicles and a velocity profile. Our vehicle was
behind a truck that was slightly far. It started from 0 and reached 80 km/h (22.22
m/s) and as soon as founded the distance of 5 seconds, it started slowing down to
maintain the 5 seconds of the distance. Afterwards, it followed the truck by the
truck’s velocity. As shown in Figure 19, Figure 20, and Figure 21, the output of our
controller follows the base-line with a small error.
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Fig. 19. The plot compares the Y position defined in the scenario (blue) and the result that we achieved in our
simulation (orange). As it can be seen the difference in the preiod is almost zero.
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Fig. 20. The plot compares the yaw angle defined in the scenario (blue) and the result that we achieved in our
simulation (orange). This shows a high relaibility of the control system.
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0
Fig. 21. The plot compares the velocity defined in the scenario (blue) and the result that we achieved in our

simulation (orange). The system follows the velocity profile as expected and in the three different changes it
adapts itself to the target velocity.

3.5.1.2 Turn

In the turn scenario, we maintained the acceleration limitation based on AMPC
algorithm designed by Simulink and mpcDesigner. Figure 22, Figure 23, and Figure

24 show the results.

12 4
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Fig. 22. The plot compares the velocity defined in the scenario (blue) and the result that we achieved in our

simulation (orange). The system follows the velocity profile as expected and in the three different changes it
adapts itself to the target velocity.
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Fig. 23. The plot compares the Y position defined in the scenario (blue) and the result that we achieved in our

simulation (orange). As it can be seen the difference in the preiod is almost zero.
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Fig. 24. The plot compares the yaw angle defined in the scenario (blue) and the result that we achieved in our
simulation (orange). This shows a high relaibility of the control system.

3.5.2 MSDV and IR analysis

Our evaluation is based on MSDV and IR. IR generally increases overtime during
a motion sickening stimulus [51]. In [47], IR is considered as O when the passenger
feels fine, 1 with a feeling of slightly unwell, 2 as quite ill, and 3 when the passenger
is absolutely dreadful. As shown in Table 1, the output of the system more than
having a small amount of IR which almost is zero, it has a comparison between the
minimum IR of the previous work.

Table 1: The results of the IR evaluation

Scenario Time (s) IR (min)
Straight 50 0.07
Turn 32 0.0017
Turnin [53] 29.73 0.044

Table 1 shows that the IR of the Turn scenario is much lower than the straight
one. It is exactly what we expected considering the accelerations used in both
scenarios since the Turn scenario has a much lower time of accelerating.

The results show that our performance is better since we try to use the
acceleration as small as we can and we try to make it limited to 1 m/s2. Furthermore,
our planner can make an IR near to zero. Therefore, it has a fine feeling according
to [47]. It means the comfort criteria is satisfied and the vehicle
acceleration/deceleration make the possibility of getting motion sickness lower.
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3.5.3 Embedded platform performance

To test the performance of the embedded platform, we ran the system and calculated
the timing. When running on the production-like embedded domain controller, our
controller achieves 8.7 FPS. It means we can run this motion sickness mitigation
system in real-time. This is what exactly it would be needed for the motion sickness
mitigation system.

3.6 Conclusion

In this chapter of the thesis, we showed that by having a complex cost function with
an emphasis on Motion Sickness Mitigation and consideration of comfort, we can
achieve a smooth controller that does not make people sick. This work showed that
the AV can have an algorithm for Motion Sickness mitigation along with the other
tasks and make the AV more reliable than before.

For the next works, we can add other necessary features of AV such as LIDAR
to detect and import the data for the Motion Sickness Mitigation Algorithm. It can
finally be an algorithm which is used with the other infrastructures.

We also plan to adopt more complex vehicle models, such as the kinematic and
dynamic model, to validate our approach at highest speeds (i.e., > 150km/h), and to
possibly include other classes of vehicles, such as busses and coaches, which
potentially issue Motion Sickness much more than cars.
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Chapter 4

Motion  Sickness  Minimization
Alerting System Using The Next
Curvature Topology [41]

Current intelligent car prototypes increasingly move to become autonomous where no driver is
required. If an automated vehicle has rearward and forward facing seats and none of the passengers
pay attention to the road, they increasingly experience the motion sickness because of the inability of
passengers to anticipate the future motion trajectory. In this chapter of the thesis, we focus on
anticipatory audio and video cues using pleasant sounds and a Human Machine Interface to display
and inform the passengers about the upcoming trajectories that may lead to make the passengers sick.
To be able to anticipate the next moves, we require an evaluation system of the next 1 kilometer of
the road using the map. The road is investigated based on the amount of the turns and the maximum
speed allowed that lead to lateral accelerations that is hig.h enough based on Motion Sickness Dose
Value to make the passengers sick. The system alerts the passengers through a Human Machine
Interface to focus on the road for prevention of the Motion Sickness. We evaluate our method by
using Motion Sickness Dose Value. Based on this work, we can prevent the sickness due to lateral
accelerations by making the passengers to focus on the road and decrease the vestibular conflict.

4.1 Introduction

Vehicle control of the semi- and full Autonomous Vehicles should consider the
passengers’ stress and try to maintain their comfort level [42]. Furthermore, there
is a tight relationship between comfort and trust, as well as the automated vehicles’
acceptance [43].

One of the wide recognized comfort issues for the passengers probably is
Motion Sickness. It starts appearing with headache, pallor, sweating, nausea,
vomiting, and disorientation, and they are calculated by Vestibule Ocular Reflex
(VOR) parameters, Physiological signals, and Posture stability. To mitigate it,
Immersive Experience, Posture and vehicle controllability, and instance visual cues
can be used [31].

The potential sources of AV motion sickness can be divided into five groups,
namely, loss of controllability and loss of anticipation of motion direction, variation
in horizontal and vertical acceleration, Head downward inclination, posture
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instability, and lack of synchronization between virtual motion and the vehicle
motion profile [31]. The motion sickness is mostly occurred by a conflict between
visual and vestibular inputs. However, the loss of controllability over one’s
movements and unability to predict the movement direction are also crucial in
motion sickness [45]. In the most of the cases, the motion sickness experience is for
the passengers and the drivers rarely experience it [45]. Possible countermeasures
are categorized in two groups: prevention solutions and mitigation solutions.

One of the general ideas for overcoming the motion sickness is using human
senses to provide sufficient situation awareness (SA). In the contexts of automotive
and driving, SA is recognized as awareness of the current position of the car in
relation to its destination, the relative positions, and behavior of other road users
and potential hazards, and knowing how these critical variables are likely to change
in the near future [74]. This is because the drivers less often get sick since they are
able to anticipate the next moves [75] and can predict required actions based on
previous experiences.

If a passenger becomes aware of the required information about the road, we
can avoid the sensory mismatch. One of the required information is the immediate
intention of the AV that involves variation in the lateral and longitudinal forces.
This information can be presented shortly before an important situation that is about
to happen (for example when a junction is approaching). The virtual modality is
one of the ways that the information can be delivered [57]. Furthermore, the
informative auditory lowers the average illness ratings respect to the condition
without informative cues [56].

We contribute to research with the original design of a minimization system
that predicts the road characteristics in one kilometer ahead and using the HMI
instructions for the passengers to be ready for the next potential motion sickness.
The system calculates in real time using an NVidia AGX and monitors the road all
the time. The system is designed in a way that prevents the unnecessary interactions
with the passengers both visual and sound cues and the system is on a real vehicle
with a motion prediction algorithm to describe the next moves. Despite most of the
works that are in a simulation phase, our work is tested in real vehicles in real
scenarios. To evaluate our work, we use Motion Sickness Dose Value (MSDV) [47]
for the evaluation. Our contributes can be categorize in the following groups:

« A real time system that calculates the potential lateral accelerations based
on the road characteristics in the next 1 km;
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» An alert system that tries to interact with the passengers only at the time of
the existing the potential motion sickness ahead and tries to minimize the
interactions;

 Defining a new equation to calculate the motion sickness in the curves;

» The system can be used in fully autonomous vehicles as well as vehicles
with less autonomy.

In the following sections, we first review the state-of-the-art in motion sickness.
Then we describe the details of our Human Machine Interface (HMI) and sound
profile. Finally, we show how we implemented it and discuss the experimental
results with respect to the reference metrics of motion sickness.

4.2 Curvature and lateral analysis

For having a correct lateral acceleration prediction, we need to the speed along with
the maximum superelevation rate and the maximum allowable side friction demand
(assumed in the Green Book [76] to be the friction between the tires and pavement)
determine the minimum radius of curvature for each design speed [77]. This is
necessary to go through these equations and describe them since we plan to use the
final output in the MSDV equation to retrieve the final formula. Equation 1 is used
to determine the minimum radius of a circular horizontal curve.

Vi
15(emax+ fmax)

Rmin = 1)

where,

R,.;x, = minimum radius of curvature (ft),

V;= design speed (mph),

emax = Specified maximum superelevation elevation rate (fit/100 ft),
fmax = Specified maximum side friction demand.

The tendency of a vehicle to either skid off the road or overturn must be resisted
by either the friction developed between the vehicle tires and the pavement or the
vehicle's roll stability, respectively. A vehicle will skid off the road when the side
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friction demand exceeds tire/pavement friction. Also, a vehicle will overturn if the
unbalanced lateral acceleration exceeds the rollover threshold of the vehicle.

According to the Green Book [76], the maximum available side friction factor
(friction developed by the tire-pavement interaction) should not be used directly for
the design of a horizontal curve. Instead, the value used in design should be a
percentage of the maximum available side friction factor that can be used with
comfort and safety by the majority of drivers. This limiting value is described as
the lateral acceleration that is sufficient to cause the driver to experience discomfort
and to instinctively avoid higher speed. Accordingly, the speed at which a driver
feels discomfort due to the lateral acceleration generated while traversing a curve
can be accepted as a design control for the maximum allowable amount of the side
friction factor.

The Green Book [76] provides side friction factors (J) for low-speed and high-
speed design of roadways. Currently, American Association of State Highway and
Transportation Officials (AASHTO) bases these recommended values on the
results of various. AASHTO's recommended maximum allowable side friction
factors for low-speed roads vary with the design speed from 0.38 at 10 mph (16
km/h) to 0.14 at 45 mph (72 km/h), and then vary directly with the design speed to
0.08 at 80 mph (128 km/hr). These values for high speed provide a "reasonable
margin of safety at high speeds.” The values for low-speed design are higher since
drivers are more tolerant of discomfort at lower speeds.

The coefficients of friction for forward skid on wet concrete pavement with
tires having new treads. The wet pavements have lower coefficients of friction than
dry pavement. Currently, the Green Book defines the margin of safety in horizontal
curve design as the difference between f _design and fat impending skid. These
values for at impending skid are assumed to be the ultimate side friction values for
good tires on wet concrete pavement. These conditions are considered sufficiently
representative for a meaningful analysis.

4.2.1 The Point Mass Model

Under the AASHTO policy, a point mass is used to represent a vehicle on a
horizontal curve. In this model, the vehicle’s suspension is ignored. From basic
physics, the lateral acceleration of a point mass traveling on a circular path at a
constant speed can be represented by the following relationship:
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V2

a= 1z )
where,

a = lateral acceleration (g)

V' = vehicle speed (mph)

R =radius of curve (ft)

The lateral acceleration experienced by the vehicle is relative to g which is equal
to 32.2 ft/s? (9.8 m/s?).

In the Point Mass Model, all points in a vehicle are assumed to have the same
acceleration; in other words, the entire vehicle is a "point mass." Consider in Figure
25.

Fig. 25. The mass point of the vehicle and the radius (R) of the curve.

where a vehicle is represented as a point with mass, m, and weight, mg,
traversing at speed, V, around a curve with radius, R, and superelevation, e.
Summing forces along the superelevated plane results in the following equation:

VZ

m
fN +mgsinf =

R cos6 3)

where,

f = side friction demand,

N = normal force resulting from force of vehicle due to gravity, mg,
W = force of vehicle due to gravity, mg,
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g = acceleration due to gravity, 32.3 fit/s? (9.81 m/s?),
6 = angle resulting from superelevation, e.
Respect to this formula, fequals to:
2
m}{ cosf —mgsinf

f= N 4)

With small angle approximation where cos8 is 1 and sin@ is e, and based on the
description provided in [103], results in:
VZ

f=1r"¢ ()

4.2.2 Lateral acceleration

When a vehicle moves in a circular path, it undergoes a centripetal acceleration that
acts toward the center of curvature. This acceleration is sustained by a component
of the vehicle’s weight related to the roadway superelevation, by the side friction
developed between the vehicle’s tires and the pavement surface, or by a
combination of the two. Centripetal acceleration is sometimes equated to
centrifugal force. However, this is an imaginary force that motorists believe is
pushing them outward while cornering when, in fact, they are truly feeling the
vehicle being accelerated in an inward direction. In horizontal curve design, “lateral
acceleration” 1is equivalent to “centripetal acceleration”; the term “lateral
acceleration” is used in this policy as it is specifically applicable to geometric
design.

Based on [78], large radius curves, the drivers limit their speed by both their

comfortable lateral acceleration and speed environment. On small curves, a

comfortable or “easy ride” corresponded to an experienced lateral acceleration of
0.35g to 0.40g.

Based on the radius and maximum velocity defined in the road, we may find
the actual acceleration that will be occurred in the curve and calculate the MSDV
based on it.

4.2.3 Radius calculation

As discussed, for having the lateral acceleration in vehicle, we need the radius of
the curve. To calculate the radius, we use the pure pursuit method. To use it we
need to choose a proper look ahead distance, based on the Figure 26.
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> X
Fig. 26. Pure pursuit model geometry. This model is used to calculate the radius of the curvature. Based on the
curvature’s radius along with the velocity and acceleration in the curvature, we will be able to calculate the MSDV

and IR.

The x and y axis construct the coordinate system of machine. The point (X, y)
is a point some distance ahead of the machine. The L is the length of the cord of the
arc connecting the origin to the point (x, y). r is the radius of curvature of the arc
and a is the arc length of a angle. The relationship of x, L and r (the same as R in
the previous section) is as follows:

D+x=r (6)

D2 +x?=r (7)

x?+y? =12 (8)

From Eg. (6), Eq. (7) and Eq. (8),

r2 —2rx+x%*+y?=r? 9)
iy (10)

2x
a = —(2mr) (11)

By choosing a look-ahead distance and calculating the path error x, the radius
of the curvature required to get the machine on the required path can be calculated.

4.2.4 Motion Sickness Dose Value

The total MSDV resulted from lateral and longitudinal motion is given as [47]:
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MSDV =" [ (@ (£))* + 2/f§<ay,w ©)?2 (12)

Where a,,,, (t) and a,,, (t) are the frequency weight acceleration in the lateral
and longitudinal direction.

Where a,,,, (t) and a,,, (t) are the frequency weight acceleration in the lateral
and longitudinal direction.

Qe (D)= @, (£) X Wy (13)
ayw ()= a,(t) x W (14)

where a,(t) is the longitudinal acceleration and a,,(t) is the lateral one. In
Standard 6841 [47] W, is defined as the weighting factor for evaluating low
frequency motion with respect to motion sickness. Since we consider only the
lateral accelerations, we consider just a,,(¢) in our calculations. From the standards

[47], [73], asimple linear approximation between mean passenger illness rating and
MSDV is defined as:

IR = K x MSDV (15)

where IR is defined as the predicted illness rating and K is an empirically
derived constant. Based on [47] and [73], the illness rating value is in four levels;
The illness rating of 0 demonstrates the feeling fine, 1 demonstrates slightly unwell,
2 demonstrates quite ill, and 3 demonstrates absolutely dreadful.

4.2.5 Motion Sickness in the curves

The previous calculations show that we can calculate the MSDV using the lateral
accelerations and the lateral accelerations can be defined based on the velocity and
the radius of the curve. To achieve a single formula, we neglect the accelerations in
X axis since we assume that we will have constant velocity in the curves. Therefore,
MSDV will be:

MSDV = i/ [, (ay () x Wp)? (16)

Since we considered a constant velocity on the curve, our acceleration will not
change in the curve and based on the Equation (2), the Equation (16) we will have:

_v: 2
MSDV = — X W T (17)

54



With this new MSDV equation that we have defined, we can calculate the MSDV
before each curve. By calculating each MSDV before the curve, we will be able to
decide whether it would be a road with potential motion sickness or not.

4.3 The experimental setup

For the experimental setup of our work, we used a simulator sending the data
constantly to our Human Machine Interface (HMI) and embedded system to
communicate with the passengers. The embedded platform has the responsibility of
calculating the potential MSDV based on the next lateral acceleration and alert the
passengers through the HMI about the upcoming condition that may lead to Motion
Sickness. Figure 27 demonstrates the diagram of our system.

Embedded System (Jetson AGX

Xavier)

Road waypoints and

features

Fig. 27. The diagram of the Motion Sickness minimization system.

4.3.1 Embedded system

We targeted NVIDIA Jetson AGX Xavier that is representative of the next-
generation AV Domain Controller as our embedded platform. This embedded
platform has a GPGPU of 512-core Volta along with Tensor Core and a CPU of
ARM 8-core v8.2 64-bit and would be a suitable choice for our system.

4.3.2 Human Machine Interface

We used a Human Machine Interface (HMI) to interact with the passenger. We do
this on a window with message alerting the passenger about starting to focus on the
upcoming road. In this way the passengers know about the potential upcoming
motion sickness and try to concentrate on the road to minimize it. Figure 28 shows
the HMI we used to interact with the passengers.
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Fig. 28. The HMI that interacts with the passengers. In this HMI we try to alert the passengers about the
upcoming roads with potential motion sickness.

4.3.3 Road waypoints and features

For the testing of the work, we used the ego_pose of nuScences dataset [79]. The
nuScenes dataset is the first dataset to carry the full autonomous vehicle sensor
suite: 6 cameras, 5 radars and 1 lidar, all with full 360-degree field of view.
nuScenes comprises 1000 scenes, each 20s long and fully annotated with 3D
bounding boxes for 23 classes and 8 attributes. We used the ego pose of the dataset
and gathered all the necessary information to test our work. The ego_pose has been
extracted by the MATLAB drivingScenario tool. Then we created the waypoints by
its poses. The features that should be received by the embedded system are the
width and the waypoints of the center line of the road. The waypoints should include
X, Y, and z dimensions. Based on this information and the theory that we mentioned
before, we calculate the potential lateral acceleration and MSDV.

4.4 Tests and results

Testing of our work was done by the nuScenes dataset and exporting the MSDV
into the simulator. In MATLAB we extracted the results of the MSDV and exported
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them to the simulator as explained in Figure 29. If the illness rating is more than 1,
any symptoms, however slight [73], the HMI would show the MSDV alert.

nuScenes ('(\j/lr?\tlli?]% MSDV Embedded HMI
€g0_pose scenario) calcularor system
Fig. 29. The test procedure that starts with the getting the ego_pose of the nuScenes dataset. The ego_pose

would be imported to Matlab and create the scenario by the driving Scenario tool. Then, the MSDV would be

calculated in the Embedded system and sends the results to the HMI to show if the Motion Sickness is coming or
no.

4.4.1 The road testing

The tests utilized the data acquired from the road dataset. The Figure 30. shows one
of the tests that have been conducted through a real waypoint from dataset. In the

Figure 30. can be seen a curvature that has been distinguished as a potential curve
of motion sickness.
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Fig. 30. The potential curve of motion sickness. Each curvature that is a potential curve for the motion sickness,
is investigated by the possible MSDV and IR based on the maximum velocity and the curvature’s radius.

4.5 Conclusion

In this chapter of the thesis, we demonstrated a novel way to alert the passengers
for the upcoming motion sickness. This system aims the compatibility for using in
fully or semi-autonomous vehicles. The new equation of the motion sickness made
us enable to calculate the level of the motion sickness by the lateral acceleration for
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the next curvatures. The alerting system can help the passengers to prevent the
motion sickness.

This work by its functionalities enables us to extend it in a real world. For the
future improvements, we plan to use it in the real vehicles by the online mapping.
The online map services, like google maps, would help us to use the ahead positions
and with those positions and our equations we will be able to calculate the MSDV
and alert the passengers online.
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Chapter 5

Motion Prediction using Attention
Heads and Traffic rules In
Intersections

In the past two chapters we introduced our novel methods for motion sickness
mitigation. As declared before, one of the sources of the motion sickness is the
ability to anticipate the direction of movement. It means that if we want to improve
the ability of anticipation the movement direction, we need to have a correct
methodology to do that. Therefore, the motion sickness mitigation led us to work
on the motion prediction methodologies. In this regard, we tried to investigate the
state-of-the-art motion prediction methods and implement some of the most
important ones. This work opened a new are of working on motion prediction and
a proposal of a new model to be compared with the state-of-the-art methods. In the
other hand, autonomous driving motion forecasting is essential to have a correct
and reliable planning. The influence of the road agents on each other makes it even
more challenging. However, most prior works have not considered these
interactions and planning against fixed predictions would reduce the ability to
represent the future interaction possibilities between different agents. In this chapter
of the thesis, we propose a model that predicts the agents’ behavior in a jointly
manner. We take advantage of using masking strategy as the query to our model.
Our model architecture uses a unified Transformer architecture by employing
attention across the road elements, agent interactions and traffic rules in
intersections. We evaluate our approach on autonomous driving datasets for
behavior prediction and test it on Carla simulator. Our work demonstrates that
motion forecasting by a model with a masking strategy and having attentions and
traffic rules can lead us to a state-of-the-art model. The result of our work is
compared with the state-of-the-art models from the leaderboard of Argoverse and
nuScenes.

5.1 Introduction

Predicting the behavior of the road agents involves different factors and their
behaviors of other agents may affect dramatically on the planning. A prerequisite
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of such a multi-task system is that it needs to be able to jointly predict the futures
of multiple agents (including the autonomous vehicle), while simultaneously taking
into account their interactions. The interaction prediction tasks require that models
predict the joint futures of multiple agents, and the models are expected to produce
future predictions for all agents such that the agents’ futures are consistent within
each future. A simple variant of self-attention [80] is employed in which the
attention mechanism is efficiently factorized across the agent-time axes. The
resulting architecture simply alternates attention between dimensions representing
time and agents across the scene, resulting in a computationally efficient, uniform,
and scalable architecture.

In the other hand, High-Definition maps (HD-maps) provide extremely useful
geometric and semantic information for motion forecasting, as the behaviours of
actors largely depend on the map topology. For example, a vehicle is unlikely to
take a left turn when there is not a left turn lane nearby. Effectively exploiting HD
maps is essential for motion forecasting models to produce plausible and accurate
trajectories.

First attempts exploit HD maps as heuristics. Actors are first associated with
lanes and all candidate motion paths are then generated based on map topology. In
this way, the prediction results are constrained by the map. However, this approach
cannot capture rare and non-compliant behaviours, which while not very likely,
might be safety critical.

Recent works use machine learning to learn semantic representations from
maps. To enable HD maps to be processed by neural networks the map data is
rasterized to create image-like raster inputs. Map topology is implicitly encoded as
lines, masks or colours, which are then processed by a 2D Convolutional Neural
Network (CNN). These learned map features were shown to provide useful context
information for motion forecasting. However, these approaches have two
disadvantages. First, the rasterization process inevitably results in information loss.
Second, maps have a graph structure with complex topology which 2D convolution
may be very inefficient to capture. For example, a lane of interest may extend for a
long range in the lane direction. To capture this information, the receptive field has
to be very large, covering not only the intended area, but also large areas outside
the lane. Furthermore, lane pairs in the same or opposite directions have completely
different semantic meanings and dependencies, although the lanes in both pairs are
spatially close to each other.

In aroutable network, intersections are essential junctions that connect different
roadways. Most of the algorithms treat intersections as points at which roadways

60



are connected, and the connectivity that guides approaching vehicles is not
specified explicitly. However, an intersection represents a compact junction for
which a set of turning paths and forbidden turning times are fundamental for the
schedule of approaching vehicles. Even to adapt to changes in urban traffic flow,
the layout of turning paths and traffic rules at intersections may be adjusted
dynamically, i.e., left turn banned from during rush hour. A comprehensive
approach focusing on the detection of both locations and turning paths, including
the forbidden turning time, of intersections using a large number of vehicle GPS
trajectories is used.

An intersection is a road junction where two or more roadways either meet or
cross. Various road markings, traffic lights and traffic signs schedule the
approaches of vehicles to the intersection at appropriate speeds and prevent vehicle
crashes.

Our main contributions In this chapter of the thesis are:

e Developing the previous works on Lane Graph Convolutional Network
by adding the Traffic Rules as an attention mechanism,

e Using a high demand road junctions and complex intersections, as the
point of adding the Traffic Rules into the model,

e A Transformer-based architecture factored over agents, time, and road
graph elements that exploits the inherent dependencies of the problem
and the traffic rules,

e Using different datasets to evaluate our work such as nuScenes and
Argoverse.

e Achieving the state-of-the-art results comparing with the other works
that their model works in the intersection areas.

5.2 Motion forecasting in AV literature

A common approach for short-term prediction of future motion is to assume that
the driver will not change any control inputs (such as steering and acceleration)
using techniques such as a Kalman filter (KF). This approach first associates
detected vehicles with one or more lanes from the map. Then, all possible paths are
generated for each (vehicle, associated lane) pair based on map topology, lane
connectivity, and vehicle’s state. Classical machine learning approaches such as
Hidden Markov Model, Bayesian networks or Gaussian Processes have been
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applied to motion prediction in autonomous driving. However, these methods
require manually designed features and no longer provide state-of-the-art
performance. Most recent research on motion prediction employs deep networks.
In one line of research, recurrent neural networks (RNN) with Long Short-Term
Memory (LSTM) or gated recurrent unit (GRU) were applied to predict future
trajectories from past observed positions. Going beyond just using past observed
positions as inputs, rasterize actor’s surrounding context and other scene
information in a bird’s-eye view (BEV) image.

Conventionally, three types of approaches exist for vehicle trajectory
prediction. Physics-based, maneuver-based, and interaction-aware. Physics-based
methods usually consider vehicle kinematic and dynamic constraints, such as yaw
rate and acceleration rate, and environmental factors, such as the friction coefficient
of a road surface. They assume that the vehicle’s motion depends only on physical
equations of motion. They are the simplest models (e.g., constant velocity, constant
acceleration) with low computational complexity and, as a result, their predictions
are typically only reliable for a short horizon. This approach can achieve short-term
predictions (<1 s). Maneuver-based motion models assume that the vehicle’s
motion can be represented by a series of maneuvers executed independently of other
vehicles. Maneuver-based approaches, the future trajectory of the target is predicted
by identifying the maneuver in execution from a finite set of maneuvers contained
in a database. Methods to identify the maneuver include Hidden Markov Models
(HMM) [104] and Gaussian Processes (GP) [105]. Typically, these approaches also
fail to consider the interactions between vehicles. Most physics-based and
maneuver-based approaches do not account for interactions among vehicles. This
has motivated the development of interaction-aware methods that take into account
the interdependencies of vehicle maneuvers for trajectory prediction. Attention
mechanisms can be naturally integrated with RNN to improve the model
explainability.

Algorithms for generating intersections from vehicle trajectories can be
grouped into two basic types. One type directly extracts intersections using either
the geometric characteristics of trajectories at intersections or the spatial
relationships between multiple trajectories at intersections. For example, [81]
identified intersections for the first time using an advanced shape descriptor to
analyse the specific patterns of the heading changes in tracking points. [82] obtained
the locations of crossings by intersecting two pedestrian trips. [83] detected
intersections by analysing the densities of large-angle intersection points among
neighbouring vehicle trajectories. [84] characterized the intersection features of an
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urban transportation network with good connectivity, a high density of trajectories
and multiple traversing trajectory patterns to detect intersection locations.

The typical incremental method for generating road maps developed by [85]
added a single trajectory to a graph by considering the relationship between the
input points from the trajectory and the existing graph and by determining whether
a new node and edge must be created. Clustering trajectories to generate road
centrelines is another important approach [86-89].

5.3 Implementation of the State-Of-The-Art works

After consideration the literature, we concluded to use some previous state-of-the-
art works to implement. In this way, we trained our model in the nuScenes [79] and
Argoverse [90] datasets (description in section 5.4.2.3). First, we implemented
Trajectron++ [91] and then, LaneGCN [92].

5.3.1 Trajectron++

Trajectron++ is an open and extensible approach built upon the Trajectron [93]
framework which produces dynamically feasible trajectory forecasts from
heterogeneous input data for multiple interacting agents of distinct semantic types.
The Trajectron++ key contributions are twofold: First, they show how to effectively
incorporate high-dimensional data through the lens of encoding semantic maps.
Second, they propose a general method of incorporating dynamics constraints into
learning-based methods for multi-agent trajectory forecasting. Trajectron++ is
designed to be tightly integrated with downstream robotic modules, with the ability
to produce trajectories that are optionally conditioned on future ego-agent motion
plans. They present experimental results on a variety of datasets, which collectively
demonstrate that Trajectron++ outperforms an extensive selection of state-of-the-
art deterministic and generative trajectory prediction methods, in some cases
achieving 60% lower average prediction error. At a high level, a spatiotemporal
graph representation of the scene in question is created from its topology. Then, a
similarly-structured deep learning architecture is generated that forecasts the
evolution of node attributes, producing agent trajectories as shown in Figure 31a.
Figure 31b shows our implementation in Carla simulator.
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Fig. 31. a) The trajectron++ architecture and b) its implementation in Carla simulator.

As shown in Figure 3la, their approach represents a scene as a directed
spatiotemporal graph. Nodes and edges represent agents and their interactions,
respectively. Each note has its corresponding network architecture and all of these
nodes have interactions based on the edges that are involved.

5.3.2 LaneGCN

They construct a lane graph from raw map data and use LaneGCN
to extract map features. In parallel, ActorNet extracts actor features from observed
past trajectories. Then FusionNet [94] is used to model the Interactions between
actors themselves and the map and predict the future trajectories. Figure 32 shows
our implementation in Carla simulator.

In their model ActorNet receives the past actor trajectories as input, and uses 1D
convolution to extract actor node features and MapNet constructs a lane graph from
HD maps, and uses a LaneGCN to exact lane node features. Then FusionNet is a
stack of 4 interaction blocks. The actor to lane block fuses real-time traffic
information from actor nodes to lane nodes. The prediction header uses after-fusion
actor features to produce multi-modal trajectories.
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Fig. 32. The LaneGCN implementation in Carla simulator
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5.4 Motion Prediction Using Attention Heads and T raffic
rules in Intersection

5.4.1 Architecture

To find the best trajectories ahead, we proposed a novel method to create a model
using three most important modules. The three modules as shown in the Figure 33
are Actor Features, Map Features, and Traffic Rules.

Past trajectories
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Fig. 33. The topology of our method to develop the model using Trajectories, HD Maps, and the Traffic rules
in the intersections.

5.4.1.1 Actor Features

It is assumed that actor data is composed of the observed past trajectories of all
actors in the scene. Each trajectory is represented as a sequence of displacements
{Ap—(T 1), ..., Ap—1, Ap0O}, where Apt is the 2D displacement from time step t
—1tot, and T is the trajectory size. All coordinates are defined in the Bird’s Eye
View (BEV), as this is the space of interest for traffic agents. For trajectories with
sizes smaller than T, padding them with zeros. Adding a binary 1 x T mask to
indicate if the element at each step is padded or not and concatenate it with the
trajectory tensor, resulting in an input tensor of size 3 x T.

While both CNNs and RNNs can be used for temporal data, here an 1D CNN
is used to process the trajectory input for its effectiveness in extracting multi-scale
features and efficiency in parallel computing. The output of ActorNet is a temporal
feature map, whose element at t = 0 is used as the actor feature. The network has 3
groups/scales of 1D convolutions. Each group consists of 2 residual blocks, with
the stride of the first block as 2. A Feature Pyramid Network (FPN) [95](Lin et al.,
2017) is used to fuse the multi-scale features and apply another residual block to
obtain the output tensor. For all layers, the convolution kernel size is 3 and the
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number of output channels is 128. Layer normalization [96] and the Rectified
Linear Unit (ReLU) [97] are used after each convolution.

5.4.1.2 Map Features

A novel deep model, called MapNet, to learn structured map representations
from vectorized map data is used. This contrasts previous approaches, which
encode the map as a raster image and apply 2D convolutions to extract features.

Map Data: In this chapter of the thesis, it is adopted a simple form of vectorized
map data as our representation of HD maps. Specifically, the map data is
represented as a set of lanes and their connectivity. Each lane contains a centerline,
i.e., a sequence of 2D BEV points, which are arranged following the lane direction
(see Figure 33, top). For any two lanes which are directly reachable, 4 types of
connections are given: predecessor, successor, left neighbor and right neighbor.
Given a lane A, its predecessor and successor are the lanes which can directly travel
to A and from A respectively. Left and right neighbors refer to the lanes which can
be directly reached without violating traffic rules. This simple map format provides
essential geometric and semantic information for motion forecasting, as vehicles
generally plan their routes by reference to lane centerlines and their connectivity.

Lane Graph Construction: Instead of encoding maps as raster images, it is
derived a lane graph from the map data as the input. In designing the lane graph, it
is expected of its nodes to have a fine resolution. Given any actor location, query
the lane graph and find its nearest nodes to retrieve accurate map information is
done. From this point of view, it is not an optimal choice to directly use the lane
centerlines as the nodes.

Referred to Figure 34 for an abstraction of the lane graph construction. It is first
defined a lane node as the straight-line segment formed by any two consecutive
points (grey circles in Figure 34) of the centerline. The location of a lane node is
the averaged coordinates of its two end points. Following the connections between
lane centerlines, it is also derived 4 connectivity types for the lane nodes, i.e.,
predecessor, successor, left neighbour and right neighbour. For any lane node A, its
predecessor and successor are defined as the neighbouring lane nodes that can travel
to A or from A respectively. Note that one can reach the first lane node of a lane IA
from the last lane node of lane IB if IB is the predecessor of IA. Left and right
neighbours are defined as the spatially closest lane node measured by "2 distance
on the left and on the right neighbouring lane respectively. It is denoted the lane
nodes with VV € RN x2, where N is the number of lane nodes and the i-th row of V
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is the BEV coordinates of the i-th node. It is represented the connectivity with 4
adjacency matrices {Ai}ie{pre,suc,leftright}, with Ai € RN xN . It is denoted
Ai,jk, as the element in the j-th row and k-th column of Ai. Then Ai,jk =1 if node
k is an i-type neighbor of node j.

LaneConv Operator [92]: A natural operator to handle lane graphs is the graph
convolution. The most widely used graph convolution operator is defined as Y =
LXW , where X € RN xF is the node feature, W € RF xO is the weight matrix, and
Y € RN xO is the output. The graph Laplacian matrix L € RN xN takes the form L
= D—-1/2(1 +A)D—1/2, where I, A and D are the identity, adjacency and degree
matrices respectively. I and A account for self-connection and connections between
different nodes. All connections share the same weight W, and the degree matrix D
is used to normalize the output. However, this vanilla graph convolution is
inefficient in our case due to the following reasons. First, it is not clear what kind
of node feature will preserve the information in the lane graphs. Second, a single
graph Laplacian cannot capture the connection type, i.e., losing the directional
information carried by the connection type. Third, it is not straightforward to handle
long range dependencies, e.g., akin dilated convolution, within this form of graph
convolution.

Node Feature: First, it is required to define the input feature of the lane nodes.
Each lane node corresponds to a straight-line segment of a centerline. To encode all
the lane node information, it is needed to take into account both the shape (size and
orientation) and the location (the coordinates of the center) of the corresponding
line segment.

5.4.1.3 Traffic Rules

The prediction would be even more precise if we consider some traffic rules. A
traffic rule can change the prediction based on the conditions of the Agents specially
in the intersections. The approach would be the predictions in the intersections to
where a complex agent set are interacting with each other, and the traffic rules can
impact on the trajectories.

An intersection is a road junction where two or more roadways either meet or
cross. Various road markings, traffic lights and traffic signs schedule the
approaches of vehicles to the intersection at appropriate speeds and prevent vehicle
crashes.
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Figure 34 is an intersection diagram to allow for a visual understanding of our
approach. To provide clear navigation information for routing, the intersection is
represented as a network graph (Figure 34). In such a model, the location of an
intersection and its traffic rules can be easily modelled by considering the
spatiotemporal characteristics of the vehicle GPS trajectories near the intersection
using the following scheme.

Considering that intersections are strongly correlated to the curved parts of
vehicle GPS trajectories (henceforth referred to as turns), it can be assumed that
turns generally occur at intersections rather than on roadways. Based on this
assumption, a comprehensive approach for detecting intersections and extracting
traffic rules was developed, where three essential steps are illustrated. First, a
density grid of turns is generated. The value of a cell represents the number of turns
passing over the cell. Next, the locations and extensions of the intersections are
detected using density analysis. Finally, the traffic rules of the intersections are
determined by clustering the time series dataset of the tracking points. In the Figure
34 an intersection is shown with its possible drivable paths.

road-intersection region
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e intersection center
© conflict points
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—— straight link
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Fig. 34. The intersection topology.

After consideration the intersection topology, we need to define the way of the
detection of the intersections in the roads and including the traffic rules in our
method. As discussed, we trained our model in nuScenes [79] and Argoverse[90]
datastes. Considering the nuScenes, the map database consists of multiple layers
where each layer is made up of records. Each record will have a token identifier. In
this case, we used the traffic light token, a physical world's traffic light. This layer
has some attributes like traffic_light_type that denotes whether the traffic light is
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oriented horizontally or vertically, from_road_block_tokens that denotes from
which road block the traffic light guides, items that are the bulbs for that traffic
light, and pose that denotes the pose of the traffic light. We can also get the drivable
area of the lanes. Collecting all these information, we build a network as shown in
Figure 34.

5.4.2 Implementation and results

In this section, we describe how the implementation was done. We have used
python with machine learning libraries for training and verifying our model and
then we tested our model using the Carla simulator. In python we used the machine
learning libraries and we used the nuScenes and Argoverse datasets to develop our
model. Then the model has been tested using Xavier AGX as the embedded
platform.

5.4.2.1 Python implementation

We have used Machine Learning libraries (Pytorch and Tensorflow) in python to
develop our model. In this case, we were able to access the datasets to train the
model and test it in the test datasets.

Machine learning is a field in computer science where existing data are used to
predict, or respond to, future data. It is closely related to the fields of pattern
recognition, computational statistics, and artificial intelligence. Machine learning
is important in areas like facial recognition, spam filtering, and others where it is
not feasible, or even possible, to write algorithms to perform a task.

To describe what we have implemented, it is necessary to introduce the
elements of Machine learning that can be useful in our implementation. These
components will be discussed as bellow.

Data

All learning methods are data driven. Sets of data are used to train the system.
These sets may be collected by humans and used for training. The sets may be very
large. Control systems may collect data from sensors as the systems operate and use
that to identify parameters or train the system.

Models

Models are often used in learning systems. A model provides a mathematical
framework for learning. A model is human derived and based on human
observations and experiences. For example, a model of a car might be that it is
rectangular shaped with dimensions that fit within a standard parking spot. Models
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are usually thought of as human derived and providing a framework for machine
learning. However, some forms of machine learning develop their own models
without a human-derived structure.

Training

A system that maps an input to an output needs training to do this in a useful
way. Just as people need to be trained to perform tasks, machine learning systems
need to be trained. Training is accomplished by giving the system an input and the
corresponding output and modifying the structure (models or data) in the learning
machine so that mapping is learned. In some ways this is like curve fitting or
regression. If we have enough training pairs, then the system should be able to
produce correct outputs when new inputs are introduced. For example, if we give a
face recognition system thousands of cat images and tell it that those are cats, we
hope that when it is given new cat images, it will also recognize them as cats.
Problems can arise when you don’t give it enough training sets or the training data
are not sufficiently diverse, that is, do not represent the full range of cats in this
example.

Supervised Learning

Supervised learning means that specific training sets of data are applied to the
system. The learning is supervised in that the “training sets” are human derived. It
does not necessarily mean that humans are actively validating the results. The
process of classifying the system’s outputs for a given set of inputs is called
labeling. That is, you explicitly say which results are correct or which outputs are
expected for each set of inputs.

The process of generating training sets can be time consuming. Great care must
be taken to ensure that the training sets will provide sufficient training so that when
real-world data are collected the system will produce correct results. They must
cover the full range of expected inputs and desired outputs. The training is followed
by test sets to validate the results. If the results aren’t good, then the test sets are
cycled into the training sets and the process repeated.

A human example would be a ballet dancer trained exclusively in classical
ballet technique. If she were then asked to dance a modern dance, the results might
not be as good as required because the dancer did not have the appropriate training
sets; her training sets were not sufficiently diverse.

70



Unsupervised Learning

Unsupervised learning does not utilize training sets. It is often used to discover
patterns in data for which there is no “right” answer. For example, if you used
unsupervised learning to train a face identification system, the system might cluster
the data in sets, some of which might be faces. Clustering algorithms are generally
examples of unsupervised learning. The advantage of unsupervised learning is that
you can learn things about the data that you might not know in advance. It is a way
of finding hidden structures in data.

Semisupervised Learning

With the semisupervised approach, some of the data is in the form of labeled
training sets and other data are not. In fact, typically only a small amount of the
input data is labeled while most is not, as the labeling may be an intensive process
requiring a skilled human. The small set of labeled data is leveraged to interpret the
unlabeled data.

Online Learning

The system is continually updated with new data. This is called “online”
because many of the learning systems use data collected online. It could also be
called “recursive learning.” It can be beneficial to periodically “batch” process data
used up to a given time and then return to the online learning mode.

Pytorch

PyTorch is a Python library that performs immediate execution of dynamic tensor
computations with automatic differentiation and GPU acceleration and does so
while maintaining performance comparable to the fastest current libraries for deep
learning. PyTorch builds on these trends by providing an array-based programming
model accelerated by GPUs and differentiable via automatic differentiation
integrated in the Python ecosystem.

PyTorch maintains a strict separation between its control (i.e. program branches,
loops) and data flow (i.e. tensors and the operations performed on them). The
resolution of the control flow is handled by Python and optimized C++ code
executed on the host CPU, and result in a linear sequence of operator invocations
on the device. Operators can be run either on CPU or on GPU.

PyTorch is designed to execute operators asynchronously on GPU by leveraging
the CUDA stream mechanism to queue CUDA kernel invocations to the GPUs
hardware FIFO. This allows the system to overlap the execution of Python code on
CPU with tensor operators on GPU. Because the tensor operations usually take a
significant amount of time, this lets us saturate the GPU and reach peak
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performance even in an interpreted language with fairly high overhead like Python.
This mechanism is nearly invisible to the user. Unless they implement their own
multi-stream primitives all of the CPU-GPU synchronization is handled by the
library.

PyTorch could leverage a similar mechanism to also execute operators
asynchronously on the CPU. However, the costs of cross-thread communication
and synchronization would negate the performance benefit of such an optimization.

5.4.2.3 Datasets

The development of robust autonomous driving models depends on having access
to large-scale training datasets, especially as more learning-based approaches are
incorporated. Over the past decade, tens of datasets for autonomous driving have
been collected and made public by multiple institutes around the world. These
datasets are a valuable resource for the research community to develop benchmarks
and consolidate research efforts.

We have chosen nuScenes and Argoverse datasets to train our model. The
largest dataset that provides the most sensor measurements is nuScenes, which
contains 1000 20-second-long videos with LiDAR, Radar, camera, IMU and GPS
data. It also provides 3D bounding boxes over 25 classes of objects annotated at
2Hz. In the other hand, Argoverse includes sensor data collected by a fleet of
autonomous vehicles in Pittsburgh and Miami as well as 3D tracking annotations,
300k extracted interesting vehicle trajectories, and rich semantic maps. The sensor
data consists of 360° images from 7 cameras with overlapping fields of view,
forward-facing stereo imagery, 3D point clouds from long range LiDAR, and 6-dof
pose.

nuScenes dataset

nuScenes represents a large leap forward in terms of data volumes and complexities
and is the first dataset to provide 360 sensor coverage from the entire sensor suite.
It is also the first AV dataset to include radar data and captured using an AV
approved for public roads. It is further the first multimodal dataset that contains
data from nighttime and rainy conditions, and with object attributes and scene
descriptions in addition to object class and location. nuScenes is a holistic scene
understanding benchmark for AVs. It enables research on multiple tasks such as
object detection, tracking and behavior modeling in a range of conditions .

There has been publishing the devkit, evaluation code, taxonomy, annotator
instructions, and database schema for industry wide standardization. Recently, the
Lyft L5 [98] dataset adopted this format to achieve compatibility between the
different datasets. The nuScenes data is published under CC BY-NC-SA 4.0
license, which means that anyone can use this dataset for non-commercial research
purposes. All data, code, and information is made available online.
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Here the description on how nuScenes planned drives, set upped the vehicles,
selected interesting scenes, annotated the dataset and protected the privacy of third
parties.

Drive planning

The vehicles drive in Boston (Seaport and South Boston) and Singapore (One
North, Holland Village and Queenstown), two cities that are known for their dense
traffic and highly challenging driving situations. The emphasizing was on the
diversity across locations in terms of vegetation, buildings, vehicles, road markings
and right versus left-hand traffic. From a large body of training data they manually
select 84 logs with 15h of driving data (242km travelled at an average of 16km/h).
Driving routes are carefully chosen to capture a diverse set of locations (urban,
residential, nature and industrial), times (day and night) and weather conditions
(sun, rain and clouds).

Sensor Details

The list of the sensors used to create the nuScenes dataset is as bellow:

e 6x Camera: RGB, 12Hz capture frequency, 1/1.8” CMOS sensor, 1600 x
900 resolution, auto exposure, JPEG compressed

e 1x Lidar: Spinning, 32 beams, 20Hz capture frequency, 360° horizontal
FOV, —30° to 10° vertical FOV, < 70m range, £2cm accuracy, up to 1.4M
points per second.

e 5x Radar < 250m range, 77GHz, FMCW, 13Hz capture frequency,
+0.1km/h vel. accuracy

e GPS & IMU: GPS, IMU, AHRS. 0.2¢ heading, 0.1¢ roll/pitch, 20mm RTK
positioning, 1000Hz update rate

Car setup

They used two Renault Zoe supermini electric cars with an identical sensor layout
to drive in Boston and Singapore. Front and side cameras have a 70° FOV and are
offset by 55°. The rear camera has a FOV of 110°. Sensor synchronization. To
achieve good cross-modality data alignment between the lidar and the cameras, the
exposure of a camera is triggered when the top lidar sweeps across the center of the
camera’s FOV. The timestamp of the image is the exposure trigger time; and the
timestamp of the lidar scan is the time when the full rotation of the current lidar
frame is achieved. Given that the camera’s exposure time is nearly instantaneous,
this method generally yields good data alignment5. They perform motion
compensation using the localization algorithm described below.
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Localization

Most existing datasets provide the vehicle location based on GPS and IMU. Such
localization systems are vulnerable to GPS outages. As they operate in dense urban
areas, this problem is even more pronounced. To accurately localize the vehicle,
they create a detailed HD map of lidar points in an offline step. While collecting
data, they use a Monte Carlo Localization scheme from lidar and odometry
information. This method is very robust, and they achieve localization errors of <
10cm. To encourage robotics research, they also provide the raw CAN bus data
(e.g. velocities, accelerations, torque, steering angles, wheel speeds).

Maps

They provide highly accurate human-annotated semantic maps of the relevant areas.
The original rasterized map includes only roads and sidewalks with a resolution of
10px/m. The vectorized map expansion provides information on 11 semantic
classes, making it richer than the semantic maps of other datasets published since
the original release. The cameras run at 12Hz while the lidar runs at 20Hz. The 12
camera exposures are spread as evenly as possible across the 20 lidar scans, so not
all lidar scans have a corresponding camera frame. Finally, they provide the
baseline routes - the idealized path an AV should take, assuming there are no
obstacles. This route may assist trajectory prediction, as it simplifies the problem
by reducing the search space of viable routes.

Scene selection

After collecting the raw sensor data, they manually select 1000 interesting scenes
of 20s duration each. Such scenes include high traffic density (e.g. intersections,
construction sites), rare classes (e.g. ambulances, animals), potentially dangerous
traffic situations (e.g. jay-walkers, incorrect behavior), maneuvers (e.g. lane
change, turning, stopping) and situations that may be difficult for an AV. They also
select some scenes to encourage diversity in terms of spatial coverage, different
scene types, as well as different weather and lighting conditions. Expert annotators
write textual descriptions or captions for each scene (e.g.: “Wait at intersection,
peds on sidewalk, bicycle crossing, jaywalker, turn right, parked cars, rain”).

Data annotation

Having selected the scenes, they sample keyframes (image, lidar, radar) at 2Hz.
They annotate each of the 23 object classes in every keyframe with a semantic
category, attributes (visibility, activity, and pose) and a cuboid modeled as X, Y, z,
width, length, height and yaw angle. They annotate objects continuously throughout
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each scene if they are covered by at least one lidar or radar point. Using expert
annotators and multiple validation steps, they achieve highly accurate annotations.
They also release intermediate sensor frames, which are important for tracking,
prediction and object detection. At capture frequencies of 12Hz, 13Hz and 20Hz
for camera, radar and nlidar, this makes this dataset unique. Only the Waymo Open
dataset provides a similarly high capture frequency of 10Hz.

Annotation statistics

nuScenes dataset has 23 categories including different vehicles, types of
pedestrians, mobility devices and other objects. They present statistics on geometry
and frequencies of different classes. Per keyframe there are 7 pedestrians and 20
vehicles on average. Moreover, 40k keyframes were taken from four different scene
locations (Boston: 55%, SG-OneNorth: 21.5%, SG-Queenstown: 13.5%, SG-
HollandVillage: 10%) with various weather and lighting conditions (rain: 19.4%,
night: 11.6%). Due to the finegrained classes in nuScenes, the dataset shows severe
class imbalance with a ratio of 1:10k for the least and most common class
annotations (1:36 in KITTI). This encourages the community to explore this long
tail problem in more depth.

Annotated objects contain up to 100 lidar points even at a radial distance of 80m
and at most 12k lidar points at 3m. At the same time they contain up to 40 radar
returns at 10m and 10 at 50m. The radar range far exceeds the lidar range at up to
200m.

Argoverse dataset

Argoverse includes sensor data collected by a fleet of autonomous vehicles in
Pittsburgh nand Miami as well as 3D tracking annotations, 300k extracted
interesting vehicle trajectories, and rich semantic maps. The sensor data consists of
360 images from 7 cameras with overlapping fields of view, forward-facing stereo
imagery, 3D point clouds from long range LiDAR, and 6-dof pose. 290km of
mapped lanes contain rich geometric and semantic metadata which are not currently
available in any public dataset.

Argoverse sensor data, maps, and annotations are the primary contribution of
this work. They also develop an API which helps connect the map data with sensor
information e.g. ground point removal, nearest centerline queries, and lane graph
connectivity; see Supplemental Material for more details. They collect raw data
from a fleet of autonomous vehicles in Pittsburgh, Pennsylvania, USA and Miami,
Florida, USA. These cities have distinct climate, architecture, infrastructure, and
behavior patterns. The captured data spans different seasons, weather conditions,
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and times of day. The data used for this dataset traverses nearly 300km of mapped
road lanes and comes from a subset of the fleet operating area.

Sensors

The cars are equipped with two roof-mounted VLP-32 LIDAR sensors with an
overlapping 40 vertical field of view and a range of 200m, roughly twice that as
the sensors used in nuScenes and KITTI. On average, the LIiDAR sensors produce
a point cloud at each sweep with three times the density of the LIDAR sweeps in
the nuScenes dataset (Argoverse ~ 107, 000 points vs. nuScenes’ ~ 35, 000 points).
The vehicles have 7 high-resolution ring cameras (1920 x 1200) recording at 30 Hz
with overlapped field of view providing 360° coverage. In addition, there are 2
front-facing stereo cameras (2056x2464) sampled at 5 Hz. Faces and license plates
are procedurally blurred in camera data to maintain privacy. Finally, 6-DOF
localization for each timestamp comes from a combination of GPS-based and
sensor-based localization. Vehicle localization and maps use a city-specific
coordinate system described in more detail in the Supplemental Material. Sensor
measurements for particular driving sessions are stored in “logs”, and they provide
intrinsic and extrinsic calibration data for the LiDAR sensors and all 9 cameras for
each log. They place the origin of the vehicle coordinate system at the center of the
rear axle. All sensors are roof-mounted, with a LIDAR sensor surrounded by 7
“ring” cameras (clockwise: facing front center, front right, side right, rear right, rear
left, side left, and front left) and 2 stereo cameras.

Maps

Argoverse contains three distinct maps — (1) a vector map of lane centerlines and
their attributes, (2) a rasterized map of ground height, and (3) a rasterized map of
driveable area and region of interest (ROI).

Vector Map of Lane Geometry

The vector map consists of semantic road data represented as a localized graph
rather than rasterized into discrete samples. The vector map is a simplification of
the map used in fleet operations. In the vector map, there are lane centerlines, split
into lane segments. They observe that vehicle trajectories generally follow the
center of a lane so this is a useful prior for tracking and forecasting.

A lane segment is a segment of road where cars drive in single-file fashion in a
single direction. Multiple lane segments may occupy the same physical space (e.g.
in an intersection). Turning lanes which allow traffic to flow in either direction
would be represented by two different lanes that occupy the same physical space.
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For each lane centerline, they provide a number of semantic attributes. These
lane attributes describe whether a lane is located within an intersection or has an
associated traffic control measure (Boolean values that are not mutually inclusive).
Other semantic attributes include the lane’s turn direction (left, right, or none) and
the unique identifiers for the lane’s predecessors (lane segments that come before)
and successors (lane segments that come after) of which there can be multiple (for
merges and splits, respectively). Centerlines are provided as “polylines”, i.e. a
sequence of straight segments. Each straight segment is defined by 2 vertices: (X,
y, z) start and (X, y, z) end. Thus, curved lanes are approximated with a set of
straight lines.

In Miami, lane segments that could be used for route planning are on average
3.84m = 0.89 wide. In Pittsburgh, the average width is 3.97m + 1.04 in width. Other
types of lane segments that would not be suitable for self-driving, e.g. bike lanes,
can be as narrow as 0.97m in Miami and as narrow as 1.06m in Pittsburgh.

Rasterized Drivable Area Map

The maps include binary drivable area labels at 1 meter grid resolution. A drivable
area is an area where it is possible for a vehicle to drive (though not necessarily
legal). Drivable areas can encompass a road’s shoulder in addition to the normal
drivable area that is represented by a lane segment. The track annotations extend to
5 meters beyond the drivable area. They call this larger area the region of interest
(ROI).

Rasterized Ground Height Map

Finally, the maps include real-valued ground height at 1 meter resolution.
Knowledge of ground height can be used to remove LiDAR returns on static ground
surfaces and thus makes the 3D detection of dynamic objects easier.

3D Track Annotations

Argoverse-Tracking-Betal contains 100 vehicle log segments with human-
annotated data 3D tracks. These 100 segments vary in length from 15 to 60 seconds
and collectively contain 10,572 tracked objects. For each log segment, they
annotate all objects of interest (both dynamic and static) with bounding cuboids
which follow the 3D LiDAR returns associated with each object over time. They
only annotate objects within 5 meters of the drivable area as defined by the map.
For objects that are not visible for the entire segment duration, tracks are
instantiated as soon as the object becomes visible in the LIDAR point cloud and
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tracks are terminated when the object ceases to be visible. They mark objects as
“occluded” whenever they become invisible within the sequence. Each object is
labeled with one of 17 categories, including OTHER_STATIC and
OTHER_MOVER for static and dynamic objects that do not fit into other
predefined categories. More than 70% of tracked objects are vehicles, but they also
observe pedestrians, bicycles, mopeds, and more. All track labels pass through a
manual quality assurance review process. They divide the annotated tracking data
into 60 training, 20 validation, and 20 testing sequences.

Mined Trajectories for Motion Forecasting

They are also interested in studying the task of motion forecasting in which they
predict the location of a tracked object sometime in the future. Motion forecasts can
be critical to safe autonomous vehicle motion planning. While the human-annotated
3D tracks are suitable training and test data for motion forecasting, the motion of
many of vehicles is relatively uninteresting — in a given frame, most cars are either
parked or traveling at nearly constant velocity. Such tracks are hardly a
representation of real forecasting challenges. They would like a benchmark with
more diverse scenarios e.g. managing an intersection, slowing for a merging
vehicle, accelerating after a turn, stopping for a pedestrian on the road, etc. To
sample enough of these interesting scenarios, they track objects from 1006 driving
hours across both Miami and Pittsburgh and find vehicles with interesting behavior
in 320 of those hours. In particular, they look for vehicles that are either (1) at
intersections (2) taking left or right turns (3) changing to adjacent lanes or (4) in
dense traffic. In total, they collect 333,441 five second sequences and use them in
the forecasting benchmark. Each sequence contains the 2D, birds-eye-view centroid
of each tracked object sampled at 10hz. The 333,441 sequences are split into
211,691 train, 41,146 validation, and 80,604 test sequences. Each sequence has one
challenging trajectory which is the focus of the forecasting benchmark. The train,
val, and test sequences are taken from disjoint parts of the cities, i.e., roughly one
eighth and one quarter of each city is set aside as validation and test data,
respectively. This dataset is far larger than what could be mined from publicly
available autonomous driving datasets, and they have the advantage of using the
maps to make it easier to track objects. While data of this scale is appealing because
it allows to see rare behaviors and train complex models, it is too large to
exhaustively verify the accuracy of the mined trajectories and thus there is some
noise and error inherent in the data.
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5.4.3 The embedded platform

We targeted NVIDIA Jetson AGX Xavier that is representative of the next-
generation AV Domain Controller as our embedded platform. This embedded
platform has a GPGPU of 512-core Volta along with Tensor Core and a CPU of
ARM 8-core v8.2 64-bit and would be a suitable choice for our system (for further
description please refer to chapter 2).

5.4.4 The results

To evaluate our model, we use the standard metrics on the nuScenes leaderboard.
The minimum average displacement error (ADE) over the top K predictions
(MIinADEK), the miss rate (MissRateK,2) only penalizes predictions that are
further than 2 m from the ground truth, the offroad rate measures the fraction of
predictions that are off the road, and for a set of k predictions for each agent a in a
scene, we report the minimum Final Displacement Error (minFDEK) to the ground
truth. Since all examples in nuScenes are on the road, this should be zero. The
minimum Average Displacement Error computes the L2 norm between’s and the
closest joint prediction. The minimum Final Displacement Error is equivalent to
evaluating the minADE at a single time step T. The overlap rate is computed by
taking the highest confidence joint prediction from each multimodal joint
prediction. If any of the A agents in the jointly predicted trajectories overlap at any
time with any other objects that were visible at the prediction time step (compared
at each time step up to T) or with any of the jointly predicted trajectories, it is
considered a single overlap. The overlap rate is computed as the total number of
overlaps divided by the total number of predictions. The overlap is calculated using
box intersection, with headings inferred from consecutive waypoint position
differences. The formulation of minADE and minFDE can derived from [106]:

. . 1 wbfin
minADE), = mmm={1,z,...,k}52tflly2“ + ¥ell2 1)

minFDE) = minm={1,2,...,k}izzf ”5}6’} + Yis ”2 (2)

where k denotes the number of modalities that are the most probable trajectories
according to the estimated scores. minADE and minFDE are the average of all target
agents in the dataset.

Although these metrics are widely used in the motion forecasting task, minADE
and minFDE only depend on the error from the ground truth; therefore, it is
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impractical to evaluate whether the predictions are realistic. Several works have
thus proposed new metrics in addition to ADE/FDE to measure the feasibility of
the outputs. The Off-Road Rate [107] evaluates the feasibility of multiple outputs
by calculating the percentage of the outputs that lie out of drivable area. Finally
MissRate (MR) can be calculated as follows:

MissRate(S) = % 3

where |§| is the number of predicted and matched agents which have complete

future trajectories across different scenes. |§hit| is the number of hitted agents
which belong to S.

Since our work is designed to outperform the predictions specifically in the
intersections, we require to consider the works that are considering the intersections
and compare our work with them. We demonstrate our results on some nuScenese
leaderboard showing on table 2, comparing with the top performing entries on the
nuScenes leaderboard. We achieve state of the art results on some metrics in this
specific area.

Table 2. The comparison of the motion prediction models from the nuScenes leaderboard
that consider the intersections.

Model MinADE MIinADE  MissRate  MissRate = MinFDE Off Road
(5) (10) Top-5 Top-10 QD Rate
(2m) (2m)
Trajectron++ 1.88 1.51 0.70 0.57 9.52 0.25
[91]
Autobot [99] 1.43 1.05 0.66 0.45 8.66 0.03
P2T [100] 1.45 1.16 0.64 0.46 10.50 0.03
PGP [101] 1.30 1.00 0.61 0.37 7.17 0.03
Our model 1.37 1.00 0.53 0.41 6.59 0.05
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As it can be seen in Table 2, we have outperformed in MinFDE and MissRate.
This is because the traffic rules help the Final Displacement Error to be less than
the times of not considering the traffic rules. Traffic rules help to predict the final
positions as better as it is possible. Therefore, we have outperformed in MinFDE.
We have also competitive results with the state-of-the-art works in MinADE. Our
contribution was to outperform the motion prediction model at the intersections as
shown in Figure 35.
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Fig. 35. One example of our implementation in the nuScenes dataset at the intersection.

5.5 Conclusion

In this chapter, the new method of the motion prediction has been discussed.
Furthermore, two most recent works have been implemented with the results on
Carla simulator. We have discussed the motion prediction in the intersections and
demonstrated that if we include the traffic rules into the model, we can achieve and
outperformance respect to the other works.

Including the traffic rules into the models for the motion prediction can enhance
the metrics of the motion prediction and outperforms the previous works. In this
regard, we have included the traffic rules in the intersections and by comparing it

with the similar works, we have identified the better performance.

The traffic rules are not limited to the intersections, and it can be extended to
the other traffic rules in the round abouts, entering and exiting lines, and the other
ones. By activating each traffic rule and including it in the model, we can
outperform the previous works in that area. Therefore, the next works are

considering the other traffic rules in the other areas and including them in the model.
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After considering the other traffic rules, we can have a unified model that includes
the implemented traffic rules in the model, and we can use that model in the
different conditions. Indeed, combining this methodology with an HMI for the next
movements would be another possible work to complete the usage of motion
forecasting method for the motion sickness mitigation.

Overall, the new area that has been opened by our novel research of having the
traffic rules in the models not only improves the results of the motion prediction
model, but also opens a new area of researching with different traffic rules in
various conditions and places. It is very important to remind that if the traffic rules
increase in a model, we would require a more powerful embedded platform to
execute the model in real-time. Therefore, a new research area will be also using

the new embedded platforms that are appropriate for this work.
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Chapter 6

Conclusion and Future Works

In this thesis, | introduced my research work as the title of Advanced Driver
Assistance Systems for high-performance Embedded Automotive Platforms. |
started with the first chapter of Introduction to Advanced Driver Assistance
Systems. In this chapter, | went through different ADASSs and introduced the main
requirements for having an ADAS. At the end of this chapter, | introduced the
ADAS:s that | developed. Since one of the main required components in designing
the ADASs is their embedded platform, in the second chapter, I introduced the high-
performance automotive embedded platforms, and | described what embedded
platform | used for the implementation of my work. Then, in the third chapter, I
described A Full-Featured, Enhanced Cost Function to Mitigate Motion Sickness
in Semi- and Fully-autonomous Vehicles. In this chapter, we focused on the five
main physical characteristics that affect motion sickness, including them in the
function cost, to provide quality passengers' experience to vehicle passengers. We
implemented our approach in a state-of-the-art Model Predictive Controller, to be
used in a real Autonomous Vehicle. The potential sources of AV motion sickness
can be divided into five groups, namely, variation in horizontal and vertical
acceleration, posture instability, loss of controllability and loss of anticipation of
motion direction, Head downward inclination, and lack of synchronization between
virtual motion and the vehicle motion profile. In this work, which I presented in
VEHITS 2021, we focused on the three sources, namely, variation in horizontal and
vertical acceleration, posture instability, and loss of controllability. Anyway, in the
fourth chapter, | described the second research work for motion sickness mitigation
considering the other sources, lack of synchronization between virtual motion and
the vehicle motion profile and loss of anticipation of motion direction. In this
chapter I described Motion Sickness Minimization Alerting System Using The Next
Curvature Topology that tries to interact with the passengers for preventing the
motion sickness. | presented this research work in IEEE ICMA 2022. Finally, to
conclude the thesis, | introduced the last research work on the motion prediction
focusing on the traffic rules injection in the intersection. | started the chapter of
Motion Prediction using Attention Heads and Traffic rules in intersections by two
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tryout of implementation of the state-of-the-art works and then introduced my new
approach for outperforming the previous works in the intersections. Therefore, we
demonstrated that by injecting the traffic rules in the model we can have even better
results. This work is submitted in IEEE ICMA 2023.

The research work that I did, started from researching about the comfort issues
of the autonomous driving and led me to introduce two different work to mitigate
the motion sickness. Researching on the motion sickness also pursued me to start
researching on the motion prediction and proposing a novel method for
outperforming in the intersections.

In the other hand, these research works have opened a window to the future
works. The most interesting future works can be started by implementation the first
two methods of the motion sickness in the real vehicle and facing the real vehicle
issues. To do so, we need to consider also the more complex vehicle models, such as
the kinematic and dynamic vehicle model, to validate our approach at highest speeds
(i.e., > 150km/h), and to possibly include other classes of vehicles, such as busses and
coaches, which potentially issue Motion Sickness much more than cars using the online
services like google maps to give us the best results real-time.

Furthermore, the mixture of the motion prediction model with the motion sickness
mitigation systems can be a very interesting and challenging area to follow. Since with
a better prediction model, we will have a better interactive system with the passengers
in real-time. To do so, we need to extend our model to the other traffic rules. It also
requires a research work on a higher performance embedded platform to be able to
execute the model in real-time.
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