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Introduction

On a compact complex manifold, the existence of special metric structures can yield many infor-
mation concerning its topological and algebraic invariants. As a foremost example, the property of
admitting a Kéhler metric, i.e., a Hermitian metric whose associated fundamental form is closed,
imposes strong restraints on a complex manifold: from the topological point of view, the Betti
numbers by, i.e., the dimensions of the k-th de Rham cohomology spaces of the manifold, must
satisfy

bp,>0, k=0 mod?2
bp=0, k=1 mod 2.

Moreover, compact complex manifolds admitting a Kéhler metric, shortly Kdhler manifolds,
satisfy the Kdahler identities (see, e.g., [75, Section 3.1]), which yield that the Dolbeault Laplacian
and its conjugate are multiples of the usual Hodge Laplacian, hence the harmonic representatives
of the de Rham cohomology and Dolbeault cohomology coincide. Combined with Hodge theory,
this assures that compact Kéhler manifolds satisfy the 0d-lemma, i.e., the very special property
that every d°-closed d-exact form on the manifold is also dd-exact (see [46]), where, as usual,
d=0+0 and d° = i(d - 0). This property forces the natural complex cohomologies associated to
a complex manifold, that is, Dolbeault, Bott-Chern, and Aeppli cohomologies (see section 1.3 for
the definitions), to be isomorphic; it turns out that on a Kéhler manifold they indeed coincide.
Hence, on a compact Kéhler manifold, the Hodge decomposition holds and the Frolicher spectral
sequence degenerates at the first step (see, e.g., [64]). From the algebraic point of view, Ké&hler
manifolds are formal according to Sullivan and every Massey product vanishes; as a consequence the
homotopy type is a “formal consequence” of its cohomology ring, see [143]. Examples of compact
complex manifolds admitting a Kéhler metric are complex tori T™ := T'\C", i.e., compact quotients
of the complex space C" by a discrete uniform subgroup I', as they inherit a Kéhler metric from
the standard Kahler metric g = %Z?:l dz* A dz' on C". Furthermore, there exist suitable tools
to construct a Kéhler manifold starting from a known Kéhler manifold: by a celebrated result
of Kodaira and Spencer in [86], the property of admitting a Kéahler metric is open under small
deformations of the complex structure, i.e., any infinitesimal deformation of a Ké&hler manifold
is still a Kéhler manifold, and either restricting a Ké&hler metric to a complex submanifold or
performing a complex blow-up of a Kéhler manifold along a complex submanifold (see [154]) yields
a Kahler manifold.

However, because of the many restrictions that admitting a Kéhler metric imposes, a complex
manifold is not Kéhler in general, e.g., the only Ké&hler manifolds in the class of nilmanifolds,
i.e., compact quotients of connected, simply connected nilpotent Lie groups by a discrete uniform
subgroup, are tori, see [24, Theorem A], and more in general, a solvmanifold, i.e, a compact quotient
of a simply-connected solvable Lie group by a closed subgroup, carries a Kéhler structure if and
only if it is a finite quotient of a complex torus, by Hasegawa (see [67] and also [68])). As a
consequence, starting from the 80’s a number of authors have introduced notions of new Hermitian
metric structures which generalize Kéhler metric. This has been accomplished by defining Hermitian
metrics whose associated fundamental forms belong to the kernels of differential operators associated
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to the complex structure of the complex manifolds, thus yielding interesting Hermitian metrics,
e.g., strong Kdhler with torsion metrics, astheno-Kdhler metrics, and balanced metrics. Each of the
mentioned notions arises naturally in relevant settings of complex geometry, and, in particular for
strong Kéhler with torsion metrics, also in theoretical physics (see, e.g., [59, 141, 77]). More in
details, let (M, J) be a n-dimensional complex manifold and let g be a Hermitian metric on (M, J)
and w(X,Y):=¢g(JX,Y), X,Y e TM its associated fundamental form.

Strong Ké&hler with torsion metrics ([26]). The metric g is said to be strong Kdahler with
torsion, shortly SKT, if _
00w = 0.

Strong Kahler with torsion metrics arise in the context of Kdhler with torsion geometry. More
precisely, given a Hermitian manifold (M, J, g,w), in [26] Bismut showed that there exists an unique
connection V2, known as Bismut connection, which preserves the Hermtian metric g and the
complex structure J, i.e., VBg =0, vP.J = 0, and for which the tensor ¢(X,T(Y, Z)) is totally skew-
symmetric, where T stands for the torsion of the connection V2. The properties of such connection
are related to what is called Kdhler with torsion geometry (we refer to [51, 60, 114, 77, 141]| for
further details). The tensor g(-,7'(-,-)) can then be identified with the 3-form Jdw and, in the
particular case in which this form is closed or, equivalently, 90w = 0 , we say that the Hermitian
metric g is strong Kdhler with torsion, shortly, SKT. Such metrics have relevant relations with
generalized K&hler geometry (see for instance |59, 65, 74, 21, 39, 38, 145]) and type II string theory
and in 2-dimensional supersymmetric o-models (see, e.g., [59, 141, 77]). For compact complex
surfaces, i.e., 2-dimensional compact complex manifolds, the notion of strong Kéhler with torsion
metrics is equivalent to the notion of regular metrics according to Gauduchon, see [62]; hence, by
the celebrated Gauduchon theorem [62, Theorem 1], on a compact complex surface, there exists a
unique SKT metric in every equivalence class of conformal Hermitian metrics. In higher dimension,
this does not hold, e.g., in complex dimension 3 Fino, Parton, and Salamon have classified real
6-dimensional nilmanifolds endowed with invariant complex structures admitting a SKT metric,
see |53, Theorem 1.2|. In particular, the authors show that on any such manifold either every
invariant Hermitian metric is SK'T or none is, and every invariant Hermitian metric is SKT if, and
only if, the structure constants associated to the complex structure of the manifold satisfy a certain
relation (see (6.4.1)). Existence results have been proved also in complex dimension 4 by Rossi
and Tomassini in [125], in which the authors show that, in contrast to complex dimension 3, there
exist invariant complex structures admitting both SKT and non SKT invariant metrics and they
provide sufficient conditions on the structure constant of any 8-dimensional nilmanifold endowed
with a left-invariant complex structure under which any invariant Hermitian metric is SKT. We
point out that compact complex manifolds admitting SKT structures have been proven to be valid
candidates for the study of generalizations of the K&hler-Ricci flow, see for example [139].

Astheno-Kéhler metrics ([78]). The metric g on a (M, J) is said to be astheno-Kdhler if
O™ 2 = 0.

Astheno-Kéahler metrics have been introduced by Jost and Yau in [78] in the study of systems of
elliptic non linear equations related to rigidity results for complex manifolds. In particular, the au-
thors have shown that if a compact complex manifold (M, J) admitting an astheno-Kéhler metric
is homotopy equivalent to a non compact locally Hermitian symmetric spaces without the upper
plane as a factor of the universal cover or, respectively, is homotopy equivalent to a compact Kéhler
manifold with additional assumptions on the curvature, then (M, J) is biholomorphic to said locally
Hermitian symmetric space, respectively, Kéhler manifold. By dimension arguments, every Hermi-
tian metric on a compact complex surface is astheno-Kéhler. In complex dimension 3, the notion
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of astheno-Kahler metrics coincides with the notion of strong Kéhler with torsion metrics; there-
fore, in the setting of nilmanifolds admitting invariant complex structures, Fino-Parton-Salamon’s
results apply. However, already from complex dimension 4, the two notions are independent, e.g.,
in [125] Rossi and Tomassini study the relation between astheno-Kéhler and strong Kéhler with
torsion metrics on nilmanifolds real dimension 8 endowed with a invariant complex structure. In
fact, they provide sufficient conditions on the structure constants of the complex structure under
which any invariant Hermitian metric is astheno-Kéhler, respectively strong Kéhler with torsion,
and they construct examples of manifolds admitting both astheno-Kéhler metrics and non astheno-
Kahler metrics. Furthermore, astheno-Kéhler structures on Calabi-Eckmann manifolds have been
constructed in [100].

Balanced metrics ([103]). A Hermitian metric g on (M, J) is said balanced, or co-Kdhler, if
dw™ ! = 0.

Balanced metrics have been introduced by Michelson in [103], as a class of Hermitian metrics which
generalizes the notion of Kéhler metrics by requiring weaker assumptions on the torsion tensor
of the Chern connection. In particular, on a n-dimensional Hermitian manifold (M, J, g,w) the
Chern connection is a connection V¢* which preserves the complex structure J and the Hermitian
metric g, and whose (1,1)-component of the torsion TC" is identically zero. Then, the metric g
is Kahler if, and only if, 7" is identically zero. Michelson defines balanced metrics as Hermitian
metrics such that the 1-form obtained by taking the trace of TC" vanishes, i.e., 7 := tr(T°") = 0.
As it turns out, this condition is equivalent to the non linear equation dw™ ! = 0, or, equivalently,
d*w = 0 (hence, the term co-Kdihler), where d* is the formal adjoint to d with respect to the L2
scalar product on differential forms induced by g (see section 1.3). Balanced manifolds are in some
sense dual to Kéhler manifolds, e.g., if f: X - Y is a holomorphic immersion from a complex
manifold into a Kahler manifold, then X is also Kéhler, whereas if g: X — Y is a holomorphic
submersions of a balanced manifold onto a complex manifold, then Y is balanced. Regarding the
existence of balanced metrics on compact complex manifolds, in complex dimension 2 this metric
notion coincides with the notion of K&hler metrics, whereas for complex dimension n > 3, many
examples of balanced non-Kéhler can be constructed as total space of family of Kéhler manifolds
parametrized over a complex line, see [103, Theorem 5.5]. Moreover, in [6, Remark 3.1|, Alessandrini
and Bassanelli have showed that any compact holomorphically parallelizable manifold is balanced
and Ugarte proved a classification of balanced structures on 6-dimensional nilmanifolds endowed
with nilpotent complex structures in [152|. Furthermore, whereas for SKT metrics it has been
conjectured that on the same non-Kéhler compact complex manifold there cannot exist both SKT
metrics and balanced metrics with respect to the same complex structure (see [56]), in [101] it
has been indeed proved that an astheno-Kéhler metric is balanced if and only if the metric is also
Kahler, but in [52] the authors show the existence of a compact complex non-Kéhler manifold which
admits both a balanced and astheno-Kéahler metric.

In the wake of the results by Harvey and Lawson on Kéhler manifolds in [66], for a compact
complex manifold (M, J) the property of admitting any of the above metrics has been characterized
in terms of currents by, respectively, Michelson [103, Theorem 4.7], Alessandrini [2, Theorem 2.4],
and Egidi [48, Theorem 3.3|. In particular, the fundamental forms of strong Kéhler with torsion
metrics and astheno-Kéahler metrics belong to the family of p-pluriclosed forms for p = 1, respec-
tively, for p = n — 2, and the fundamental forms of Kéhler metrics and balanced metrics belong to
the family of p-Kdhler forms for p = 1, respectively, p = n — 1, where n = dim¢(M, J). For the
precise definitions, see section 1.5.



Geometrically formal metrics. Alongside the above metrics, in this work a relevant role is
played by the study of classes of metrics that arise in homotopic theory as introduced by Sullivan
in [143]. More precisely, a complex manifold (M, J) is said to formal according to Sullivan, if its de
Rham complex (Ag(M),d) is equivalent, in the category of differential graded algebras, the algebra
of its de Rham cohomology (Hj,(M),0); in this situation, the complex of differential forms and the
complex of its de Rham cohomology share the same minimal model and, hence, the homotopic type
of the manifold is a “formal consequence" of this cohomology ring. Compact Kéhler manifolds and,
more in general, compact manifolds satisying the d9-lemma, are formal according to Sullivan. An
obstruction to this property is represented by the presence of non vanishing Massey triple products,
introduced in [99], i.e., elements of quotients of the de Rham cohomology by an indeterminacy
ideal (see Appendix B). Concerning the de Rham cohomology of a differentiable manifold, it is
not possible, a priori, to fix canonical representatives so that they are an algebra with respect to
the A product; however, as Sullivan noticed in [144], if (M, J) admits a Hermitian metrics such
that the space of harmonic forms has a structure of algebra induced by the A product, then the
manifold (M, J) is also formal according to Sullivan. The metrics for which the above property
holds are called geometrically formal (according to Kotschick), see [87|, and also the existence of
such metrics is obstructed by of the existence of non vanishing Massey triple products. In order to
study a notion of “holomorphic homotopy theory", Neisendorfer and Taylor have introduced in [106]
the notion of Dolbeault formality and Dolbeault Massey triple products (see Section 1.4) as natural
adaptations of Sullivan’s formality involving the holomorphic structure of a complex manifold. Note
that Dolbeault formality implies that every Dolbeault Massey triple product vanishes and compact
complex manifolds satisfying the 99-lemma are Dolbeault formal (see [106, Theorem 8, Section 7).
In relation to this, Tomassini and Torelli in [150], respectively, Angella and Tomassini in [18], have
then introduced the notions of geometrically-Bott-Chern-formal metrics, and geometrically-Bott-
Chern-formal metrics and Aeppli- Bott-Chern-Massey triple products, which we are reviewed at the
end of Section 1.4. The links between Dolbeault formality, Dolbeault-geometrically-formal metrics,
and Dolbeault-Massey triple products are clear (see (1.4.2) and (1.4.3)), whereas only recently
Stelzig and Milivojevic have introduced in [104] a notion of formality which can be interpreted as
“Bott-Chern formality" and which is related to both geometrically-Bott-Chern-formal metrics and
Aeppli-Bott-Chern-Massey triple products.

The aim of this thesis work is to study the deformation and cohomological properties of such
special metric structures in a general setting and on concrete examples of both classical and more
recently introduced families of compact complex manifolds. Our goal is also to outline the interplay
between geometrically formal metrics and generalizations of K&hler metrics. Such study can indeed
lead to new interesting tools in a more deep understanding of complex manifolds.

In particular this work is divided as follows.

In the first chapter, we recall the main facts that will be needed through the work. More
specifically, complex manifolds, their cohomologies and Hodge theory, the complex formalities and
the special metric structures, the tools to computate the complex cohomologies of complex manifolds
with a structure of compact quotient of Lie group, and a brief review of deformation theory.

In the second chapter, we study deformations of the notions of the above special metrics. In fact,
whereas the Kéhler condition is stable under the action of deformations of the complex structure
of a compact complex manifold, i.e., any small deformations of a Kéahler manifold still admit a
Kahler metric, it has been shown in [8], respectively [55], that the same does not hold for balanced,
respectively, SKT and AK metrics, by providing examples of deformations of balanced, respectively
strong Kéhler with torsion and astheno-K&hler metrics, which do not admit any of the respective
metrics. Therefore, it seemed natural to ask whether there exist cohomological obstructions to
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the construction of curves of special metrics along curve of deformations, where by a “curve of
special metrics along a curve of deformations" we mean a l-parameter family of special metrics
{wi}+ along a 1-parameter family of deformations {(M,J;)}+ of a compact manifold (M,.J) such
that, if (M, Jy,) = (M, J), then wy, coincides with special metric w on (M, J). This approach led
to the necessary conditions described in Theorems 2.2.1, 2.3.1, 2.4.1 and their following Corollaries.
These results are then a useful tool to obtain obstructions to the existence of deformations by
curve of special metrics on explicit examples of manifolds. For strong Kéhler with torsion metrics
and astheno Ké&hler metrics, we study such obstructions on two different families of nilmanifolds
of complex dimension 4 introduced first contructed in [55] (see also [125]), whereas for balanced
metrics, we study two examples of non tori holomorphically parallelizable solvmanifolds in complex
dimension 3, i.e, the Iwasawa manifold and the holomorphically parallelizable Nakamura manifold.

In the third chapter of this work, we study the existence of p-Kéhler structures (in particular,
balanced metrics) and SKT metrics on a family of compact complex manifolds of complex dimension
4n — 2 with n > 2, introduced by Bigalke and Rollenske in [25] to prove that the degeneration step
of the Frolicher spectral sequence can be arbitrarily large. More precisely, we preliminarly prove
obstructions to the existence of p-Kéhler structures on nilmanifolds with nilpotent left-invariant
complex structures (see Theorem 3.1.2). With the aid of such obstructions, we are able to prove
that the Bigalke-Rollenske manifolds there exists no p-Kéahler structure for p € {2,...,4n -3} but
the canonical diagonal metric is balanced (Theorems 3.2.2 and 3.2.3); hence, this proves that,
in contrast to Kéhler manifolds, there exists no correlation between the degeneracy step of the
Frolicher spectral sequence and the property of admitting a balanced metric. Furthermore, any
element of the Bigalke and Rollenske manifolds does not admit SKT metrics (Proposition 3.2.5)
nor locally conformally Kéhler metrics (Proposition 3.2.6, by combining results in [110]).

In the fourth chapter of this thesis, we study the behaviour under deformations of the notions of
complex formality as previously recalled. In fact, it has been shown by Tomassini and Torelli [150,
Theorems 4.1, 4.2, 4.3] that Dolbeault formality, geometric Dolbeault formality, and the property
of admitting non vanishing Dolbeault Massey products are not stable under deformations. Analo-
gously, Tardini and Tomassini have shown that geometric Bott-Chern formality and the property of
admitting non vanishing Aeppli-Bott-Chern Massey products are not stable under deformation of
the complex structure (see [147, Corollary 4.5]). Hence, it seemed interesting to check whether the
above properties satisfy any other stability property under deformations. As a result, by construct-
ing two explicit examples, we are able to prove that the neither the “Dolbeault formalities" neither
the “Bott-Chern formalities" are closed under deformations (in sense of Definition 1.7.3), see The-
orems 4.2.1 and 4.3.1. Moreover, we provide the first known example of a manifold which satisfies
the 00-lemma but admits non vanishing Aeppli-Bott-Chern-Massey triple products, showing that
those products, unlike classical Massey products and Dolbeault products, are not an obstruction
to the d0-lemma (see Theorem 4.4.1). The construction of the example is performed by taking the
quotient of the Iwasawa manifold with respect to a holomorphic action with fixed points, obtaining
an orbifold satisfying the 90-lemma and then by performing in sequence blow-ups at each singular
point so that the resulting object is a smooth complex manifold which still satisfies the 99-lemma.
We note that such a manifold is not K&hler.

In the fifth chapter, we study the geometrically formal metrics according to Kotschick,
geometrically-Dolbeault-formal metrics, and geometrically-Bott-Chern-formal metrics on compact
complex surfaces of the class VI and VI of the Enriques-Kodaira classification, namely, the Inoue-
Bombieri surfaces and Inoue surfaces of type S*, the Hopf surfaces, and the Primary Kodaira and
Secondary Kodaira surfaces. In particular, we focus on the study of the stability of the above metric
notions under the action of the Chern-Ricci flow. Such parabolic geometric flow evolves Hermitian
metrics and has been introduced and studied by Gill in [63] as a natural adaptation in the complex
setting of the celebrated Ricci flow, which has been the central tool used by Perelman to prove
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the Poincaré conjecture and the Thurston s geometrization conjecture in the early 00’s. Moreover,
the behaviour of the geometric flows at the limits of its time existence usually provides interesting
features on the complex structure and topology of the manifold, see [138]. In this setting, we were
able to prove that a stability result holds, i.e., the Chern-Ricci flow preserves geometric formalities
on any of the above surfaces, see Theorem 5.3.1 and Proposition 5.4.1. This was accomplished by
finding an explicit solution of the flow starting from an invariant metric and and then computing
the harmonic representatives of de Rham, Dolbeault, and Bott-Chern cohomologies with respect
to the solution metric.

In the sixth and final chapter of this thesis work, we focus on the stability under blow-ups of
astheno-Kéhler metrics and the relation between strong Kéhler with torsion metrics and
geometrically-Bott-Chern-formal metrics. Voisin has shown that, by blowing up a compact Kéhler
manifolds at a point or along a complex submanifold, one obtains a Kéhler manifold, see [154].
Analogously, the blow-up of either a compact balanced manifold or a compact SKT manifold at
a point or along a complex submanifold yields again a balanced, respectively, SKT manifold, see
[7] and [55]. Moreover, Fino and Tomassini showed that if the fundamental form w of a Hermitian
metric satisfies certain differential condition, namely

A0w =0, OOw? =0, (0.0.1)

then w also satisfies 90w® = 0, for every k, and properties (0.0.1) are stable under blow-ups at
a point or along complex submanifolds. On the other hand, we prove in Theorem 6.2.1 that if
the fundamental form associated to a Hermitian metric satisfies weaker conditions than (0.0.1),
those condition are not stable under blow-up. In order to do so, we start by explicitly constructing
a family of nilmanifolds of complex dimension 5 and characterize the complex structures whose
canonical diagonal metric satisfies the astheno-Kéhler condition and another suitable differential
property, see Theorem 6.2.1. We proceed by selecting a specific element of such a family and a
suitable complex submanifold along which we perform a blow-up. We then prove the thesis by using
obstructions in [3]. Furthermore, we analize SKT metrics on the Fino-Parton-Salamon manifolds
and we show that any invariant metric is also geometrically-Bott-Chern-formal. The same result also
applies to any nilmanifold of complex dimension n endowed with a left-invariant complex structure
admitting analogous structure equations, see Theorem 6.4.4. We end this chapter, by showing that
in general there exists SKT manifolds which do not any geometrically-Bott-Chern-formal metric.
The counterexamples provided are products of either two copies of a Inoue-Bombieri surface, two
copies of a Primary Kodaira surface, or a copy of a Inoue surface and a Primary Kodaira surface.
The three final appendices are devoted to the definitions of complex manifolds through the a
holomorphic atlas, of holomorphic and complex vector bundles (Appendix A), of formality accord-
ing to Sullivan, of triple Massey products, and the geometrically formal metrics for differentiable
manifolds (Appendix B), and the invariant cohomology of real nilmanifolds (Appendix C).

The content of Sections 2.2, 2.4 of Chapter 2, and of Chapters 3—5 relies, in order, on the published
papers:

e R. Piovani, T. Sferruzza, Deformations of Strong Kéhler with torsion metrics, Complex Man-
ifolds 8 (2021), 286-301,

e T. Sferruzza, Deformations of balanced metrics, Bull. Sci. Math. 178 (2022), 103143,

e T. Sferruzza, N. Tardini, p-Kéhler and balanced structures on nilmanifolds with nilpotent
complex structures, Ann. Glob. Anal. Geom. 62 (2022), 869-881,
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o T. Sferruzza, A. Tomassini, Dolbeault and Bott-Chern formalities: deformations and 99-
lemma, J. Geom. Phys. 175 (2022), 104470,

e D. Angella, T. Sferruzza, Geometric formalities along the Chern-Ricci flow, Complex Anal.
Oper. Theory 14 (2020). https: //doi.org/10.1007/s11785 — 019 — 00971 - 6.

The content of Section 2.3 is original work (not submitted) from
e T. Sferruzza, "Deformations of astheno-K&ahler metrics",
and the content of Chapter 6 is from the submitted paper

e T. Sferruzza, A. Tomassini, On cohomological and formal properties of strong Kéhler with
torsion and astheno-Ké&hler metrics, preprint available at
https : //doi.org/10.48550/arXiv.2206.06904.

The author would to thank the referees for their comments and suggestions, which helped improve
the presentation of this work.
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Chapter 1

Preliminaries on complex manifolds and
Hermitian structures

In this first chapter, we recall the main facts regarding the cohomological structures, the metric
structures, and formal structures of a complex manifold. Unless otherwise stated, we will assume
every manifold to be compact. We will approach the topic of complex manifolds from the point
of view of even dimensional differentiable manifolds endowed with a integrable almost complex
structure; for the definitions of holomorphic atlas, holomorphic maps, and holomorphic bundles,
see Appendix A.

1.1 Complex and Hermitian geometry on vector spaces

We start by recalling one of the fundamental structures in complex geometry, namely, the almost
complex structure endomorphism on a even dimensional differentiable manifold. Throughout this
work, the explicit computations will usually be carried out on manifolds endowed with a structure of
compact quotients of real Lie groups with invariant complex structures; such structures will enable
to reduce many differential problems to finite dimensional linear algebra problems, therefore, it
seemed reasonable to devote this first section to the theory of almost complex structures on vector
spaces and then extend the notions here recalled in the later sections.
Let V be a real vector space of dimension 2n.

Definition 1.1.1. An almost complex structure on V is an endormorphism J of V such that
J? = —idy.

Clearly, the endomorphism J is invertible, i.e., J € GL(V), and the assumption dimg V' = 2n
for some n € N is necessary, since if V is a k-dimensional real vector space endowed with an almost
complex structure J and B is a basis for V, then

0 < det(Mg(J))? = det(Mp(J?)) = det(-idy) = (-1)*,

forcing k to be even.

Any complex vector space admits a natural almost complex structure induced by the multipli-
cation by 7. Viceversa, on a 2n-dimensional real vector space V', an almost complex structure J
induces a structure of complex vector space on V' in the following way. For every v eV, a +ib e C,
it is sufficient to set

(a+1b)-v:=av+bJ(v).

It is immediate to check that i?-v = J(Jv) = —v. Thus, the space (V,J) can be regarded as
a complex vector space of complex dimension dimc(V,J) = n. Moreover, every 2n-dimensional
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2 CHAPTER 1. PRELIMINARIES

real vector space endowed with an almost complex structure admits an orientation induced by the
orientation on C".

Example 1.1.2. Let V =R?" and let B = {ey,...,e2,} the canonical basis. Then, the position

Jep e | Clms ke{l,...,n},
e —€k-n, ke{n+1,...,2n},

defines an almost complex structure J on R?*". In particular, as a complex vector space (R*",.J)
coincides with (C",7). The positive orientation on (R?*",.J) is given by the real basis

{e1,Je1,... en,Jen}.

Let now Vg := V ®@r C be the complexification of the real vector space V. Such a vector space
admits a natural complex structure by defining the multiplication

z1-(V®22) ==v® (2122),

for every z1 € C, v® z9 € V. Note that V' can be viewed as V ®@r 1 = V ®@g C and it is clearly a real
subspace of V ®g C, i.e., it is invariant under the complex conjugation defined by (v ® 2) :=v ® Z,
for v ® z € V. A practical way of considering V¢ is to identify it with the space V @iV, i.e.,

Ve ={v+iw|v,weV}.

Let us denote by the same symbol the C-linear extension to V¢ of the almost complex structure
J defined on a 2n-dimensional real vector space V. Such a endomorphism has complex eigenvalues
+i on Vg, to which correspond the eigenspaces

VI —fveVe|Ju=iv}c Ve
VOl = {veVe|Jv=—iv}c V.
Notice that both V1 and V%! are complex subspaces of V¢ and we have immedaitely the following

decomposition
Ve=V0e Vol (1.1.1)

We remark that if dimg V' = 2n, we have that dimc Vg = 2n, whereas dime V10 = dime VO! = n.
By choosing a C-basis {v1,...,v,} for (V,.J), one obtains bases B? and B%! for, respectively, V-
and Vo', by setting

1
B - {5 (0; - mj)} (1.1.2)
7j=1,..,n

By, = {% (0; +¢ij)} . (1.1.3)

7j=1,..,n
We remark that, since dime(V,J) = dim¢ V1° = n and the C-linear map
(V,J) - v1io (1.1.4)

1
v i(v—iJv)

is bijective, we have that (V,J) and V¥ are isomorphic as complex vector spaces.
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If V* denotes the dual vector space of a vector space V, an almost complex structure on V'
naturally induces an almost complex structure on V*, which will be still denoted by J. In fact, if
neV* veV, it suffices to set

Jn (v) =n(Jv).
By considering the complexification of V*, ie., V& := V* ® C, and the C-linear extension of J to
such space, one can define the eigenspaces with respect to the +i eigenvalues
(VM = {ne Vg Jn=in}c V¢
(V)M = {neVE|Jn=—in} c V¢,

and a decomposition analogous to (1.1.1) holds
V(ér _ (V*)I,O ® (V*)O,l.

As complex vector spaces, (V*)50 and (V*)%! admit bases as in (1.1.2) and (1.1.3). However, it
is sometimes useful to work with dual bases, in the following way. Let {v!,...,v"} be the C-basis
of (V*,J) dual to the C-basis {v1,...,v,} of (V,J), i.e., such that

1, i=j
0, i#j.

vi(vj) =05 = {

The dual bases B"? and B%! to, respectively, Bi,o and By 1, are then given by
L0 ._ [ i, ;7.0
BY = {v +iJv }'i:l,...,n
01 ._ {0 7.1
BYt = {v iJv }1:1,...,n’

Let us now consider the k-covectors on V, i.e., the elements of the exterior powers A* V¢ of the
complexified dual vector space V& of a real vector space V. If V' is endowed with an almost complex
structure J, the spaces A* V¢ admit the following decompositions in terms of the +i-eigenspaces
(V)10 and (V*)%! of J on V¢, namely,

NVE= @ APV, (1.1.5)
p+q=k

where we set
Ap,q V = /\p(v*)l,o ® /\q(‘/'>(—)(),17

for the space of (p,q)-covectors. In particular, if {n',... 7"} is a basis of (V19)*, it is easy to see
that the set

A AP At A Apla | 1<i) < <ip<n, 1<) << jg<n}

is a basis of AP?V. Note that one can extend the action of the almost complex structure J to the
space of k-covectors in /\k(V(C* ) by setting, for any given « € /\k(VC* ),

Ja(vy,...,vg) = a(Juy,. .., Jug). (1.1.6)

However, such a J is not necessarily an almost complex structure on /\k(V(c* ).

From the metric point of view, one may want to define scalar products which are compatible
with the almost complex structure endomorphism on a vector space.

More precisely, let V' be a 2n-dimensional real vector space endowed a positive definite scalar
product g.
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Definition 1.1.3. An almost complex structure J on V is said to be compatible with g if for every
v,w €V, it holds
g(Jv, Jw) = g(v,w),

i.e., J is an isometry of V with respect to g.

Given a scalar product g on V, it is always possible to extend it to either a Hermitian scalar
product gg, or to a C-bilinear scalar product gc on V¢ as follows

g (v1 +ive, w1 +iwe) = g(vy, w1) + g(va, wa) +ig(va, wy) —ig(vy,ws), (1.1.7)

gc(v1 +ive, wy +iws) = g(vy, wy) + g(ve, wa) —ig(ve, w1) —ig(vy, w2), (1.1.8

for every vy + v, wy + twg € Vo. Note that if V' is endowed with an almost complex structure
J compatible with g, the decomposition induced by J on V¢ given by (1.1.5) is orthogonal with
respect to gg.

Let V be real vector space endowed with a positive definite scalar product g and a compatible
almost complex structure J.

Definition 1.1.4. The fundamental form w associated to ¢ is the positive 2-covector defined by
w(v,w) = g(Jv,w),
for every v, w,e V.

As by definition, w is alternating, i.e., w € A2V* and, if such form is naturally extended to
N V¢ by
w(vy + 1v9, w1 +iwse) = go(J(v1 +iv2), wy + iws)
is it clear that w € AV and @ = w, i.e., the fundamental form w of a positive definite scalar

product g is a real (1,1)-covector on V. Moreover, since w(v,Jv) = g(v,v) > 0, with equality
holding if, and only if, v = 0, the covector w is also positive.

Remark 1.1.5. If g is positive definite scalar product on V and J is compatible with g, then it
can be easily seen that the form
h:=g-iw (1.1.9)

is a positive Hermitian scalar product on (V,J). Viceversa, if h is a positive definite Hermitian
scalar product on (V,J), then
Re(h):VxV >R

is a positive definite scalar product on V' and
-Im(h):VxV >R
is a positive 2-covector on V.

If V is a real vector space endowed with an almost complex structure J and a compatible
positive definite scalar product g, then via the isomorphism (1.1.4), the Hermitian extension g
and h as defined in (1.1.9) satisfy the following relation

1
9]0 = 5 (1.1.10)

Equation (1.1.10) is useful for computing the coordinate expression of w in terms of the coordinate
expression of gp|,, .- Let {z = (- iJxj)}7_; be a C-basis for VIO If we set yj = Jxj, then
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{x1,Y1,...,%n,yn} is a R-basis for V, whereas {z1,...,2,} is a C-basis for (V,J), via (1.1.4). Let
us now assume that the product 9H| 110 is expressed locally by

1 & P
9H|V1’0=§ ; iBZ ®Z

where {Z]} _y is the dual basis of {z;}_; and g, € C. Since gy is Hermitian, we have that g,z € R

and 9% = 95
The fundamental form w of g is a 2-form on V', therefore it can be written as

n . . .
= > wlzj,y)r? AyF+ Y w(zg,ap)e? Ak + 3wy, u)y’ Ayt
7,k=1 J<k i<k

From w = -Jm(h) and (1.1.10), we have that w(zj,zx) = w(y;,yx) = -Jm(g;7), and w(z;,yx) =
Re(g;;). Hence

w= Y Re(g;z)a’ A y* - > Im(g,z) (2" A a2 + 7 AyP).
jik=1 j<k

Since Re(g;7) = 9,5 and Sﬁe(gﬁ) = Re(g;7), one has that
i Iny + > Re(g.0) (@ nyF + 2 ny?) = S dm(g.0) (@7 Aa® +y7 Ayh).
s Ay ¢(9,7)(x yF+ak Ay m(g7)(z eyl ny
: ]<k ]<k}

If one consider the C-linear extension of w to AV and exploits the relations

A . 1
a:J/\xk+yJ/\yk=§(zJAzk+zJ/\zk),
Gyt = L A5
 ny! = (22 A7),

2
i
2 Ay + 2k /\y3=§(z] AEF —F A 2R,

it turns out that

9,52 NF + % > Re(g,7)(# AFE—F A R) - 3 > Jm(gp)(# ANZE+ 7 A 2R
j<k i<j

957 AT + 5§(me(gjk) +iIm(gp))2’ AT+ 5%(%(%) —iIm(g;7))2" A7

€

I
N | .
0=

<
I
—

Il
DN | .
(1=

<.
Il
—_

Azl 2 J Z k \ =i
957 NZ + ngz AZF 4+ ngz AZ

]<k j<k

<
Il
=

1l
N | .
™

957 Zj/\zj+—ngzj/\z +—ngz ANF
]<k 2]<k’

<

N | .
™= iMz

J k
g% NZ

1

N | .
.

’.]

Then, if w is expressed as w = %Z? el ijzj A7, the relation between the coeffiecients of w and
9H|\ 1.0 is given by

In the last part of this section, we recall the definition of the Hodge *-operator for complex vector
spaces, both in the C-linear and C-antilinear version.
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We start by remarking that a scalar product g on a vector space V induces a scalar product on
V™ in the following way. Let B be a basis for V' and let {g;;} be the matrix representing g with
respect to B. If B* is the basis of V* dual to B, then the matrix

{97} = {9y}

represents a scalar product g on V* with respect to the basis B*.

Then, one can consider the extension of g to the Hermitian scalar product g on V¢ as in (1.1.7)
and then extend gy to a Hermitian product on AF V, in the following way. Let {v!,...,v?"} be a
C-basis for V. For I ={1<i; <---<ip<2n}, J={1<ji <~ <jip <2n}, we set vl := vt A- A0l
and v’ analogously. The position

grr (v’ 0”) = det ({ga (0", 07 )} pr )

then yields a Hermitian scalar product on AF VE.

If the vector space V™ is endowed with an almost complex structure J and, hence, there holds
a decomposition of type (1.1.5) in (p, q)-covectors, in a similar way the scalar product g can be
extended to a Hermitian scalar product gz on each space AP4V .

Let V' be a real vector space of dimension 2n endowed with a positive definite scalar product
g and let J be an almost complex structure compatible with g and w the associated fundamental
form of g.

Definition 1.1.6. The C-linear Hodge *-operator is defined at the level of (p, q)-forms on (V,J)
by

* \PAV — \ONP Y
BB,

where aA*f = g (a, B) vol, for every av € APV and vol = “;l—r,l is the volume covector, i.e., a positive
2n-covector on V| naturally induced by g.

As the usual Hodge *-operator, * is an an isometry with respect to gg, it is self-adjoint up to
a sign and involutive up to a sign. Analogously, one defines the C-antilinear Hodge *-operator as

*: /\pvq V — /\n_p7n_q V
B xp

where a A #3 := gy (a, 8) vol.

1.2 Complex and Hermitian structures on manifolds

One of the most important objects associated to differentiable manifold M is the tangent bundle
TM. At each point p € M, the tangent space T, M is a real dimensional vector space such that
dimg T),M = dimg M. Definitions from section 1.1 can then be extended to the tangent bundle of
even-dimensional differentiable manifolds by requiring that the objects vary pointwisely smoothly
on the manifold.

Let M be a differentiable manifold of real dimension 2n and let T'M be its tangent bundle.

Definition 1.2.1. An almost complex structure on M is an endomorphism J € End(7'M) such
that J? = —idzps. Such an almost complex structure J on M is said to be integrable if it is induced
by holomorphic coordinates, see Appendix A.



1.2. COMPLEX AND HERMITIAN STRUCTURES ON MANIFOLDS 7

By the Newlander-Niremberg theorem [107], the integrability of an almost complex structure J
is equivalent to the vanishing of the Nijenhuis tensor Nj associated to J, that is, J is integrable
if, and only, if

Ny (X, Y):=[JX,JY]|-J[X,JY]-J[JX,Y]-[X,Y]=0, (1.2.1)
for every X,Y e T'M. Other equivalent conditions of integrability for an almost complex structure
will be recalled later in this section.

We will denote the complex manifold arising from assigning the integrable almost complex
structure J on a 2n-dimensional differentiable manifold M by (M, J), unless the almost com-
plex structure has already been fixed; in that case, we will denote it simply by M. Note that
dimc(M, J) = n.

One can extend the endomorphism J by C-linearity to the complexified tangent bundle Te M :=
TM @ C and obtain a decomposition in terms of the +i-eigenspace bundles of J, namely

TeM =TM & T M,

where TYOM = {Z e TcM |(J —iI)Z = 0} and T'M = {Z € Tc M |(J +il)Z = 0}. Also, if J is
extended to the complexified cotangent bundle Tz M, one similarly obtains

TEM = (THM)* @ (T M)* (1.2.2)

where (TYOM)* and (T%'M)* are the eigenspaces bundles associated, respectively, to the eigen-
values ¢ and —i.

Furthermore, on the exterior powers /\('é M = /\k(T(EM ), the decomposition (1.2.2) induces the
following

ANEM = @ APIM, (1.2.3)
p+q=k

where AP4 M = AP(THOM)* @ AY(T%1 M)*. We will denote the spaces of the global sections of the
bundles /\f: M and AP M, i.e., the spaces of k-complex forms on M (or forms of degree k) and of
(p,q)-forms on M (or forms of bedegree (p,q)), by respectively, AL (M) and AP4(M).

The action of the exterior differential d can be extended to complex forms and maps k-complex
forms into (k + 1)-complex forms, namely

d: AL (M) > A (M),

With respect to any generic almost complex structure J on M, at the level of (p, ¢)-forms, the
exterior differential d acts as

d: API(M) » AP0 (M) @ APTHI(M) @ AP (M) @ AP (M),

i.e., by denoting the projections p:= 7?29 Lo d, §:= 7P 90d, & := 7P o d, and i := 7P 19*2 0 d,
it holds that d splits as
d=p+0+90+n.

Since d? = 0 and decomposition (1.2.3) is direct, it follows immediately that
u =0
wo+0u =0
O+ pud+0u=0
pi + 00 + 00 + i = 0
9 170+ =0
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710+ 0 =0
72 =0.

It is fairly easy to see that, in addition to the vanishing of the Nijenhuis tensor associated to J,
necessary and sufficient conditions under which the almost complex structure J is integrable are
either of the following

L p=p=0,

2. ﬁ|A1’0(M) = 0, that is 7%2(da) = 0, for any o € AV (M),

3. [TOM, T M) c TO M.
In any of the previous situations, it holds that
d: AP (M) _,Ap+1,q®Ap,q+l(M)’

i.e., d decomposes as

d=0+0,

with 90 = —90 and §? = 52 = 0. From now on, unless specified, we will assume J to be integrable.
It is sometimes useful to define the following operator

d®:=J " odoJ, (1.2.4)
or equivalently, d° = —i(0 - 9), for which it is immediate to see that
dd® = —d°d = 2i90. (1.2.5)

Let now g be a Riemannian metric on M and let J be an integrable almost complex structure
on M.

Definition 1.2.2. The metric g is said a Hermitian metric on (M, J) if g is compatible with J, i.e.,
g(JX,JY) =g(X,Y), for every X,Y e TM. The fundamental form w of g is the 2-form defined by

w(X,Y)=9(JX,Y),
for every X,Y e T M.

In particular, if w is extended by C-linearity to A%(M ), then w is a form of bidegree (1,1) and
is real, i.e., w e AM(M) and w = @.

Remark 1.2.3. If g is Hermitian metric on (M, J) and w is its fundamental form, then any two
structures of {J, g,w} determine the remaining one.

A complex manifold (M, J) endowed with a Hermitian metric g with fundamental associated
w will be referred to a Hermitian manifold, and it will be denoted as (M, J,g,w). Note that the
form “:1—7 naturally determines a volume on M, i.e., a everywhere non vanishing (n,n)-form, or
equivalently, an orientation on (M, J). Therefore, every Hermitian manifold is orientable.

Let now m: E' — M be a holomorphic vector bundle of rank r over a complex manifold (M, J)

(see Appendix A).
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Definition 1.2.4. The bundle of k-complex forms on M with values in E is the bundle
AN(M,E):=NEMQE,

and the bundle of (p, q)-forms with values in E is the bundle
ANPYM,E)=N\P1MQE.

The global section of such bundles will be denoted by, respectively, AL (M) and AP4(M, E); the
symbol “M" will be omitted whenerever the situation is clear.

A special case of such bundles is given by E = TH9M. In this situation, an element v € A%4(T1)
will be called a (0, q)-vector form on M.

Let now m: £ — M be a holomorphic vector bundle on M. Then, one can define the interior prod-
uct between a (0, 1)-vector form on M and any (r,s)-form with values in E. Let ¢ € A%Y(T1OM),
that is ¢ = ® Z, with n e A%V (M), Z e T*°M, and B ® s € A™*(E). Then, the interior product of
1 and S ® s is given by

Z-:AT,S(E) N Ar—l,s+1(E)

ip(B®s)=nnriz(B)®s, (1.2.6)

where iz7: A" (M) - A""1¥(M) is the usual contraction of differential forms by the vector field Z.
The position (1.2.6) can then be extended by linearity to any v € qu(Tl OM) and o € A™*(E).
Also, it is possible to define i;(8 ® s) =7 Aiz(a) ® s for the conjugate Y=1®Z e AV (T ).
We will also denote the map ch by the symbol ¢_1.

1.3 Complex cohomologies and Hodge Theory

Let (M, J) be a compact complex n-dimensional manifold. Among the main invariants associated
to the complex structure J of (M, J), there are the following cohomology spaces ([32, 1])

Ker(gz APY(M) — APITL(M))

Dolbeault cohomology := H2(M) := — (1.3.1)
0 Im(9: AP4=1(M) - AP4(M))
. APY9 _s AP+l p,g+1
Bott-Chern cohomology := HL (M) := Ker(d: A 14 (M) © AP (M)) (1.3.2)
Im(99: Ap~1.a-1(M))
- AP, _ Apt+lg+l
Aeppli cohomology := HY (M) := Ker(90: AP1(M) > A (M) (1.3.3)

Im(8: AP~14(M)) + Im(8: APa-1(M))

We point out that, since M is compact, all the spaces above are finite dimensional; we set hp M) =
dim Hy (M), for f {0, BC, A}.

The cohomologies spaces (1.3.1), (1.3.2), and (1.3.3) arise as cohomologies of certain complex of
differential forms on the manifold (M, J). In particular, the Dolbeault cohomology is the “column"
cohomology of the complex of (p, q)-forms A**(M) endowed with the d operator, i.e., for every p,

A0 () Sty S S e )

and
HE (M) = H* (A" (1), D).

whereas the Bott-Chern cohomology and the Aeppli-cohomology spaces of a fixed bedegree (p,q)
coincide with the cohomology of the complexes, respectively,

AL gy P gpacary & APLa(r) @ AP (M)
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and
AP~ 1"1(]\4)619qu 1(M)—>.AM(M) Ap+IQ+1(M)

As a direct consequence of the definitions, the following diagram of natural maps between
Dolbeault, de Rham, Bott-Chern, and Aeppli cohomology, is well defined

HE¢,(M)

/l\

H2* (M H3: (M;C) HY* (M) (1.3.4)

\l/

H3* (M)

where H*(M) is the conjugate cohomology of Hg'(M).

A priori, the maps are neither injective nor surjective. However, if the maps are all isomorphisms,
we say that (M, J) satisfies the d0-lemma. There exist many equivalent conditions under which a
complex manifold (M, J) satisfies the d0-lemma, e.g., the injectivity of any of the maps of diagram
(1.3.4). For example, (M, J) satisfies the d0-lemma, if, and only if,

KerdnImd c Im dd.

Furthermore, recently, Angella and Tomassini in [19, Theorem B] (see also [17]) provided a numerical
necessary and sufficient condition for the validity of the d9-lemma, involving the dimensions of the
Bott-Chern and Aeppli cohomologies, i.e., for every k it must hold that

p.q p,q _
> WL+ hhT = 2by,
p+q=k

A class of complex manifolds satisfying the 00-lemma is the class of compact Kihler manifolds,
where a Kdhler manifold is an even dimensional differentiable manifold M endowed with a Kdhler
structure {g, J}, where J is an integrable almost complex structure and ¢ is a Hermitian metric on
(M, J) such that its fundamental form w is d-closed, i.e,

dw = 0.

Remark 1.3.1. We remark the following behaviors of the cohomology spaces under the action of
the complex conjugation and the Hodge *-operator:

° W: HgJ’(M)7 but in general W;& Hgﬂp(M)’

o HEL(M) = HE,(M) and HEI(M) = HYP(M),

. *Hpq(M) = HZ9"P(M) and «HRL(M) = H) P"P(M), where * is the C-linear Hodge
*- operator

e the spaces Hg’q(M ) and HZL (M) have a structure of algebra induced by the u product of
cohomology classes, which for any two cohomology classes [a], [3], it is defined as [a]U[S] :=

[anB],

e the spaces HY(M) have a structure of HZ (M )-module induced by the u product.
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Let us now consider the compact Hermitian manifold (M,.J,g,w). The Hermitian metric g
defines a Hermitian product on each AP (M)

(a, B) ::fMaAﬁ. (1.3.5)

Via the Hodge s-operator, it is possible to define the adjoint operators of 8 and 8 with respect to
('a ) by

*

a*::—*ogox-, O i=—%00o %,

Notice that 0* and 9  are operators of type, respectively, (-1,0) and (0,-1). We recall the
expressions of the Dolbeault Laplacian, Bott-Chern Laplacian, and Aeppli Laplacian (see [129])

Ay =39" +8°D,
Apc =000 0" +0 9"00+0 9079+ 0790 9+ 9+0*0,
Ap=00"+D9 +0 0°90+ 99D 9" + 99 d9" + 9999,
which are self-adjoint with respect to (-,-) as in (1.3.5), elliptic differential operators on each space

AP4(M). The spaces of Dolbeault harmonic forms, Bott-Chern harmonic forms, and Aeppli har-
monic forms are defined as the kernel of such operators, i.e.,

’ngg(M) ={ae AMI(M): Ay =0} (1.3.6)
HRL (M) ={ae A7I(M) : Apca =0} (1.3.7)
HA (M) = {ae A7I(M) : Aga =0} (1.3.8)

Note that the same symmetries under complex conjugation and the Hodge *-operator pointed out in
Remark 1.3.1 hold true also for the spaces of Dolbeault-, Bott-Chern, and Aeppli-harmonic forms.
Since M is compact and each Laplacian is elliptic, (1.3.6), (1.3.7), and (1.3.8) are finite dimen-
sional and there holds a Hodge decomposition for every case (see [129]), namely
APA(M) ® HZ;(M) ®

:Ima|Ap,q-1(M) Imo |AP74+1(M)

APUM) =T 00| 4,1 o0y ® HAL (M) @ (Im8*|AP+Lq(M> +Imd |AP»‘Z“<M>)

APA(M) = Im(aa)*|AP+1,q+1(M) ® Hgi(M) ® (Im 8|AP*LQ(M) +Im 8|AP»¢Z*1(M)) .

Moreover, the following maps are isomorphisms of vector spaces (not necessarily of algebras or
Hpc-modules)

Apc

HELOM) S HPO(M), MRS (M) HELQD),  HRL(M) S HE(M),

and the harmonic forms with respect to each Laplacian can be characterized as follows

da=0
aeHp, < {E?OZ_O (1.3.9)
da=0
aeta,, <= { da=0 (1.3.10)

90+ a =0
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90a =0
aeHRI (M) <= { 9+a=0 . (1.3.11)
O*a=0

Hodge theory, with slight due changes, can be applied to the setting of Dolbeault cohomology
with values in a holomorphic vector bundle.

Let m: E - M be a holomorphic vector bundle of rank r over a compact Hermitian manifold
(M, J,g,w). The O operator on each AP4(M) induces a operator O on each space APY(E) in
the following way. Let U be an open subset of M and let ¢: 7 1(U) - U x C" be a trivialization

of E over U. If {s1,...,5,} is a smooth trivializating sections of U, i.e., each s;:U — 7~ 1(U) and
{s1,...,8-} is local frame for 771(U), then a section a € AP4(E) has local expression
a=)Y a;®s;,
j=1

with a; € AP4(M). The position

gives rise to a well defined and global operator on AP4(FE) of type (0,1) and such that 5125 = 0.
Then, it is possible to define the Dolbeault cohomology of a holomorphic vector bundle E as
Ker(0p: AP9(E) - API*1(E))

Im(Op: AP4-1(E) - APa(E))

HP9(M, E) = HYAP(E), Bp) -

A Hermitian structure h on E is a hermitian scalar product h, on each fiber E,, for z € M,
which varies smoothly with respect to x. In particular, since h € E* ® E*, it can be identified
as a C-antilinear isomorphism between F and E*. Note, also, that a Hermitian structure h and
a Hermitian metric g on (M, J) naturally induce a hermitian structure on every AP4(FE) by the
position, for every a; ® s1,as ® s € AP(E),

(1 ® 51,02 ® 89) = g (a1, a2) - h(s1,52),
and then extending (-,-) by C-linearity, respectively C-antilinearity on the second component, to
APIU(E).
For every n ® s € AP4(FE), the C-antilinear Hodge *-operator on APY(E) is the isomorphism
given by

Fp APY(E) > AVPU(EY)

n®s—*p(ne®s):= e h(s)
and extended by linearity to A”9(E), where * is the usual C-linear Hodge *-operator on differential
forms. Thus, ¥ depends on the Hermitian structure h and on the Hermitian metric g on (M, J).

As in the case of the usual *-operator, it holds that xg o % g« = (=1)P*9.
By means of %, the adjoint operator of g with respect to the scalar product on each AP4(E)

(@0.8)= [ (@Bl for a,peA(E),

is defined as
—_% p— r~ —
8E = —* p* OBEO *p
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and the Laplace operator on AP4(E) is given by
AE = EEEE + EE’E*E

It is clear that A is an elliptic, self-adjoint with respect to (-,-), second order differential operator
on each API(E).

A form « € AP9(E) is said to be Ag-harmonic if Ag(a) =0. The space of Ag-harmonic forms
will be denoted by HPI(M, E). Since A is elliptic, each space HP4(M, E) is finite dimensional
and there exists a Hodge decomposition

AP7Q(E) = Im5E|Ap7q_1(E) ® /HIMZ(M’ E') ® Ing‘Ap’q+1(E)'
and the isomorphism of vector spaces

HPU(M,E) - HP1(M, E).

1.4 Complex formalities

Let (M, J) be a complex manifold. The study of the de Rham complex (A*(M),d) yields many
interesting insight on the homotopy type of the manifold M. In particular, the manifold M is said
to be formal according to Sullivan, if the de Rham complex (A®,d) has a fairly simple model; as
a consequence, every triple Massey product vanishes. Moreover, a stronger notion of formality,
involving Riemannian metric structures has been introduced by Kotschick in [87]; we recall the
previous definitions in Appendix B.

Exploiting the complex structure, the C* (M )-algebra of (p, ¢)-forms A**(M) on M endowed
with the differential operators 8 and 0 has a structure of bidifferential bigraded algebra. The study
of such an object, started by Neisendorfer and Taylor, yields important information regarding
holomorphic, in particular enables to study the notion of “holomorphic homotopy", see [106].

This section is devoted to first recalling the main definition in the more general context of
bidifferential bigraded algebras and differential bigraded algebras and then adapting them to the
setting of complex manifolds.

Definition 1.4.1. A bigraded bidifferential algebra, (shortly, BBA), is a triple (A, d4,04) where
A =@, ;A; ; is a bigraded algebra with a graded-commutative product, i.e., a-f = (-1)482B A q, for
every a, 3 € A, and 94 and 94 are morphisms of A of type (1,0), respectively (0,1), with respect
to the bigradation of A, such that

1. 04 and O 4 satisfy the Leibnitz rule, i.e., 9a(a-f) = daan B+ (-1)9e82q A 9y 3, for every a,
B € A (analogously for 9 4),

2. 04 and 04 are differentials, i.e., 8?4 = 5?4 =0,
3. 04 and O 4 anticommute, i.e. 9494 = -0404.

A morphism of BBA’s between two BBA’s (A, 04,04) and (B,0p,03) is a map f: A - B which
is morphism of algebras, preserves the bigradation, and commutes with the differentials of both
BBA’s. We say that two BBA’s are isomorphic if there exists a bijective BBA’s morphism between
them.

The cohomology of a BBA (A, 04,04) is the BBA (Hg'(A),@A,O) defined by

A

KGT(EA:AP,Q - p,q+1)
Im (0 4: Apg-1— Ap,q)

Hgf(A) = (1.4.1)
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The product of elements of Hy is given by [a]-[B] = [a- 8], for every [a],[B] € Hp , (A).
Note that if f:. A — B is morphism of BBA’s, it induces a map in cohomology Hz(f) given by

Hz(f):Hz ,(A) — Hj (B)
Hz(f)la]a=[f(a)]s,

which is well defined, since by definition, f commutes with both d 4 and dg. Moreover, a morphism
of BBA’s f is said to a be a quasi-isomorphism if Hg(f) is an isomorphism.

Definition 1.4.2. Two BBA’s (A, d4,04) and (8,83,53)_are said to be equivalent if there ex-
ists a family of BBA’s {(ci,aci,aci)}ffo such that (Co, 0c,,0¢,) = (A,04,04), (Caok,0c,,,0c,,) =
(B,0B,0B), and for every j € {0,...,k -1} there exist morphisms of BBA’s f; and g;

(02j+1’ 8C2j+1 ) aCzj+1 )

(Cij 802j7562j) (62j+27 8C2j+27502j+2)

such that f; and g; are quasi-isomorphisms of BBA’s.

The same concepts can be adapted to a class of more general algebras. A differential bigraded
algebra (shortly, DBA), is a couple (A,d4), where A = ®; ;A j is a bigraded algebra endowed
with a map 94 of type (0,1) with respect to the bigradation such that 04 is a differential and
satisfies the Leibnitz rule. Clearly, any BBA (A,04,04) is a DBA, by “forgetting" the operator
04. Morphisms of DBA’s are bigraded algebras morphisms which commute with the differentials
and two DBA’s are isomorphic if there exist a bijective morphism of DBA between them. The
cohomology of a DBA (A,04) is a DBA (Hg,,0), with each Hgf(A) defined as in (1.4.1), since

the definition of cohomology of BBA’s relies only on operator of type (0,1). Any morphism f of
DBA’s induces a morphism Hz(f) in cohomology; a quasi-isomorphism of DBA’s is a morphism f
of DBA’s such that Hz(f) is an isomorphism of DBA’s. The notion of equivalence between DBA’s
is analogous to the one of BBA’s.

Definition 1.4.3. Two DBA’s (A,04) and_(B,EB) are said to be equivalent if there exists a
family of DBA’s {(C;,d¢,)}?%, such that (Co,d¢c,) = (A,04), (Cox,0c,,) = (B,35), and for every
j€{0,...,k—1} there exist morphisms of DBA’s f; and g;

(CQj+1 ) 5C2j+1 )

(62j75(72j) (C2j+27 aC2j+2 ) 502342)

such that f; and g; are quasi-isomorphisms of DBA’s.

Now, let (M, J) be a complex manifold. As pointed out, the double complex (A**(M),0,0)
has a structure of BBA and (A**®,0) has a structure of DBA.

Definition 1.4.4. The complex m_anifold (M, J) is said to be l_)olbeault formal (respectively, weakly
Dolbeault formal) if (A**(M),0,0) (respectively, (A™*(M),0)) is equivalent, as a BBA (respec-
tively, DBA), to a BBA (B,03,05) (respectively DBA (B,05)) with dg = dg = 0 (respectively,
05 =0).
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Clearly, a Dolbeault formal manifold is also weakly Dolbeault manifold. Moreover, by [106,
Theorem 8|, a manifold satisfying the 00-lemma is Dolbeault formal. One can define a natural
adaptation of triple Massey products to the complex (A**(M),d,d), see [150].

Definition 1.4.5. Let [a] € Hg’q(M), [B] € HgS(M), and [v] € Hg’v(M) such that
(0] [B]=0€ HE (M), [8]uy] =0 HE™™(a0),
i.e., there exist fo5 € AP LM, f5, € A7H5*71(DM) such that

aABZEfaﬁa 5A7:5f57~

Then, the triple Dolbeault-Massey product (shortly, Dolbeault-Massey product or 5—produet)
([a],[8],[v])5 is the (well defined) coset

([a].[61.[])5 = [a A foy + (“1)P U fap Ay] + T € HE TS0 (M) T

where J := [a]U ng’erv_l(M) +[y]u ngr’q”_l(M) is an ideal of H§+r+“’q+s+v_l(M). Note that
the Dolbeault-Massey product ([a], [8], [7])7 is independent of the choice of representatives o 3,
and of primitives fog, fg+-

If M and N are two complex manifolds and f: (A**(M),d) - (A®*(N),d) is a DBA’s quasi

isomorphism, then Dolbeault-Massey products are functorial, i.e.,

Hy(f)([el, [8], IV)g = (Hz(N)lal, H5(f)[8], H5(H [ ])5,

for every Dolbeault-Massey product ([a], [8], [v])5 on M. Hence, it is easy to see that on a weakly
Dolbeault formal manifold, every Dolbeault-Massey product vanishes (see [150, Proposition 3.2]).
Let (M, J) be a complex manifold. Analogously to [87], as in [150] we have that following.

Definition 1.4.6. A Hermitian metric g on (M, J) is said to be geometrically-Dolbeault formal
if H3® (M) has a structure of algebra induced by A, ie., if a € HRE(M), f € HR* (M), then
5] 1] o
a A B e HRTIH(M).
o

A complex manifold (M, .J) endowed with a geometrically-Dolbeault formal metric is called a
geometrically-Dolbeault formal manifold.

Proposition 1.4.7. ([150, Proposition 2.1, 2.2]). Let (M, J,g) be a geometrically-Dolbeault formal
manifold. Then, (M,J) is weakly Dolbeault formal. Moreover, if H.A%(M) is O-invariant, then

(M, J) is Dolbeault formal.

The notions of Dolbeault formality are then related in the following way

Dolbeault formality === Weak Dolbeault formality === Vanishing of d-products

[

Geometric Dolbeault formality

(1.4.2)
and

Geometric Dolbeault formality + d-invariance of H'A%(M ) == Dolbeault formality. (1.4.3)

Analogous notions of geometric formality and triple Massey products for Bott-Chern and Aeppli
cohomology has been introduced by [18], (see also [147, 10]).
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Definition 1.4.8. Let [o] € HLL (M), [B] € Hl (M), [v] € Hga (M) such that
[@]u[B]=0e HE "™ (M), [Bluly]=0e Hp """ (M)
i.e., there exist fn5 € APYT LML) f5 € AT Ls™ =1 (A1) such that

(-1 anB=00fas,  (-1)"°BAy=00fs. (1.4.4)

Then, the triple Aeppli-Bott-Chern Massey product (shortly, BC-product) ([a],[B], [v])aBc is the
coset

([ [8), VD) ase = [(-1)" A fo, = (F1)™ fap Ayl € HY M1 (M) [T,

with J = [a] UHZJrufl,ervfl(M) + [7] U sz“fl,qusfl(M) ideal of Hﬁ+r+u71,q+s+vfl(M)' Notice that
this definition is independent of choice of representatives «, 3,7 and primitives fug3, fg-

Definition 1.4.9. A Hermitian metric g on (M, J) is said to be geometrically-Bott-Chern formal
if ”HZ;C (M) has a structure of algebra induced by A, i.e., if « € H&iC(M)’ B e %Z;c (M), then
anBeHIT(M).

BC

A complex manifold admitting a geometrically-Bott-Chern formal metric is said to be a
geometrically-Bott-Chern formal manifold.

These cohomological and metric notions are related as shown by the following proposition (see
[147]).

Proposition 1.4.10. Let M be a compact compler manifold. If M is geometrically-Bott-Chern
formal then the Aeppli-Bott-Chern-Massey triple products are trivial.

1.5 Special structures on complex manifolds
Let (M, J,g,w) be a compact Hermitian manifold. The metric g is said to be Kahler if
dw = 0.

The existence of such metrics forces many strong topological and cohomological restraints on the
manifold, as recalled in the introduction. As a consequence, there exist many natural classes of non-
Kahler manifolds which admit metrics with weaker properties than Kéahler metrics, e.g., compact
quotients of nilpotent Lie groups by a discrete uniform subgroup which are not tori, see [24].

However, depending on the closedness of the fundamental form w (or its powers) with respect to
certain differential operators, many special metric structures which generalize the Kahler condition
arise.

Definition 1.5.1. ([61, 26, 78, 103]) A Hermitian metric (g,w) on a complex manifold (M, J) of
complex dimension n is said to be

o Gauduchon, or reqular, if

00w =0,
e Strong Kdhler with torsion (shortly, SKT), or pluriclosed, if
90w =0,

or, recalling (1.2.5),
ddw = 0.
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o astheno-Kdihler if
0w 2 =0,

e balanced, or co-closed, if
dw™ ™t =0,
Since w =@ and dw™ ! = QW™ ! + 9wt = Q™! + (Qwn 1) = (Ow™ L) + Ow™ L, the metric g is

balanced if, and only if, dw™ ! = 0, if, and only if, dw™ ! = 0.

By definition, for certain complex dimensions these metric notions coincide, i.e., for n = 2,
Gauduchon and SKT metrics and Kéahler and balanced metrics, for n = 3, SKT and astheno-Ké&hler
metrics; however, in higher dimensions there exists many examples of manifolds in which the notions
are well distinct ([125]).

Note that the fundamental forms w of Kahler, Gauduchon, SKT, astheno-Kéahler, and balanced
metrics are particular cases of more geneal special structures on the complex manifold (M, J). In
order to recall the definition of such structures, let us fix (V,J) a 2n-dimensional real vector space
endowed with an almost complex structure J. In the following, we will consider the spaces of real
(p,p)-covectors on V| i.e., elements of the spaces

NV = {0 e NPPV [ =4},  l<p<n,

where the space of (p,q)-covectors AP?V is given, as usual, by (1.1.5). Let us fix the constant
op = P*27P Tt is easy to check that, for every (p,0)-covector 1) € AP’ V| it holds

O—Pw/\az Upi/f/\%
i.e., the (p,p)-covector o1 A€ /\%’p V. Therefore, if {n',...,n"} is base for (V*)?, the set
{Upnil /\.../\nip /\7771/\.../\777;) | 1<41 < ...<7;p STL}

forms a base of AP V. By definition of the extension of J to k-covectors (1.1.6), it is clear that
every real (p,p)-covector 1) is J-invariant, i.e., Ji = .
With these notation, the (n,n)-covector on V' defined by

T A
Vo (277 A B AT

is then
— 1 n 1 n
Vol=0o, " A-An " At A AT,

i.e., the covector Vol is a volume form on V.

Definition 1.5.2 ([5]). A covector 1 € APCV is said to be simple or decomposable if

for suitable al,...,aP e V10,

Definition 1.5.3. A real (n,n)-covector v € /\H’g”v is said to be positive, respectively strictly
positive, if
1 = aVol,

where a > 0, respectively, a > 0.
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Definition 1.5.4. A real (p,p)-covector Q € ARP V is said to be weakly positive if given any non-zero
simple (n — p)-covector 7, the real (n,n)-covector

QAN AT
is positive.

Definition 1.5.5. A real (p,p)-covector Q is said to be transverse if, given any non-zero simple
(n — p)-covector 7, the real (n,n)-covector

QAT AT
is strictly positive.

Let now (M, J) be a (almost) complex manifold of real dimension 2n and denote by
ARP(M) = {yp e API(M) | 4 =%}
the space of real (p,p)-forms. Fix 1< p < 2n.

Definition 1.5.6 ([142]). A p-Kdhler form on (M, J) is a real d-closed transverse (p,p)-form 2,
that is d = 0, and, at every x € M, Q, € ARP(T; M) is transverse. The triple (M, J,9) s said to
be an (almost) p-Kdhler manifold.

Definition 1.5.7 (|5]). A p-pluriclosed form on (M,.J) is a real dd°-closed transverse (p,p)-form
Q, that is Q is dd°~closed and, at every x € M, Q, € AR (T M) is transverse. The triple (M, J, Q)
is said to be an (almost) p-pluriclosed manifold.

In general, a p-pluriclosed manifold (M, J,2) does not admit an Hermitian metric g with fun-
damental form w such that 99wP = 0. However, this is the case for p = 1, for which the existence of
a 1-pluriclosed form on (M, J) implies the existence of a SKT metric on (M, J).

Viceversa, if (M,.J) admits an astheno-Kéahler metric g (respectively SKT metric) with fun-
damental associated form w, then (M,.J,w™2) (respectively (M,.J,w)) is an (n — 2)-pluriclosed
(respectively 1-pluriclosed) manifold.

1.6 Invariant complex structures and cohomology of nilmanifolds

We refer to Appendix C for a basic introduction on left-invariant vector fields and differential
forms and the computation of the de Rham cohomology via the complex of left-invariant forms on
nilmanifolds and completely solvable solvmanifolds.

In this section, we recall the main notion of invariant complex structures on nilmanifolds and
a way to compute the Dolbeault cohomology (1.3.2), the Bott-Chern cohomology (1.3.1), and the
Aeppli cohomology (1.3.3), of such manifolds via the corresponding left-invariant cohomology.

Let G be a real 2n-dimensional Lie.

Definition 1.6.1. An almost complex structure on G is said to be left-invariant if, for every
a,z € G, on T,,G it holds that X
(La)IJJ: = Jaa:a

where

(La),Jz = (dLa)z 0 Jp 0 (L1 Yaxy
with dL, the differential of the left translation map L, (see Appendix C).
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Let g ~ T.G be the associated Lie algebra of the Lie group G.

Definition 1.6.2. An almost complex structure on g is an almost complex structure on g considered
as a vector space (see section 1.1).

Note that for every almost complex structure J on g, there corresponds a unique left-invariant
almost complex structure J on G such that J, = J, and it holds Jy = (Lg),J, for every a € G.
Hence, a left-invariant almost complex structure J on G can be induced by assigning an almost
complex structure J on g. Moreover, by Newlander-Niremberg theorem (see section 1.2) such an
induced almost complex structure J is integrable on G if, and only if

Ny(X,Y)=[JX,JY]-J[X,JY]-J[JX,Y]-[X,Y]=0, VX,YVeg,

i.e., if and only if, the Nijenhuis tensor N identically vanishes on gxg. Consequently, we now work
on g. The extension of J to the complexification gc of g induces the the usual decompositions
1,0 o 0,1
gc=97 909",

where g'¥:= {X —iJX : X egc} and g"!:= {X +iJX : X e gc}, and
oz =(g"") @ ("),

where (g'9)* = {a+iJa:aegl} and (g')* = {a—iJa:aegl}. On the exterior powers AF(gg),
the following decompositions hold

A(ge) = @ APTg, AP A(E) ® A1)

p+g=Fk

Let {Z1,...,Z,} now be a C-base of g"?. Then, as recalled in section 1.2, the vanishing of .J is
equivalent to

(Zi,Z;]=c;Zk, c}j€C, Vije{l,...,n},
or equivalently,

=51 _ k> & .

[Zi,Zj]=ci—jZk, ci—je(C, Vi,je{l,...,n},

1,0

ie., [gh0, g1 c g'¥, or equivalently, [g”!, g%!] c g%!. The complex numbers

{cfy: i ke{l,... ,nT... n}} (1.6.1)

are called the complex structure constants, and they completely determine the complex structure J
on g, hence, the complex structure J on GG. For the sake of completeness, we write the commutators

(Zi,Z;]1 =2, d.5e{l,...,n}
[Zi,Z]:c%Zk+ch_k, i,je{l,...,n}
[_i,zj]:cgzkm?jz_k, ije{l,....n},
(Z:,Z;)= - Zy,  dnje{l,...,n}.
Since the bracket [, -] is skew-symmetric, the following relations hold
cfi =0, clg—i =0, cfj = —c;?i, c% = —c;fz., c% = _CEE@" cf—j = —c%
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Moreover, by complex conjugation, it holds that

k _ k k _ k _ _k
5~ G T ‘ j
Therefore, the complex structure J is actually determined by the commutators
k ..
[Zi, Zj] = ci; 2y, i<j
a2 k L5 . .
[Zi, ZJ] = ClEZk + CiEZk’ 1< ).

Let then {n',...,n"} c (g*°)* be the dual base of {Zi,...,Z,}. By the relation between left-
invariant vector fields and left-invariant forms

da(X,Y) = —a([X,Y]),

we obtain the complex structure equations

dn® == cfm - Zc%nij + Zc%nji, ke{l,...,n}, (1.6.2)

i<j i<J i<j
or, by making use of the splitting d = 9 + 0,

O =~ T, ke (1),
O == Tigg e + Tig e, ke{lon}

Special properties of a left-invariant complex structure J on a Lie group G are reflected on the

structure constants c¥., c*

ij>Cip c% with respect to a fixed base of gc and gg:

e J is holomorphically parallelizable if the holomorphic tangent bundle (T+°G)* is holomorphi-
cally trivial, i.e., there exist a global coframe of holomorphic (1,0)-forms on G. This holds
if, and only if, there exists a coframe {n',..., 7"} of (left-invariant) (1,0)-forms such that

= C.E =0.
ij ij
o J is abelian if [JX,JW] = [X, W] for every X,W € g. This implies that, for every coframe
{nt,...,n"} of (g"9)*, it holds
k _
c;j = 0.

e J is nilpotent if the ascending series {g; };50 defined by

gy ={0}, o ={Xeq[X,glcel s [JX . a]cgl,}

satisfies gio = g, for some ko > 0. This is equivalent ([45, Theorem 2|, see also [44, Theorem

9]) to the existence of a C-coframe {n',...,n™} such that, for every k, if either i >k or j > k
or j > 1, then cfj =0 and if either ¢ > k£ or j > k, then c% = c% =0, i.e., for every k,

dnk = Z —cfjnij— Z c%nﬁwL Z cgnﬁ.

i<j<k i,j<k i,j<k

e J is rational if g admits a rational structure, i.e., a vector space h over QQ such that hegR = g,
and it holds that J(h) c h. In particular, this implies the existence of a coframe {n!,... 7"}
of (g'?)* such that

cfj,c%,c% € Qi)
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Let now M :=T'\G be a real 2n-dimensional nilmanifold, i.e., the compact quotient of a nilpotent
simply connected Lie group G by a discrete uniform subgroup I' (see definition in Appendix C).
Any left-invariant tensor on G is also I'-invariant, hence it descends to a well defined object on the
quotient M. We will call invariant a tensor on M which pulls back to a left-invariant one on the
G.

Let then J be an invariant integrable almost complex structure on M. If g is the Lie algebra
associated to G, let us denote the complex of left-invariant forms endowed with the 8 and 0 differ-
entials (A®*g,0,0). Then, the invariant Dolbeault cohomology, invariant Bott-Chern cohomology,
and the invariant Aeppli cohomology of M are defined, respectively, as the spaces

~ Ker(d: AP1g > \PI*1 g)

HP1 1= N
8 (g) Im(a /\p,q—lg N /\p7qg)
D,q . Ker(0: AP?7g — NP+ g)n Ker(g: APlg AP+ g)
Hp(g) : = =11 -
Im(90: A g APYg)
Ker(99: \P4 g — APHLa+L
HY(g) : = ( g 9)

Im(9: \P~H9 g > AP g) + Im(9: APT"! g — AP g)
As in the differentiable case, conditions on the complex structure under which the inclusion
A" g A% (M)
induces an isomorphism in cohomology
HP*(a) = HP*(M),  fe{9,BC, A}
have been estabilished. The following theorem by Angella in [11] summarizes such conditions.

Theorem 1.6.3. Let (M = T'\G,J) be a 2n-dimensional nilmanifold endowed with a invariant
complex structure J and let g be the associated Lie algebra of G. If one the following conditions is
satisfied

e (M,J) is holomorphically parallelizable,
e J is abelian,

e J is nilpotent,

e J is a rational complex structure,

then the inclusion

/\.,.g < A.,.(M)

induces an isomorphism in cohomology
H*(g) = H* (M), je{d,BC, A},

Remark 1.6.4. In order to make computations in complex cohomology via the previous theorem,
one needs to dispose of a real 2n-dimensional simply connected nilpotent Lie group G which admits
a coframe with rational structure constants and which admits a left-invariant integrable almost
structure satisying one of the conditions of Theorem 1.6.3. One way to do this, is to fix a base of
(1,0)-forms {n',...,n"} of a formal Lie algebra g and assign complex structure equations (1.6.2)
such that J is both nilpotent and rational. Then, the dual g* of the real Lie algebra g underlying
gc is determined by g* = Spang(e’), where %71 = Re(n’) and €% := Jm(n?), j € {1,...,n}.
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Consequently, the real constant structure of g will be determined by the expressions of d(e’) in
terms of the base {e’ }?ﬁl of g*. By passing to dual, the Lie algebra g is then determined; in
particular, it turns out that g is a real nilpotent Lie algebra. By a classical theorem in Lie group
theory, there exists a unique simply connected nilpotent Lie group G (up to isomorphism) such
that its Lie associated Lie algebra is precisely g. The Lie group G is then endowed with a left-
invariant integrable almost complex structure J such that g¢ = (g8 @ (g"!)*, where the set
{nf =¥l 4 e };L:l is a basis for (g'?)*. Moreover, since the structure constant of the coframe
{ed ]2’;‘1 are rational, by Mal’cev theorem, the Lie group G admits a discrete uniform subgroup I
such that M =T'\G is a nilmanifold. The left-invariant almost complex structure J descends to a
invariant one on M, so that (M, J) is a nilmanifold endowed with a nilpotent and rational invariant
integrable almost complex structure; hence, Theorem 1.6.3 applies.

1.7 Deformations of complex structures

In this section, we recall the fundamental definitions and results of deformation theory of complex
manifolds. Let B be a domain of R™ (respectively, C™) and {M;}p a family of compact complex
manifolds.

Definition 1.7.1. We say that M; depends differentiably (respectively, holomorphically) on t € B,
or, equivalently, that { M, }+cp forms a differentiable (respectively, holomorphic) family if there exists
a differentiable (respectively, complex) manifold M and a differentiable (respectively, holomorphic)
proper map 7: M — B such that

1. 771(t) = M; as a complex manifold for every t € B,

2. the rank of the Jacobian of 7 is equal to the dimension (respectively, complex dimension) of
B at each point of M.

From 2. of the definition that every M, for ¢t € B, is a submanifold (respectively, complex sub-
manifold) of M. In what follows, we will denote also by (M,n, B) the differentiable (respectively,
holomorphic) family {M;}ep.

Definition 1.7.2. If M, N are compact complex manifolds, we say that M is a differentiable
(respectively, holomorphic) deformation of N if there exists a differentiable (respectively, holomor-
phic) family {M;}icp over a domain B of R™ (respectively, C™), with M;, = M, M, = N for some
to,t1 € B.

A classical theorem by Ehresmann, see [49] or [75, Proposition 6.2.2], shows that if {M;}ep is
a differentiable family of complex manifolds, then M;, and M;, are diffeomorphic as differentiable
manifolds, for any t;,t2 € B. Hence, from the differentiable point of view, it holds

M =M, x B, (1.7.1)

i.e., the manifold M can be regarded as the product of a fixed M;,, for ¢ty € B, and the base
manifold B. The complex manifold My, is usually called the central fiber. From the complex point
of view, each fiber M, t € B, can be seen as the complex manifold (M, J;), where My, denotes
the underlying differentiable structure of the central fiber and J; is an integrable almost complex
structure on My, which varies smoothly with ¢t € B.

Definition 1.7.3. A property P depending on the complex structure of a complex manifold (M, J)
is said to be
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e open under holomorphic (respectively, differentiable) deformations if for every holomorphic
(respectively, differentiable) family (M, J;)ip such that (M, J,) = (M, J), if P holds for
(M,J), then P holds for every (M, .J;), for t € B;

e closed under holomorphic (respectively, differentiable) deformations if for every holomorphic
(respectively, differentiable) family (M, J;)tep such that (M, J,) = (M,J), if P holds for
every (M, J;), for t € B, then P holds also on (M, J).

Let (M, 7, B) be a differentiable family of compact n-dimensional complex manifolds over B.
For the sake of simplicity, we assume tp =0 and B = B(0,1) cR™, i.e. B={teR™:[t|<1}.

Let us consider a system of local coordinates {U;,((;,t)} of M such that each U; can be
identified with the set

{(Got) Gl < L[t <1} e C"xR™, - w(G,t) = 1,
with transition functions f;, which identify points in U; nUy, # @ by

G = fin(Crst),

and which are differentiable with respect to ({x,t) and are holomorphic with respect to (j for any
fixed t. We note that each U; ~ U; x B, where U; = {(; : |(;] < 1}.

By (1.7.1), we can describe the local coordinates of U; as differentiable functions of coordinates
of My =771(0), that is,

where z are local holomorphic coordinates on My which at this moment we consider as differentiable
coordinates. In particular, the coordinates (;(z,t) are differentiable functions of (z,t), whereas they
depend holomorphically on z for each fixed value of .

With the aid of the expressions (1.7.2), we can actually describe the complex structure on each
M;, t € B, via a smooth (0,1)-vector form ¢(t) € A% (TH°My), defined starting from the local
transition functions f;i, (see [85, page 150]).

In fact, since both {C}(z,O), . ,C]ﬂ(z,O)} and {z!,..., 2"} are local holomorphic coordinates
on M(),
a¢(2,0)\*
det M +0
0z N

Therefore, in a small neighborhood of 0 € R™, it holds that

A (2, 1)\
det (jaT)a +0

oz

oo\
Set A?a = ((L) ) and
03 (z,t) = Y Aj, 9,
a=1
which is a local 1-form in a neighborhood of My in U;. The local expression
n A\ a
ei(z,t) =), @7 ® FY (1.7.3)
A=1 <
defines a global (0,1)-vector form on Mj. In fact, the forms cp? do not depend on the choice

of the neighborhood #; and ¢7. Let ¢* be another set of coordinates on a different Uy, so that
fjk(Ck(z, t),t) are the transition functions. We remember that f;, are holomorphic in (j, hence
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A/\ k
Z kB 8(@’
which, with a coordinate change, yields
0} (z,t) = =7 AA 3G (2,1)

8Ck(z t) = ¢i(z,1)

> =
a,p=1
2

Therefore, we can define p* = = ¢; M(z,t), which is a (0,1)-form independent of the coordinates ¢,
and ¢ has local expression ¢; in a neighborhood V' x B, with V' an open set in My with coordinates
z. It remains to show that the expression of ¢ does not depend on the local coordinate z on M.
Let V and W be two open sets in My and zy, zy their local coordinates. Under the coordinate
change zw = zw (2y ), it then turns out that

p(t)= 2 ¢ (ew )@ —5 = 3 ¢’ (2v,t) @ —5,
B=1 aZV[/ p=1 Ozv
hence ¢(t) is a global (0, 1)-vector form on Mj. By its very definition, it holds that

n )\CO‘

ioty G5 (2,1) = Z_:l ) = 9¢5 (2,1)

or equivalently
( Z o ® )CJ (z,t) = 0.

It can be proved (see [85, Chapter 4, Proposition 1.2]) that the (local) holomorphic functions on
each M; are defined as the differentiable functions f defined on open sets of My which are solutions
to equation

( Z<p ® % )f(z t) =0, (1.7.4)

i.e., the complex structure on each My, for ¢t small enough, is encoded in the (0, 1)-vector form ¢(t).

We remark that on the spaces of vector forms on M, i.e., A, = A% (THOMy), x € {1,...,n}, a
bracket can be defined in the following way. Let ¥ =Y 9“0, and = = ¥, £%0, be respectively (0, p)-
and a (0, ¢)-vector forms, where 9, = 8%' Then

= 3 (V¥ A0’ — (F1)PIET N OtP) D € Apig. (1.7.5)
a,B=1
In particular [, ] is bilinear and satisfies the following

L. [\1175] = _(_1)pq[37w]’

2. [V,=] = [0¥,=E] + (-1)P[ ¥, 0Z],

3. (-D)F[YIE, @]] + (-D)P[E, [@, ¥]] + (-1)"[®, [ ¥, E]]=0,

if WeA, EcA;and e A,.
A classical result (see [85, Chapter 4, Theorem 1.1]) shows that the deformations of the complex
structure on a compact complex manifold can be characterized according to the following theorem.
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Theorem 1.7.4. If (M,m, B) is a differentiable family of compact complex manifolds, then the
complex structure on each M; = w7 1(t) is represented by the vector (0,1)-form o(t) € Ay just
constructed on My, such that ©(0) =0 and

Ap(t) - %[gp(t), e(t)] =0 (Maurer-Cartan equation). (1.7.6)

As for the existence of deformations of compact complex manifolds, we refer to the general
theory known as Kuranishi theory.

Let M be a compact complex manifold. Fix an Hermitian metric h on M, extend it to A, and
denote it by the same symbol h. Define and inner product on A, by

U, =) = / WU, E) % 1,

(v.2)= [ h(w.=)

where ¥,= € 4,, * is the C-antilinear Hodge operator. We also define the Laplacian on A, by
0=080+88 ,

where 9 is the adjoint operator of d with respect to the Hermitian metric h. The space of harmonic
forms is

HT={T¥eA,:0¥ =0}
The Hodge theory induces a decomposition on the space A, as a direct sum of orthogonal subspaces:
A =H! o DA,

The operator G: A, — 0OA, is well defined and acts on A, as the projection onto 0O.A4, whereas the
operator H is the well-defined projection operator onto H9.

Theorem 1.7.5 ([89]). Let M be a compact complex manifold, {n,} a base for H'. Let p(t) be
the (0, 1)-vector form which is a power series solution of the equation

p(t) =0(0) + 50 GLolt), 9], (1.77)

where n(t) = Yoty tuny, [t <7, 7 >0, and let S = {t € B.(0) : H[¢(t),o(t)] = 0}. Then for each
teS, p(t) determines a complex structure My on M.

The space S is called the space of Kuranishi. The proof of Theorem 1.7.5 shows that a (0,1)-
vector form ¢(t) satisfying equation (1.7.7) can be constructed as a converging power series

o1 = Y pult)
p=1

in which the forms
Spu(t) = Z Spm...l/mtlfl'“trynmv uy..vm € AL,

Vit HUm =L

are determined via a recursive formula. In fact, if {n,}"_, is a basis for H! and we set 1 (t) =
Yotituny, equation (1.7.7) assures that each term ¢, can be computed as

1w ot
eu(t) = 507G ) [on (1), 0-n(1)]): (1.7.8)



26 CHAPTER 1. PRELIMINARIES

In general S can have singularities and hence may not have a structure of smooth manifold.
Nonetheless, {M;}+s can be proven to be a locally complete family of complex manifolds and
therefore can be still be interpreted as a complex analytic family, see [89].

Let then (M, 7, B) be a differentiable family of compact complex manifolds. In order to study
the geometry of deformations, it is useful to understand the decompositions of the complexified
cotangent bundle (TcM)* and how its powers /\(]é(M ) vary along with M;. For simplicity, we
suppose that B = I = (—¢,¢) c R, for € > 0. In the following, we may refer to one-dimensional
differentiable families of complex manifolds {M;}cr, I = (—€,€), € > 0, by the terminology curves of
complex structures.

Let us denote the central fiber of the family My = 771(0) by M and let us suppose ¢(t) € A; is
the (0,1)-vector form describing (M, w, B). If we denote by

Lo(t) = tp(t) OO Lp(t)
[ ———
k times

and by (t) € ALO(T%1M) the conjugate of (), in the following operators

‘ © 1 =1
oty = S 4k o = S ik
0= Lt md 0= 0 i

the summations are finite, since the dimension of M is finite. As in [122, Definition 2.8], we recall
the extension map

Lo lizgy. AP ) - AP9(M), (1.7.9)

where, if & = oy jy..j,d2" A= Ad2'? AdZT A---AdZ77 is the local expression of «r a (p, ¢)-differential
form on M, we set

POV (@) = gy i gy €90 (A2 A A d2™) AT (A Ao A dF), (1.7.10)

Note that the local definition of ez“"(t)‘zm(a) gives rise to a global (p,q)-form on M;, since p(t) is
a global (0, 1)-vector form.

The following lemma relates (p, ¢)-forms on the central fiber M and (p, ¢)-forms on any alement
M, of the family M, see [122, Lemma 2.9, 2.10].

Lemma 1.7.6. For any p,q and for t small, the map eIz, APU(M) - APY(My) is a real linear
isomorphism.

Moreover, the following decompositions hold
AE(M) = @)y gk APY (M), ke{l,...,n}. (1.7.11)

Remark 1.7.7. We observe that, for a (0,1)-vector form ¢(t) € A; on My such that ¢(0) = 0,
the Maurer-Cartan equation (1.7.6) is equivalent to the integrability of the complex structure J;

on My, i.e.,
(d)??=0  VaeAYO(M). (1.7.12)

Indeed, from Lemma 1.7.6 it immediately follows (I — )1 : T(TH0M) — T'(T1°M;) is an isomor-
phism for ¢ small, and for X,Y e I'(T+°M)

“d(a+ €O () (X - O, = $(0(V) =a@el0) - S [p(0:e(ODXY))

See also |75, Proposition 6.1.2|. Furthermore, for a (0, 1)-vector form satisfying (1.7.7), the defining
property of S, i.e., H[o(t),p(t)] = 0, is equivalent to the integrability condition given by the
Maurer-Cartan equation (1.7.6) (see [85, Chapter 4, Proposition 2.5]).



Chapter 2

Deformations of special Hermitian
metrics

Small deformations of the complex structure do not always preserve special metric properties in
the Hermitian non-Ké&hler setting. In particular, the existence of SKT metrics, astheno-Kéhler
metrics, and balanced metrics, on complex manifolds has been shown to be unstable under small
deformations, see [8, 54]) (note that sufficient stability conditions have been proved for balanced
metrics [20, 127, 121, 58, 111]. In this chapter, for each class of such special metrics, we prove
necessary conditions for the existence of smooth curves of SKT metrics {w;}+ (respectively astheno-
Kahler metrics, or balanced metrics) which start with a fixed SKT metric w (respectively, astheno-
Kéhler metric, or balanced metric) for ¢ = 0, along a differentiable family of compact complex
manifolds {M;};, see Theorems 2.2.1, 2.3.1, and 2.4.1. From such theorems, as an immediate
consequence, we obtain the obstructions gathered in Corollaries 2.2.2, 2.3.2, and 2.4.2, thus relating
the stability under deformations of the property of admitting special metrics and the Dolbeault
an Bott-Chern cohomologies of the starting manifold. As an application, we provide examples
of obstructions on several concrete examples: for SKT and astheno-Kéhler metrics, we focus on
families of nilmanifolds with invariant complex structure of complex dimension 4, whereas for
balanced metrics, we characterize the obstructions to the existence of curves of balanced metrics
on the complex parallelixable solvmanifolds.

2.1 Formulas for 9, and 9, operators on curves of deformations

Let (M,m,I) be a differentiable family of compact complex manifolds parametrized by ¢(t), for
tel, I:= (—e,e)_, € > 0, as seen in section 1.7. We need to recall formulas for the differential
operators 0; and 0y, defined as

Oy = 7l o d: APU(M) - APTHI(My),
51‘, = wf’qﬂ od: Ap’q(Mt) - Ap’qH(Mt)»

for any p, ¢, with Wf+17q and Wf’q+1 the usual projections of d(AP*?(M;)) with respect to the decom-
positions in (p,q) forms on M; (1.7.11).

We take as main reference [122]. Starting from (0, 0)-differential forms, i.e., differentiable com-
plex functions, we have

hf =€ ((I-¢p)" 2(0-520)f),
0:f =7 ((1-20) " 2 (@-920)f),

27
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where ¢p = @ 1, Py = ¢ 1P and we omit the dependence on ¢ of ¢, see [122, Equation (2.13)]. We
will denote by 4 the simultaneous contraction on each component of a complex differential form,
ie.

pda= iy iy g, p A2 A A 1dZ"P NG T AN I dE

for any (p,q)-differential form locally written as o = ail.,,ipjlqudz“ Ao Adz® AdZINV A A dEa
This contraction is well-defined and it can be used to describe the extension map, in fact

el - (I+p+p)d. (2.1.1)

With these notations, from the proof of [122, Proposition 2.13|, we can summarize the action of
the operators d; and d; on differential forms eliEm o ¢ APY(My), with a e AP9(M), follows

Or('*'%a) = <7 ( (1 - o) ' H([D. i) + D) (I - ) ), (21.2)

Du(cea) = eIz ((1-Fp) ' 3([0,75] + D) (I - Fp) dar). (2.1.3)

2.2 Deformations of strong Kahler with torsion metrics

Let us fix (M, .J,g,w) a compact Hermitian manifold and suppose that g is SKT, i.e. 99w = 0. We
want to find necessary conditions under which the property of being SKT is stable for a smooth
family of Hermitian metrics {w }¢e; such that wg = w, along a deformation of the complex structure
parametrized by a (0, 1)-vector form ((t). Suppose that each w; is SKT for any t € I, i.e. 9;dyw; = 0.
Using the Taylor series expansion and differentiating this expression with respect to ¢, we obtain
the following.

Theorem 2.2.1 ([118]). Let (M, J,g,w) be a compact Hermitian manifold with g a SKT metric.
Let {My}4e1 be a differentiable family of compact complex manifolds parametrized by o(t) € Ay, for
tel=(-¢€¢€),e>0. Let {wi}ier be a smooth family of Hermitian metrics on each My written as

wp = PO (w(1),

where w(t) has local expression w;j(t)dz' A dz? e AW (M). Denote by w'(t) = %wij(t) dz* ndZ e
AVY(M). Then, if the metrics wy are SKT for every t € I, the following condition must hold

2iTm(8 0 iy © 0) (w) = D' (0). (2.2.1)
As a consequence, we have the following cohomological obstruction.

Corollary 2.2.2 ([118]). Let (M, J,g,w) be a compact Hermitian manifold. A necessary condition
for the existence of a smooth family of SKT metrics which equals w in t = 0 along the family of
deformations t — p(t) is that the following equation must hold

j 6 b oo 8 = 0
[3m (@ 00y © D) ()] 22 (o
Proof of Theorem 2.2.1. The metrics w; are SKT for every t € I, i.e., 8;0iw; = 0. This implies
0 _
E(atatwt)‘tzo =0. (222)

Let us compute equation (2.2.2) using the expressions (2.1.2) and (2.1.3) for 9; and 0. First we
calculate J;(wy)

Dilwr) = €97 (1= 2p) " 4([0,3,] + D) (T - ) 4w (®) ),
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and then 9,0;(w;),
013u(wn) = %((1 - ) 3([B.i5) + 0) (I - 692 ~ ) 3([0,1,] + D)~ Fp) (D).

Now, to compute equation (2.2.2), we develop 9;9;(w;) in Taylor series centered in t = 0 up to the
first order. Note that

p(t) =t¢'(0) +o(t)
implies
(I-¢p)=(I-pp)=(I-¢p) " =(I-pp) " =1 +o0(t). (2.2.3)
Therefore we get

01(wr) = (1 + 1 (0) + t2/(0)) ([0, (0) 2] + 8) ([0, £/ (0) 3] + D) (w(0) + £/ (0) ) + o)
= (I +t¢'(0) + t'(0))3([D, tp' (0) 2] + a)([a, £ (0)2]w(0) + 9w (0) + t5w’(0)) +o(t)

= (I+1¢(0) + t/(0)) 3( - 10(¢'(0) 2 8w(0)) + tA(7'(0) 4w (0)) + 19D (0)) + o(1)
= —t0(¢"(0) 2 0w(0)) +td('(0) 2 0w(0)) + LW’ (0) + o(t),
implying 5
0= = (0u0wn)je-n = =0 (0) 1 0w(0)) + (¢ (0) 1 0w (0)) + ' (0),
which is equivalent to equation (2.2.1). O

We now apply Corollary 2.2.2 and Theorem 2.2.1 to study two 4-dimensional complex nilmani-
folds admitting invariant SKT metrics. In particular, we study obstructions along a specific family
of deformations on a family of nilmanifolds introduced in [55, Section 2.3] and on a quotient of the
product of two copies of the real Heisenberg group H(3;R) and R? presented in [125, Example 8|.

2.2.1 Example 1

Let us consider the Lie algebra g endowed with integrable almost complex structure J such that g~
is spanned by {n',...,n*}, a set of (1,0) complex differential forms with structure equations

dnt =0, ie{l,2,3},
d774 _ amlz +a27713 +a37711 +a47712 +G57713
+a677 + a717 +a877 +a9’l7

+a10?7 +a11?7 +a1277

(2.2.4)

with a; € C for i € {1,...,12}. In particular, g is a 2-step nilpotent Lie algebra depending on the
complex parameters ay,...,a12. If we denote by G the simply-connected nilpotent Lie group with
Lie algebra g, then for any ay,...,a12 € Q[i], by Malcev’s theorem [98, Theorem 7|, there exists a
uniform discrete subgroup I' of G such that M = T'\G is nilmanifold. As in [55, Theorem 2.7]|, the
left-invariant Hermitian metric on M

14 ) . .
= 52 W er +17 ®n')
is Astheno Kahler, i.e., the fundamental form of g

4
Z (2.2.5)
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is such that 99w? = 0, if and only if the following equation holds
la1|? + |ag|® + |aal® + |as|? + |ag|* + |az* + |ag]? + |a10|* + |a11]* = 20e(asag + asais + agarz). (2.2.6)
Moreover, if ag = 0, the Astheno-Kéhler metric g is SKT if and only if
ai=a4=ag=a7=ag=ai; =0.
Hence, if a; =0 for i € {1,4,6,7,8,9,11} and
lag|? + |as|? + |a10? = 20Re(asar2), (2.2.7)

from equation (2.2.6), the metric g is SKT, i.e., 90w = 0. From now on, we will consider the
nilmanifold (M, J), with Hermitian SKT metric w.
The structure equations (2.2.4) boil down to

dn' =0, ie{1,2,3},
7)4 13 {ﬁ : 13 31 33 (2:2.8)
dn® =an”+azn +asnC +awn” +a2n>.
We consider now the following invariant (0, 1)-vector form given by
o(r,s)=ry' ® Zy+sn° ® Z3,  (r,s)eC? |r|<1, |s|<1,
where Z; is the dual of 7 in g, for j € {1,2,3,4}. By Lemma 1.7.6 the invariant forms 77%8 =
1 +ip(n?), for j € {1,2,3,4}

1 — 1 =1
777",8 =n-+rn,

2 _ 2
nr,s =n,
3 _ 3 =3
nr,s =07+ s,
4 _ 4
777",8 =n,

form a coframe of (TH0M;)*. It is clear that

N = e (s = 170,
” =
n° = o (0 = ST,
't o=nl,

Therefore, it can be easily seen that the structure equations for the coframe {77% o nf’ o 717?3,37 nff,s} are
dni., =0, ie{l1,2,3},

4 _ as+rajp—sas 13 as 11 a5—8a2—Tsa1Q 13
Brs = AHRYTE) Trs © THF s © GpP)A-) rs®

—ras+sajg+rsas .13

a1p0+ras—rsas
(AP s

A=[r?)(1-[s[*)
)0,2

31 a2, 33
+ Mrs T T-Js2 "lr,s +

For the integrability condition (dn?s = (0, which is equivalent to check the Maurer Cartan
equation for ¢ by Remark 1.7.7, we must have that

—ras + sajp + rsaz = 0. (2.2.9)

We begin studying this equation by noticing that, if we set F'(r,s) = —=ras + sajg +rsaz, the gradient

VF in (r,s) =(0,0) is
F.(0,0)\ [-as
(FS(O,O)) - (aw) ’

We distinguish two cases, depending on whether VF'(0,0) = 0 or VF(0,0) # 0. We observe that
in the first case, the solution set, which we will denote by B, might not be a smooth manifold,
whereas it happens in the latter case.
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Case (i)
VF(0,0) =0, i.e., a5 = ajp = 0. The solutions of (2.2.9) are

S={(r,s) e C?:rsag =0, I7],]s] < 0},

for § > 0 sufficiently small. The corresponding (0, 1)-vector form which parametrizes the deforma-
tion is ¢ = 1t ® Z1 +s7° ® Z3. If we consider the segment : (—¢,€) = S, v(t) = (tu, tv) for (u,v) € S,
we define the curve of deformations

to(t) =tul' ® 7+t ® Z3.

In this case, ©'(0) = uf! ® Z; + v ® Z3. With structure equation

dnt =0, ie{1,2,3},
dn* = agn'® +azn'! + a12n®?,

we compute 0 0 i) o d(w). It turns out that this term vanishes, therefore Corollary 2.2.2 gives
no obstructions to the existence of curve of SKT metrics along the curve of deformations ¢ — ¢(t).

Case (ii)

VF(O, 0) +0, i.e., (a5, alo) * (0, 0)
We begin by studying the case a5 # 0. The set

saio

S:{(T,S)EC2:T: |7“|<(5,|5|<5’}7

as — sas ’
for 4,0’ > 0 sufficiently small, is the set of the solutions of equation (2.2.9)
—ras + sajg + rsas = 0.

If we consider the smooth curve ~:(—¢,¢) - S,

(#) = (M0 (2.2.10)
as — tuag

with u € C, we have that

tuaig

tp(t) = T ® Zy +tul° ® Zs

as — tuasg

is a smooth curve of deformations with ¢'(0) = %ﬁl ® Z1 +uT’® ® Z3. By the usual computations
and structure equations

dnt =0, ie{l,2,3},
dn* = aon® + azn™ + asn™ + a1on®! + a1,

we obtain that ) )
Doi o iy laio|” = las|® 1313
o0y © O(w) = zuaga—577 .

We observe that the real form 7713173 is closed with respect to @ and 8. Moreover,

(85*)’01313 = (|CL2|2 + |CL3|2 + |CL10|2 - 2%(&3512))7]123123 =0,



32 CHAPTER 2. DEFORMATIONS OF SPECIAL HERMITIAN METRICS

1313 i harmonic with respect to the Bott-Chern Laplacian and, via

1313]

by equation (2.2.7). Therefore n

the canonical isomorphism, the class [ Bc is a non-vanishing class in Hp 22 o (M). Hence, if

2 1.2
Im (iua2—|a10‘ | ) £0,
as

by Corollary (2.2.2) there exist no family of SKT metrics w; along ¢ — ¢(t) such that wp = w
If instead we assume that a1 # 0, we have that equation (2.2.9)

—ras + sajg +rsas =0

admits solutions
ras

S:{(r,s)eC2: §=
with §,6" > 0 sufficiently small.

If v:(-€,e) - S is the smooth curve v(t) = (tv, aléﬂ’jim) with v € C, we define the curve of
deformations by

-l <éJs] <87},

aip +ra

tvas

teo(t) =toT ® Z; + 7 ® Zs. (2.2.11)

aig + tvas
We notice that ¢'(0) =v7' ® Zy + v - 72 ® Z3. With the aid of structure equations (2.2.8), we can
check that
. - aof® ~las| 313
00 i) d(w) = ivay —
10

1313 ’H%é(M,g) and [nlgﬁ]gc does not represent the class 0 € Hé’é, therefore, if

2 1, 2
Jm (wa M) #0,
aio

Since 7

by Corollary 2.2.2, there is no curve of SKT metrics w; along the curve of deformations t — ()
such that wy = w
Summing up, we gather what we obtained.

Theorem 2.2.3 ([118]). Let (M, J) be an element of the family of nilmanifolds with structure
equations

{dni =0, ie{1,2,3},

4 13 11 13 31 33
dn® =an’+agn " +asnC +an’ + a2

az, as,as,aio,a12 € Q[i] such that lao|? + |as|? + |a1o|* = 2Re(azaie), endowed with the Hermitian
SKT metric w = % Z?:l /3. Then

e if as 0 and v e C, there exist no smooth curve of SK'T metrics w; such that wg =w along the
curve of deformation t v @(t) = 2407l @ 7, 1 tur® ® Z3 for t € (—€,€),e> 0, if

as—tuasg

2 2
Jm (iua2—|a10| Jas| ) +0;
as

e if aip # 0 and v € C, there exist no smooth curve of SKT metrics wy such that wy = w along
the curve of deformation t — p(t) =tvn' ® Z; + —2% 73 ® Z3 for t € (=€,€),e> 0, if

alo+tvas

2 2
Jm (wa M) +0.
aio
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2.2.2 Example 2

Let us consider the group G := H(3;R) x H(3;R) x R?, where H(3;R) is the 3-dimensional real
Heisenberg group. We fix a basis {e!,...,e®} for g*, the dual of the Lie algebra g of G such that

112 134

de' = de? = de? = de* = de® =de” =0
de® =-3€ ded = - -5€

Due to |98, Theorem 7|, there exists a lattice I' of G such that the quotient M =T'\G is a compact
manifold. In particular, M is a real 8-dimensional nilmanifold.

If we make use of the standard real coordinates {x1, 22,23} and {4, 25,26} on the two copies
of H(3;R) and {z7,25} on R?, the coframe {e!,...,e®} can be written as

Lodet, e?=dz?, €8 =da? - zlda?,
3=dat, et=dx’, € =dab - atda?,
S=dz”, €7 =dab.

™ ) qN)
I I

Notice that it defines a global left-invariant coframe of differential 1-forms on G, and therefore on
M.

Let us define an almost complex structure J on g* by setting the following basis for (g%)*

{771 =el +ie?, n?i=ed+iet,

ni=e® +ieb, nti=el +ied.
Let Z; be the dual of 7’ in g, for j € {1,2,3,4}. This position gives rise to a left-invariant integrable
almost complex structure on G, hence it descends to the quotient M. With an abuse of notation
we will denote the latter by J.
We find that the holomorphic coordinates on M which induce J are

2= 2l +ig?
22 = 2t +ixd, (2.2.12)
z3—x7+2(x2)2+i(x3—x1x2), o
=841 5(2%)? +i(a® - 2'2”).
We point out that the structure equations for (M, .J) are
dn' = di = 0,
dn? = —5n', (2.2.13)
d?73 — _%,,722

Let us now consider a generic Hermitian invariant metric g with associated fundamental form
i < % kj
_ _ l o Jk _ = kj
—52 " +2Z(ajk77 ag )
=1 J<k
whose coefficients oz are such that the matrix representing g

a7 Tty Tty Ty

3 Qgy  TlQhy iy
gz gy Qg TlOgy
g gy Qgy Oy
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is positive definite.
It is straightforward to check with the aid of (2.2.13), that g is a SK'T metric if and only if
3111(0431) =0.
We construct a (0, 1)-vector form

go(t) = tuﬁl ® Z1 + t22ﬁ2 ® ZQ + t32ﬁ2 ® Zg + t33ﬁ3 ® Zg

+ t34ﬁ4 ® L3+ t41ﬁ1 ® 4+ t43ﬁ3 ® L4+ t44ﬁ4 ® L4,
for t = (t11,%22,132,133, 134, ta1, t43,t44) in sufficiently small ball B centered in 0 € C®. Using the
holomorphic coordinates (2.2.12), it is a computation to show that ¢ satisfies Maurer-Cartan equa-

tion. As a side note, thanks to [42, Theorem 1.1], we point out ¢(t) parametrizes a locally complete
family of complex analytic deformations. We construct the segment ~: (—¢,¢) - B, where

t = y(t) =t(a11, a2, az2, ass, as, a41, @43, a44),
with (a1, age, ase, ass, asq, a41,a43,a44) € C8. The corresponding curve of deformations is

t— go(t) = t(anﬁl ® Zl + a22ﬁ2 ® Zg + aggﬁz ® Z3 + aggﬁg ® Z3

+ a34ﬁ4 ® Zg + a41ﬁ1 ® Z4 + a43ﬁ3 ® Z4 + a44ﬁ4 ® Z4)
whose derivative in ¢ = 0 is clearly

QDI(O) = anﬁl ® Z1 + a22ﬁ2 ® Z2 + a32ﬁ2 ® Zg + a33ﬁ3 ® Zg

+aga' ® Zs +an®' ® Zy+ass)’ ® Zy+aul’ ® Zy.
Via structure equations (2.2.13) and the expression of ¢'(0), we obtain that

269m((D 0 i (g © D) (w)) = (2.2.14)

1, . _ . _ _ _ _ 12
g(msﬁ(a?ﬂ +aga) +iayg(as3 + aa3) + agg(ass + @aa) — Agg(ass + as3)) n'?2.

We observe that n'?!? = }185(1731), therefore the real (2,2)-form leﬁ represents the vanishing class

in Hgé(M ). Hence, Corollary 2.2.2 gives no obstruction.
Nonetheless, if we take any smooth curve of SKT Hermitian invariant metrics {w;} along ()

such that wy = w, written as w; = ei“"(t)lim(w(t)) with
i ij L ik _ = kj
w(t) =5 Y ag () 7 + 3 3 () P ~az(0) n),
j=1 J<k
and we compute
_ 1. -

00w’ (0) = éJm(aéZ(O))nulQ,

by imposing equation (2.2.1) of Theorem 2.2.1 we obtain the following result.

Theorem 2.2.4 ([118]). Let (M, J,g,w) be the nilmanifold obtained as the compact quotient T\G
of the Lie group G = H(3;R) x H(3;R) x R? by a lattice I' of G, with complex structure J defined
through the invariant coframe of (1,0)-complex forms {n*,n? 03 n*} with structure equations
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Let us consider the curve of deformations
t— (p(t) = t(allﬁl ® 11 + a22ﬁ2 ® Ly + a32ﬁ2 ® L3 + a33ﬁ3 ® L3+

+ a3l ® Z3 + anT' ® Zy +as’ ® Zy+ auit ® Zs), te(—¢€)

and any smooth curve of Hermitian invariant metrics {wi}ie(—c ) along p(t) such that wo = w, with

wp = ei“"(t)‘im(w(t)), where
i 7, L - K
w(t) = 5 2 ai(®) 17+ 5 3 (@) * ~ @) n).
j=1 j<k
Then a necessary condition for w; to be SKT for any t € (—€,¢€) is that

iovgg(aze +aza) +iovg(ass +aa) + ogz(ass +aaa) — Agg(aas +a33) = Im(agz(0)).

2.3 Deformations of Astheno-Kahler metrics

Let (M, J,g,w) be a compact complex manifold of complex dimension n endowed with an astheno-
Kihler metric g, i.e., 00w™ 2 = 0 and let {M;}4; be a differentiable family of deformations such
that My = M, with { M} parametrized by a (0, 1)-vector form ¢(t) on M. Let also {w;}+s be a
family of Hermitian metrics on {M; };c7, such that wy = w and suppose that g; is balanced on M,
for every tel, i.e,

Q0w 2 =0, Vtel. (2.3.1)

By Lemma 1.7.6, we can write each w; as e™l'2w(t), with w(t) = w;;(t)dz* A dZ7, locally, and also
wf‘Q = ei¢|i¢(w”_2(t)) = eleliz (fv(t)alzi1 AdZT A A2 A dsz) ,

where f,(t) := wiyj; - Wip_ojno and v = (1,41, .., 9n-2, jn-2), and iy, jr € {1,...,n}, ke {1,...,n-

2}.

We can then apply formulas (2.1.2) and (2.1.3) to (2.3.1), and by expanding in Taylor series
and differentiating with respect to ¢ in ¢t = 0, we are able to prove the following theorem.

Theorem 2.3.1. Let (M,J) be a n-dimensional compact complex manifold endowed with an
astheno-Kdahler metric g and associated fundamental form w. Let { My} be a differentiable fam-
ily of compact complexr manifolds with Mg = M and parametrized by o(t) € A%N(TYO(M)), for
tel:=(-€€),e>0. Let {wi}er be a smooth family of Hermitian metrics along { My }er, written as

w = 1% (w(t)),

where, locally, w(t) = w;;(t) dz* Adz e AVY (M) and wy = w.
If w2 has local expression €7 (W™ 2(t)) = e*Z (f,(t) dzt AdZ" A--- A dz2 A dZIn-2), set

(W2(t)) = %( fo(0)dz AdZY AL dz2 A dEI2 e AVT2TE(M)D.
Then, if every metric wy is astheno-Kdhler, for t € I, it must hold that
2iIm(0 0 i () © 9) (w" %) = 00(w"*(0))". (2.3.2)

As a direct consequence, we immediately have the following corollary.
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Corollary 2.3.2. Let (M,J) be a compact Hermitian manifold endowed with an asteno-Kdhler
metric g and associated fundamental form w. If there exists a smooth family of astheno-Kdhler
metrics which coincides with w in t =0, along the family of deformations {M;}; with My = M and
parametrized by the (0, 1)-vector form ¢(t) on M, then the following equation must hold

[(a o i(p’(()) ° 8)(wn_2)]HngLn*1(M) =0. (233)

Proof of Theorem 2.3.1. The metrics w; are astheno-Kihler for every t € I, i.e., 8;0;w 2 = 0. This
implies

0 A5 n
a(f)t@tw? 2):0- (2.34)

Let us then compute the right hand side of (2.3.4) through formulas (2.1.2) and (2.1.3) for the
operators 0; and 0;. By the extension map we have that

DhDi(w] ™) = DDy (e'#7 (W 2(1))),
and then, by (2.1.2) and (2.1.3), we have
0D,(e"% (W 2(1)) = Due™% (T -0) T ([0, ] + D) (T - Bp) 40" (1))

- ew((u — )" H[D,i5] + )1 - %) ) 3(( - 5) " ([0, +5><I—W>ﬁw”‘2<t>))~

Now, we expand in Taylor series centered in ¢ = 0 the terms
o(t) =o' (0) +o(t), W™ 2(t) = W™ 2(0) + tw"2(0)" + o(t)
and recalling (2.1.1) and (2.2.3), we obtain that
8t5twf_2
= (1+1/(0) + 7' (0)) 4 ([0, (0) 1] + 0) ([0, 17/ (0) 4] + B) (w"~2(0) + H(w"2(0))") + o(2)
= (I+t'(0) +1'(0)) 4 ([5, to'(0)1] + a) ([0, " (0)2]w™2(0) + dw™2(0) + tA(w"2(0))") + o(t)
= (I+t¢'(0) +1'(0)) 4 (—t@(gp’(O) Jw"2(0)) +t8(¢'(0) 2 0w™2(0)) + taé(w"*(()))') +o(t)
= —t0('(0) 28w 2(0)) + td(¢'(0) 20w 2(0)) + tdD (W™ 2(0))" + o(t).

Now, since 9;0pwl~2 = 0, for every t € I, also (8;0;w%) = 0, hence

90
’ 8t|t:0
~9(¢(0) 28w ™%(0)) + A(¢'(0) 21" 2(0)) + HB(w"*(0))" = 0,
which is equivalent to

(0 0oy 0 D)% + (T o 0 D) 2 + 0D(wW"(0))' =0,

hence, concluding the proof. O

As an application of Theorem 2.3.1 and Corollary 2.3.2, we provide examples of obstructions to
the existence of curve of astheno-Kahler metrics on two families of 4-dimensional nilmanifolds.
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2.3.1 Example 1

Let {n%,7%,1n%,n*} be the coframe of invariant (1,0)-forms on the nilmanifold (M = I'\G,.J) of
Example 2.2.1, with complex structure J defined by the structure equations

dnt =0, ie{l,2,3},
d774 _ a17712 +a2n13 +a37711 +a47712 +a57713

2.3.5
+a61723 + +a71721 + a87722 + (197723 ( )
+a10m* + a1 n®? + aen®,

with a; € Q[¢], for every j e {1,2,...,12}. If w = %Z?;l 77 is the fundamental form associated to

the diagonal metric g on M, then w is astheno-Kéhler i.e.,
D0w? =0
if, and only if,
la1|? + |ag|? + |aal® + |as|? + ag|* + a7 + |ag)? + |a10|* + |a11]? = 20Re(asas + asd@io + agdrz).
Remark 2.3.3. If the complex manifold (M, J) is holomorphically parallelizable, i.e.,
az=a4=as=ar=ag=ag=ag=aig=ay = a2 =0,

then metric g is astheno Kéhler on (M, J) if, and only if, also ag = ag = a1z = 0, i.e., (M,J) is
a complex torus. This is in line with the more general argument that on a compact holomorphi-
cally parallelizable manifold there exists a global coframe of holomorphic (1,0)-form; however, if a
manifold admits an astheno-Kéhler metric, every holomorphic 1-form is d-closed. Therefore, on a
holomorphically parallelizable manifold endowed with an astheno-K&hler metric, each form of the
global holomorphic coframe is d-closed, hence the manifold is a torus.

If {Z1,25, 73,24} is the dual frame of {n',n? 1n%,n*} on M, we can define the smooth (0,1)-
vector form ¢(t) on M by

P(t) =t ® Z1 + o1 ® Zo +t37° ® Z3,  t=(t1,t2,t3) e Bi={t e C*: |t| < 1} (2.3.6)

which parametrizes a family of (non necessarily integrable) deformations {(M, J;) }tep of (M, J). By
Lemma 1.7.6, each (almost) complex structure .J; can be characterized by the coframe {nl,nZ,n¢, ni}
given by

e =n' +h7

=0’ +tan’

(2.3.7)
=0’ + it
e =1,
which yields, by inverting the system,
nt = ﬁ(’ﬁ - 47 )
n? = ﬁ(’ﬁ — o7} )
(2.3.8)

n? = ﬁ(n@” ~ 1377} )

n*=ng.
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Set Tj := ﬁ, for j €{1,2,3}. By Remark 1.7.7, p(t) parametrizes a family of compact complex
J
manifold, i.e., each J; defines an integrable almost complex structure on M, if, and only if,

(A2 =0,  je{1,2,3,4}.

By relations (2.3.7), (2.3.8) and structure equations (2.3.5), it turns out that such an integrability
condition holds if, and only if

(dng)? = TiTy(artits — asty + arta)ne”
+ TiTy(astits — asty + aiots)ng”
+ TQTg(CLGtth - agtg + a11t3)77§3 = O,

ie.,

aitito —aqty +arty = 0
astits —asty + aigls = 0 (2.3.9)
agtats — agts + a1ty = 0.

Now let us fix a choice of aj € Q[i] and let S c B be the set of solutions of system (2.3.9). Then,
for every t € S, ¢(t) parametrizes the family of deformations {(M,J¢)}tes. Moreover, we can
consider a curve v:(—€,€) - S, with v(t) = (71(¢),v2(t),v3(t)) € S, so that, for every t € (—¢,¢€),
the (0, 1)-vector form

e(7(t)) = p1()T' ® Z1 + pa ()T ® Zo + p3(t)7° ® Z3

parametrizes a curve of deformations. From now on, with an abuse of notation, we will write
o(t) == (y(t)). We will have then

¢'(0) := p1(0)7' ® Z1 + 05 (07 ® Zo + ph(0)7f° ® Zs.

In order to apply condition (2.3.3), we observe the following facts regarding the form (9o () 00)w?
and the Bott-Chern cohomology of bidegree (3,3) of M.

Lemma 2.3.4. ([) (8 o ’L’SO/(O) o 8)w2 = CJM/(O)’I’]lQSm, with CJ#)’(O) € @[Z]

(11) If J is abelian, then (0 o i (o) © 0w? =0.

(III) The Bott-Chern cohomology class [n123@]30 + 0 if, and only if, w is SKT.
(IV) for every constant C € C, it holds Jm(Cn'23123) = —igRe(C')n'23123.

Proof. (I) By simple computations, it holds that

(—2)w2 _ nﬁzﬁ +t133 4 771144 + 772533 + 772244 + 773344-
Let us rewrite structure equations (2.3.5) as
dn =0, je{1,2,3},

d774 = lei<js3 Aijﬁij + Z?,j:l Bi;nij-
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For the sake of completeness, we write

.. J— 3 s
ont=Y AymY, on' =Y Byn"
1<i<j<3 ig=1
3 s J— J— e
o' = - Bz, ont= Y Ay’
ij=1 1<i<j<3

Then, it is easy to see that
(—2)8w2 — (nll +,'722 +n33) A 87744
= (" -+ 0 A (At + Bin™)
= (" 0 A (AT
+ (' ) A (B
Now, since ¢'(0) = 1(0)7 ® Z1 + p5(0)7? ® Za + 5 (0)7° ® Z3, we have that

_ _ _ 3 ..
(axw@wawﬁww%m”+#%ALm(zwum#Auu#nﬂA#
k=1

o (3
- (" 0P At A [Bij ( > k(07" g, (77" ] .
k=1
Note that the (1,1)-forms
3 y
Oy = Ay (Z 0, (0)77" A iZk(n”))
k=1

and

— 3 Pl
m:&JZ%@#m@Wﬂ
k=1

do not contain n* nor 7*. Then,

(=2)(D0ig(0)) 0 D) (wW?) = (" + 0> + 1) A A O
+ (77ﬁ + nﬁ + n3§) AOnt A Qo
_ 11 22 33  _.ji
-—(777 +1z +7z )/\Ql/\(Bijn] )
+ (' ) A (Ain”) A Qo,

i.e, a (3,3)-form on M which does not contain n* nor 7*. Hence, (9o i0(0) © O)w? = C'J7<p77123m.

(II) If J is abelian, then A;; = 0, for every 4,5 with 1 < i < j < 3. Then, by the previous point,
Q1 =0 and clearly (0o (g) o 0w? = 0.

(ITI) Let us assume that the metric w is SKT, i.e., 90w = 0. By structure equations (2.3.5) this
is equivalent to 857741 = (. Since the form n123m is d-closed, the Bott-Chern class [77123@] is well
defined. Moreover, since 00 *g 77123@ = (95774Z =0, the form 77123@ is Bott-Chern harmonic, hence
[77123@]30 £0. B

Viceversa, let us assume that w is not SKT, i.e, 90w # 0, which, by structure equations, is equivalent
to 99n** # 0. Note that 99n** is (2,2)-form on M, hence 9dn*t = Dicj k<l Aijﬁnijkl, with 1,7, k, €
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{1,2,3}. Then, one can choose an invariant (1,1)-form a on M such that it does contain n* nor
7t and 90n* A o = C'23123 £ 0, C € C. In particular, 9o = 0. But then,
0 ( 85(1741) Aa= 77123@,

na) -

C C

123123 123?3]

which implies that the form 7 is 90-exact. Therefore [n

Bc =0.

(IV)) For every C € C, one has that Jm(Cn'2312) = (077123123 677@123) = %(C +C)y'23123 -
—iRe(C)n'2312, O

As a consequence of Lemma 2.3.4 and Remark 2.3.3, it turns out that Corollary 2.3.2 can yield
obstructions on this family of 4-dimensional nilmanifolds and on the curve of deformations of a
fixed element (M, J) of the family parametrized by ¢(+(t)), only if the starting complex structure
J is not holomorphically parallelizable nor abelian and the starting diagonal metric on (M, J) is
both astheno-Kéhler and SKT.

Remark 2.3.5. Notice that arguments similar to Lemma 2.3.4 and Remark 2.3.3 are still valid
on any n-dimensional nilmanifold (M, J) with left-invariant complex structure J characterized
by analogous structure equations, i.e., when (M, J) is a nilmanifold whose complex structure is
determined by a coframe of left-invariant (1,0)-forms {n',...,n"} such that

dn'=0, ie{l,...n-1},

dn™ e Spanc{n, "™}, i,k le{l,...,n-1},
and whose coefficient structures are elements of Q[i]. More speciﬁcally, if w= %Z;Ll nﬁ is the

fundamental form associated to the diagonal metric g and p(t) = X721 @ (1) ® Zy, for t € (€, €) is
a curve of deformations of (M, J), then the following holds.

Lemma 2.3.6. (I) (9oiu o Nw™ 2 =Cypnt-mt L.n-T

(I1) If J is abelian, then (aoz'w/(O)O(?)w”_Q =0. (III) The Bott-Chern cohomology class [nl'”"_ﬁ“'m] *
0 if and only if w is SKT.

(IV) if n is even, for every constant C € C, Jm(Cnt~n"1 L.n-Ty ~iRe(C)nt-"" 11..0-1

(V) if n is odd, for every constant c € C, Jm(Cpl-"11- ) Jm(C )l LnT

Therefore, as in the 4-dimensional case Corollary 3.2.4 could yield obstructions to the existence
of curves of astheno-Kéhler metrics along the family of deformations parametrized by ¢ on such
families of nilmanifolds of complex dimension n only if the canonical diagonal metric g is also SKT
and the complex structure J is nor abelian nor holomorphically parallelizable.

Let us go back the 4-dimensional family and consider an element (M, J) of the family of 4-
dimensional nilmanifolds, with as = a5 = ag = ag = a9 = a11 = aj2 = 0. In particular, we are
annihilating the coefficients of the second and third row of (2.3.9). By the symmetry of the system,
one obtains similar results by annihilating either the first and third rows, or the second and third
row. In this case, structure equations become

dnt =0, ie{l,2,3},
dn* = ain'? + azn't + agn'? (2.3.10)

+a77721 + a8n22
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The diagonal metric g with fundamental form w = %Z?zl nﬁ is astheno-Kéhler if, and only if, is
SKT if, and only if,
jar]” + laa|” + [a7|* = 2%e(azas). (2.3.11)

On (M, J) we consider the (0,1)-vector form ¢(t), t € B, as in (2.3.6). Such a vector form
parametrizes a family of deformations (M, J;) of (M, J) and each J; is integrable if t = (t1,t2,t3)
satisfies

aitite —aygty + arty = 0. (2.3.12)

Let us set F'(t1,ta,t3) := ajtite — agty + azta, (t1,t2,3) € B. Then, the gradient of F' in (0,0,0) is
vF|(o,o,o) i
0

By distinguishing the cases in which either VF|(0 00) = 0 or VF|(O 0.0) #+ 0, we obtain the following.

Case (i): VF|(070’0) =0.
In this case, it holds that ag = ay = 0. Hence the only non zero differential of (2.3.10) becomes
dif* = ayn'® + azn™ + asn®,
and let assume that w is astheno-Kéhler (and SKT), i.e., it holds
|ai|* = 29%e(asas).

We will assume aq # 0.
The solution set of (2.3.12) is

S ={(t1,ta,t3) € B: t1t5 = 0}.
Therefore, the (0,1)-vector form ¢(t) parametryzing the integrable deformations of M is
O(t) =17 ® Z) + 1oT)> ® Zo + t37° ® Z3,  (t1,t2,t3) €S,
and we can then consider the curve
o(t) =t @ Z  +t-uslP ® Zo+t-usi° ® Z3, te (—€,€), €>0,
for a fixed (u1,us,u3) € C3. Hence,
¢'(0) = 1" ® Z1 + ual® ® Zo + ushp° ® Zs.
We can then apply our condition and compute
D ooy © ow? =0,

hence neither Corollary 2.3.2 nor Theorem 2.3.1 yield obstructions.
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Case (ii): VF|(000) = 0.

In this case, it holds that either a4 # 0 or a7 # 0. Suppose that a4 # 0.
Then, structure equations (2.3.10) and the astheno-Kéhler (and SKT) condition for w (2.3.11)
still holds. Then solution set of (2.3.12) is then

arto

S = {(tl,tg,tg) €Tty = — T <5 ltal < O Its] < 5}
a4—a1t2

for 4,6’,8” > 0 sufficiently small.

Hence the (0,1)-vector form ¢(t) parametrizing the integrable deformations of (M, J) is
t t
e e ,t2,t3)€5,

gO(t) = ﬁ1®Zl +t2ﬁ2®Z2+t3ﬁ3®Z3, (
aq —aity

a4 — ait
so that can consider the curve of deformations

tarus

o(t) = n'® Z1 + tugl’ ® Zo + tugi° ® Zz,  (u2,us) € C2, te (=€, €),

a4 —tajus
for € > 0 sufficiently small, so that

0'(0) = 25 @ 71 4 st ® Zo + uz ® Zs.
a4

By computations, we obtain that

8 0 i) 0 Ow? = 2(|az[? - |aal?) - 125723

Therefore, since the Bott-Chern cohomology class [77123ﬁ3] # 0 by Lemma 2.3.4, condition (2.3.3)
holds if and only if

a42— a72 Re 142 =0.
Q4
If a7 # 0, we have that

t
a4—1t, 1t1] < 6, |ts] < &, |t3] < 5}
1

S = {(tl,tg,tg) € Bitg =
ay +ay

for 6,¢",6"” > 0 sufficiently small.
The curve of deformations hence is

tasuy

———— '@ Zy+tug]’ ® Zs, (u1,uz) € C?, te (=€),
a7 +tajuy

go(t) = tulﬁl ® Z +
for € > 0 sufficiently small, so that
(,0,(0) = ulﬁl ® 71+ wﬁz ® Zo + U3ﬁ3 ® Zs.
az

Then, by computations similar to the previous case we obtain that

(D 0y © D) ] =0 = (aaf? - forl?) e (222) =0,

By applying Corollary 2.3.2 to each case, we obtain the following theorem.
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Theorem 2.3.7. Let (M =T\G, J) be an element of the family of 4-dimensional nilmanifolds with
complex structure J determined by the coframe of left-invariant forms on G {n*,n*,n>,n*} with
structure equations

dnt=0, ie{1,2,3}
dn4 = a17712 + a31711 + (147712 + a77721 + a8n22,

with ai,as,aq,a7,a8 € Qi]. Let w = %Z?zl nﬁ be the fundamental form associated to the diagonal
metric, which we assume to be astheno-Kdhler, i.e.,

a1 ? + aaf? + az[? = 2%e(azas).
Then,

e if ag # 0 and (ug,u3) € C?, there exists no curve of astheno-Kdhler metrics wy such that
wo = w along the curve of deformations t — p(t) = %ﬁl ® Z1 + tug? ® Zo + tusn® ® Zs,
forte(—e€e) if

(lasf? - [ar[?) PRe (‘”“2) 0.
a4

e if ar # 0 and (uy,us) € C?, there exists no curve of astheno-Kdhler metrics wy such that
wo = w along the curve of deformations t — o(t) = w1 ® Zy + %ﬁ ® Zo + tusn® ® Zs,
forte (-e€), if

(Jaal® - |az|*) Re (a1u1 ) £ 0.
ar

2.3.2 Example 2

We now show an application of Corollary 2.3.2 to a 4-dimensional 2-step nilmanifold with invariant
complex structure. Let (M, J) be the nilmanifold with M =T'\G is the quotient of a nilpotent Lie
group G by a discrete uniform subgroup I' and the complex structure J determined by the coframe
Y, n%,n%,n*} of left-invariant (1,0)-forms on G with structure equations
dn' =0,
dn? =0,
dif® = an'? + asn' + agn'? + am® + asn®
dn* = b2 + ban'L + bgn'? + byn?! + bsn?2
with aj,b; € Q[¢]. Let w = Z?:l nﬁ be the fundamental form associated to the diagonal metric g.
By computations, it turns out that g is astheno-Kéhler if and only if
2%8([)5[_)2) - |b1|2 - |b3|2 - |b4|2 =0
|bl|2 + |b3|2 — |b4|2 —bsas —boas =0 (2.3.13)
2%6(0,552) - |bl|2 - |b3|2 - |b4|2 =0.

Since 90w = 0 if and only if
D‘ie(agﬁg) + %e(b5l_)2) - ‘b1|2 - |bg|2 — |b4|2 = O,

if the metric g is astheno-Kahler, it is also SKT.
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Let us consider the family of deformations (M, Jy)wp of (M, J) parametrized by the (0,1)-
vector form
p(t) =t ® Z1 + 127" ® Zo,
with t = (t1,22) € B:= {t e C: [t| < ¢}, € > 0. The coframe {n',1? 1> n*} then changes under ((t)
as

mo=n"-hn
g =0 — tal]
e =n’
e =n*

so that, by reversing the system, we obtain

n' = ?iﬂz(ﬁ% - t7)

n? = ﬁ(nf — ta77)
n* =g
0t =1l

Set Tj := Tltﬂ” for j € {frm[o]--,2}.

Since the form ¢(t) defines an family of complex manifolds if and only if d(n{)o’2 =0, for every
j €{1,2,3,4}, such a integrability condition is satisfied if and only if (dng)®? = 0, which yields

TlTQ(altth - a3t1 + a4t2)n12 =0
and (dn)%? = 0, which yields
T1T2(b1t1t2 — b3ty + b4t2)’l7t12 =0.

Under the assumption that aq = b1, ag = b3, and a4 = b4, we have that the condition of integrability
is valid for t € S, where S is the solution set of the equation

bitito — byt + bato =0, (tl,tQ, t3) € B. (2.3.14)
We now proceed as in the usual manner, by considering the map

F(tl,tz) = bitity — bty + byto

and discussing the cases in which either VF | ©00) = (_b 3) vanishes or not.
) 4

Case (i): VF|(0’0) =0

This is the situation in which b3 = b4 = 0. Then structure equations become
dn' =0,
dn? =0,
d773 — b1n12 + CLQT}lT + a5772§

d774 _ b17712 " bgnﬁ " b5772§
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and the diagonal metric g is astheno-Kéahler if, and only if, the following condition holds

20e(bsby) = |by|?
bots + bsaa = |b1)?
20Re(asas) = |b1)?
We assume that by # 0. The solution set S for equation (2.3.14) is then
S ={(t1,t2) € B: tity =0}
Hence as a curve of deformation ¢(¢) with ¢ € S we can choose
o(t) = tulﬁl ® 721 + tuQﬁ2 ® Za, (up,uz) €S, te(=6,0)
for § > 0 sufficiently small. Then,
©'(0) = W7 ® Z1 + usl)> ® Zo.
By computations, however, it turns out that
D oig(gy© ow? =0,

hence Corollary 2.3.2 does not yield any obstruction.

Case (ii): VF|(0 07 0.

In this situation, either b3 # 0 or by # 0. Let us assume bg # 0; the latter case is completely
analogous.
We have the following structure equations

dnt =0
dn® =0
dn?® = bin? + agnf + bgn15 + b4172T + a5772§
d774 _ b17712 " b277ﬁ " b3771§ n b477ﬁ n b5772§

and the astheno-Kéhler condition (2.3.13) on the diagonal metric g is still valid. The solution set
S for (2.3.14) is then

byt
S:{(tl,tQ)GBitlz 42t ,|t1|<(5,|t2|<(5’}
2

bs — by
for 4,6’ > 0 sufficiently small. Once we fix ug € C, we can pick the curve of deformations

tb
o(t) = 4—Wﬁ1 ® 71 + tugl)” ® Zo, te(—¢,¢),
bs — tbiusg

for € > 0 sufficiently small, so that

b
QDI(O) = ?)—Mﬁl ® Zl + UQﬁQ ® ZQ.
3

Then, we compute

. b 3 b 1
(90 ig(0) © D = (([bs]* - \b4!2)iw)77123123 +((Jbaf® - |b3‘2)iu2)77123124
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b = b L
(0l = b)) T o (P = o) P27

Now, the forms 5!23123 p123124 124123 124124 516 5] d-closed by structure equations. Moreover,

by considering the C-antilinear *-operator with respect to g, we see that
09 %0215 = s 2%Re(bsba) — [b1]? — [bsl® — |bal® =
90 + ' 3121 20 = [by|* + bs]? + |ba|? - by — betis = 0
00 + 241 _ () — |b1|? + [b3|* + |ba|? — agbs — asbs = 0
90 + 2121 2 0 = 2Re(asaz) — [b1|* — |bs]* — |baf® =
Since w is astheno-Kihler, i.e., conditions (2.3.13) hold, hence 99 * 12312 = 99 12121 = 97 +

124023 _ 5 4 124120 _ ) o the forms 7123123 128124 124723 124124 Dyepofore,

bl'UQ

[Jm(f)oi(p,(o)oaw?)] =~ i([bs[? = |ba]?)PRe ( )[ 123123]+z(|b3|2 Ibal?)%e (b1u2)[ 123@]

bl Uo

+i(|bsf” = [baf*) 2e (== UL 124125) g (Jbs|? ~ [ba]?) e (bluZ)[ 1241241

which vanishes in H gg(M ) if, and only if,

brusg

([bs]* = bal*) e (== ) =0

We summarise what we obtained in the following theorem.

Theorem 2.3.8. Let (M,J) be an element of the family of 4-dimensional manifolds determined
by the coframe of left-invariant (1,0)-forms {n*,n*,n°,n*} with structure equations

dnt =0
dn*=0
dnd = bin'? + a277ﬁ + bgnﬁ + b4nﬁ " amgi
d774 _ bmu n bgnﬁ n 537715 n bLmﬁ n a5772§

with ag,as,b1,be,b3,bs,b5 € Q[i]. Let w = %Z?:l nﬁ be the fundamental form associated to the
diagonal metric g and suppose that g is astheno-Kdhler (and hence SKT), i.e.,

2Re(bsba) — |b1]? — |bs|* — [bal?> = 0
[b1[? + [b3]* = [baf® = bs@2 — baas = 0
2Re(asan) — |b1|> —|b3|? — |ba|* = 0
Then,
e if b3 0 and ug € C, there exists no curve of astheno-Kdhler metrics wy with wy = w along the

curve of deformations p(t) = b;bflﬁizﬁ ® 71 +tush® ® Za, t € (—¢,¢), if

bius
(|bs]* - |b4|2)9%(ﬁ) #0.

o if by #0 and uy € C, there exists no curve of astheno-Kdhler metrics wy with wy = w along the

curve of deformations p(t) = tuin' ® Zy + tug tbtzf”jb477 ® Zo, t € (—€,€), if

bruq

([bs]* = [bal*) e (== ) #0.
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2.4 Deformations of balanced metrics

Let now (M, J,g,w) be a compact Hermitian manifold of complex dimension n endowed with a
balanced metric g, i.e., Ow™ ! = 0 and let {M;}s; be a differentiable family of deformations such
that My = M, with {M;}; parametrized by a (0,1)-vector form ¢(t) on M, for t € I = (—¢,¢€),
€ > 0. Let also {wi}es be a family of Hermitian metrics on {M;}ser, such that wy = w and we
suppose the metrics g; to be balanced, i.e.,

0wl =0, Vtel. (2.4.1)

We remark that, by Lemma 1.7.6, we can write each w; as €%/ (w(t)), where locally w(t) =
w;j(t)dz" Adz’. In particular, by definition of elliz | it is easy to check that

Wi = (I (1)) = R (1))
= ei*”‘i¢(fv(t) Az AdZ A Adt A dEI ),

where we denote f,(t) == wj,j, (t) ... wi,_ ., (), with v = (i1, j1,...,in-1,Jn-1) and
ik,jke{l,...,n}, k= {1,...,%—1}.

We can then apply formula (2.1.3) to (2.4.1) and, by making use of Taylor series expansion and
differentiating with respect to ¢t in ¢t = 0, we are able to prove the main theorem.

Theorem 2.4.1 ([130]). Let (M,J) be a n-dimensional compact complex manifold endowed with
a balanced metric g and associated fundamental form w. Let {My}ier be a differentiable family of
compact complex manifolds with My = M and parametrized by ¢(t) € AN (TYO(M)), fort e :=
(—€,€), €>0. Let {wi}ter be a smooth family of Hermitian metrics along { M }ier, written as

wi = €% (w(t)),
where, locally, w(t) = w;;(t) dz' Adz? e AV (M) and wy = w.
If W' has local expression €% (w;,j, (1) ... wi, ., (t) dz" AdZH A - Adzint A dZIn1), set
(W (1)) = %(wm (1) . Wiy 1oy (1)) A2 AdZT AL dZ 't A dEI e ATEPTH(M).
Then, if every metric wy is balanced, for t € I, it must hold that
8 0oy (W) = -0(w"1(0))".

Given Theorem 2.4.1, it is straightforward to see that the following cohomological obstruction
holds.

Corollary 2.4.2 ([130]). Let (M,J) be a compact Hermitian manifold endowed with a balanced
metric g and associated fundamental form w. If there exists a smooth family of balanced met-
rics which coincides with w in t = 0, along the family of deformations { My}, with My = M and
parametrized by the (0,1)-vector form @(t) on M, then the following equation must hold

. n—-1
[00 0y (@ )]Hg’l’”(M) =0.

Proof (of Theorem 2.4.1). The metrics w; are balanced for every t € I, i.e., gtw[‘_l = (. By means
of the extension map, this equation can be written as

a; (e (@ (1)) =0, Viel.
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Also, formula (2.1.3) implies that 9;w™! = 0 for every t € I if and only if
el ((1-20) ' A([0,30] + D) (I - Pp) Hw" (1)) =0, VEel.

We now use equation (2.1.1) and we expand in Taylor series centered in ¢ = 0 the term atw{“l,
noting that

v =p(t) =t"(0) +o(t)
and, therefore,
(I-¢p)=(I-pp)=(I-¢p)" = (I-pp) " =1 +o(t),
to obtain
iy = (1 +1/(0) 5+1(0)2) 3 ([0, 1/ (0) 1] + ) (W~ (0) + (" 1(0))")) + o)
= (1 +t/(0) 041/ (0)1) 3 (t0(¢' (0) 1w (0)) + (W™ (0))")) + o(t)
=t9(¢'(0) 2w 1(0)) + tA(wW"1(0))") + o(t)

Since O;wit = 0 holds true for every t € I, if we differentiate it with respect to ¢ in ¢ = 0, we obtain

0 = e 0 e = e
§|t=o (8twt 1) = ahzo [ta(go'(O) Jw 1(0)) +t0(w 1(0))’) + o(t)] =0.
Hence,
8(#'(0) 50" ™) + 9(w"71(0)) = 0,
therefore concluding the proof. O

We now apply Theorem 2.4.1 and Corollary 2.4.2 to find obstructions on each family of non-
Kéhler complex parallelisable solvmanifolds as characterized in [105|. In particular, we will focus
on the complex parallelisable Nakamura manifold and the Iwasawa manifold.

2.4.1 Example 1

Complex parallelisable Nakamura manifold). Let G := C x, C? be the complex Lie group given by
v
the action of C on C2, via
e 0
- (45 L)

Let us consider the discrete subgroup I' of G of the form I':= (Z(a +ib) + Z(c +id)) x I'"", where
e the set I is a lattice of C?;
e the complex numbers a + ib and ¢+ id are such that Z(a + ib) + Z(c + id) is a lattice in C;

e the matrices y(a +ib) and y(c + id) are conjugates in SL(4;Z), where we regard SL(2;C) c
SL(4;R).

Then T is a lattice of G and the compact quotient M := T'/G is called the complex parallelisable
Nakamura Manifold, see [105, Section 2| for details on its construction.

It is well known that G is a solvable non nilpotent Lie group, therefore the quotient M is a
3-dimensional solvmanifold, which is biholomorphic to C3.
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If {z'} and {z2,2%} are the standard coordinates on respectively C and C?, a left-invariant
frame of (1,0)-vector fields on G is given by {Z1, Zs, Z3}, where

o)

Zl:B_zll
—e? O
Z2—€ 1321
=% O
Zz=e" 53

and the dual coframe of (1,0)-differential forms in A“Y(M) is given by {n',n? 1}, where

771 — le
n? = e dz?
n = e*' dz3.
Note that structure equations
dn'=0
dn? = -nt an? (2.4.2)
dn® =nt And.

imply that the coframe of left-invariant (1,0)-forms {n',7%,1®} induce an almost complex left-
invariant structure J on M, which is integrable.
From now on, we adopt the abbreviation for the wedge product of differential forms, i.e., for
example, 7k := ni AnJ AT
Let us consider a generic left-invariant Hermitian metric g on (M, J), with associated funda-
mental form w given by
. 3 _ _
w = % 2, o + %j;(ajk ~apn’,

with coefficients o € C, for j,k € {1,2,3}, such that the matrix representing g

ay —iogy —iogg

tg Qg T3

13 Moz Qg
is positive definite. From structure equations (2.4.2), it is easy to check that Ow? = 0, hence any
left-invariant Hermitian metric on (M, J) is balanced.

We notice that the dimension of the space Hg’l(M ) depends on the choice of the lattice

I' = (Z(a+1ib) + Z(c+1id)) x, ', in particular on the choice of the real numbers b and d. More
accurately, it can be proved that, if b,d € 2nZ, then dim Hg’l(]\/[) = 3, whereas, if either b ¢ 27Z or
d ¢ 277, then dim Hg’l(M) =1, see [81]. Hence, we distinguish two cases.

Case (i): b,de2nZ

We define the following C-base for A%! (M), consisting of the left-invariant (0, 1)-forms {7, 72,7},
defined as
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where the functions ezl’zl and e*' % are well defined on M because of the choice of the lattice T'.

Accordingly to [105, Section 3|, small deformations of (M, J) can be characterized by means of
the (0,1)-vector form

3 .
o(t) = tyi’ ® Zi,
ij=1
with the coefficients of t = (t11,t12, 113, to1, tao, ta3, t31,t32,133) € B(0,6) c C?, § > 0, belonging to
one of the following classes:
t11 # 0,12 =t13 =123 =t32 = 0; (
t11 = tog = t33 = 0; (
tio # O, t11 =t13 =191 =tog3 =131 = O; (2.4.5
t13 # 0,811 = t12 = to1 = t31 = 132 = 0. (
We can now make use of Theorem 2.4.1 and Corollary 2.4.2 to find obstruction for each class of

small deformations of (M, J).
Class (2.4.3). In this case, the (0, 1)-vector form parametrizing the deformation is

Lp(t) = t117~]1 ® 21+ tglﬁl ® oy + tQQﬁQ ® 2y + t31ﬁ1 ® Z3 + t33ﬁ3 ® 73,
for t = (t11,t21,t22,t31,t33) € B(0,6) c C?, § > 0. We then consider the smooth curve of deformations
. ~1 ~1 -9 ~1 -3 0,1/71,0
t— (p(t) = t(alm ® Z1+a017) ® Za+ a2l ® Zo +az1n) ® 23+ azsn” ® Z3) eA (T (M))

for t € I = (=¢,€), € >0, (a11,a21,a92,a31,a33) € C°, whose derivative in ¢ = 0 is

@/(0) = allﬁl ® Zl + aglﬁl ® Z2 + aggﬁz ® Z2 + aglf}l ® Zg + a33’r~]3 ® Z3.
With the aid of (2.4.2), we compute

. 2 . _ - — zl-z1 12 123
0 00y (w”) = [ar2 i pags + @pa.3) +agz(iaggay —agagg)le” = n A

1

. 2 12 123
+ B [all(w‘ﬁalg — ay5003) +azi (Jags|” - O‘2§a3§)] oA

1_=1 53 —
and e % '3 An'23 are D-exact. In fact,

therefore they both represent a vanishing class in Hg’g(M ). On the other hand, it can be easily

shown that the forms n'? /\77ﬁg and n'3 /\77i§g are harmonic with respect to the Dolbeault Laplacian
operator, i.e., they belong to H%’?’(M ,g). As a consequence, they correspond, respectively, to non-

vanishing cohomology classes [7'? A 77123]5 and [n'3 A 77123]5 in Hg’?’(X). Hence, by Corollary 2.4.2,
if one of the following equations does not hold

{all(io‘nam +oyzliyz) + a21(|a2§|2 — ayz0i33) = 0

ar1 (iogzay3 — azag3) + a31(|a2§|2 - a5033) =0,
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there exists no curve of balanced metrics {w; }te; such that wy = w along the curve of deformations

t— o(t).
Class (2.4.4). The deformation is parametrized by the (0,1)-vector form ¢(t), with

O(t) = t1277 ® Z1 + t13i)° ® Z1 + torf)' ® Zo +togi)” ® Zo + 3177 ® Z3 + t321)” ® Z3,

with t = (t12,t13,t21,t23,t31,t32) € B(O,(;) c C6, d>0.
We consider the smooth curve of deformations
t o(t) =t(a1oi2 ® Zy + a13i® ® Zy + as1i' ® Zs
+ a23ﬁ3 ® ZQ + aglﬁl ® Z3 + a32ﬁ2 ® Zg),

for t € I = (—€,€),e >0, whose derivative in ¢ =0 is

¢'(0) =a127” ® Z1 + a137)° ® Z1 + aniij' ® Zs

+ a23ﬁ3 ® Ly + aglf]l ® L3+ a32ﬁ2 ® Z3.

With the aid of (2.4.2), we compute

. . —_— . — — 71— 1 193
9o igi(0) (w?) = [ara(icypayg + Wigay3) + aze(iaggiys - Aizag)]e” 7 n'2 an'®
1 2 12 123
3 [a31(‘0‘2§| - 04250‘35)] AN
p— . — . —_— — — 1—71 193
+ [a13(ay5043 — i 30y3) + ags(iays003 + A 5007) ]e” —° 7713 A 77123

1
+ §[a21(|a2§|2 - a2§a3§)]7713 AN/

We observe that, again, since the forms ezl’zlnli{\ niég and e* - are cohomologous to 0
in HE’B(M) and the forms n'2 An'23 and 1'3 An'?® are 9-harmonic, the obstruction from Corollary
2.4.2 boils down to

z' 13 123
noAn

2
az1(Jagg|” — agzasz) =0

a31(|a2§|2 — ayza43) = 0.

We point out that, since the metric g is Hermitian and, hence, positive definite, the real number
|ctgz]? = cgz0rag is strictly positive. Therefore, there exists no curve of balanced metrics {wy }ser such
that wp = w along the curve of deformations t — ¢(t), if

) o)
Class (2.4.5). For this class, the (0, 1)-vector deformation form is
@(t) = t127)> ® Z1 +tasii” ® Zs + o> ® Z3 + ta3i)° ® Zs,
for t = (t19,t20,t32,133) € B(0,8) c C*, § > 0. We consider the smooth curve of deformations
t > o(t) = t(a197° ® Z1 + agei* ® Zo + azof> ® Z3 + assi® ® Z3),

for t € I = (—€,€),e >0, whose derivative in ¢ = 0 is

80,(0) = a12ﬁ2 ® Zl + a22ﬁ2 ® 22 + a32ﬁ2 ® Zg + CL33773 ® Z3.
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In this case, 0 o i@/(o)(oﬂ) = 0, therefore Corollary 2.4.2 gives no obstruction to the existence
of smooth curves of balanced metrics {w;}e; such that wy = w along the curve of deformations
t — p(t). Moreover, if {w;}is is any smooth curve of left-invariant Hermitian metrics along o(t)

such that wy = w, we can see that O(w?(0))" = 0, where we have set w; = e%(t)‘imw(t), for
w(t) = w;;(t)dz* A dz e ALY(M). Therefore, also Theorem 2.4.1 yields no obstruction.
Class (2.4.6). The (0, 1)-vector form for this class is

@(t) = t137° ® Z1 + togii® ® Zo + tasi> ® Zo + t337]° ® Z3,

for t = (t13,t22,t23,t33) € B(O,(S) (- (C4, 6> 0.
Let us consider the smooth curve of deformations

t— ga(t) = t(a13ﬁ3 ® Zl + a22ﬁ2 ® ZQ + CL23773 ® Zg + CL337~]3 ® Zg)
for t € (—€,€) and its derivative in ¢ =0
(,0,(0) = a13ﬁ3 ® 1+ a22ﬁ2 ® Lo+ a23ﬁ3 ® Lo+ a33ﬁ3 ® Z3.

Also in this case, 0o iw(o)(wz) =0, i.e., Corollary 2.4.2 yields no obstruction and analogously to
the previous class, also Theorem 2.4.1 yields no non-trivial conditions.
We can focus now on the other case.

Case (ii): c¢27Z or d ¢ 2n7Z

In [105, Section 3], it is shown that Hg’l(M) = C(7'), and any small deformation of (M,.J) can be
parametrized by the (0,1)-vector form

P(t) =17 ® Z1 + o' ® Zo + 137 ® Zs,
with t = (t1,2,t3) € B(0,6) c C3, § >0. We can then consider the smooth curve of deformations
t o(t) = t(a1' ® Z), + agl' ® Zo + asi' ® Z3),
for t € (—€,€), € >0, (a1, az,a3) € C3, whose derivative in ¢t = 0 is
©'(0) = a1 ® Z1 + aolj* ® Zy + asTj' ® Zs.
By making use of (2.4.2), we compute

. 1 ' B o
0o Ly (0) (wz) = 5(ag(|a2§|2 _ aﬂa:ﬁ) + al(l@ggaﬁ + 04150425))7713123

1 ‘ _
+§(a3(|a2§|2 _ o@agg) + al(l%ialg _ 04150425))7712123_

We can easily verify that on'2123 = 912123 = gp13123 = 513123 = je., the (2, 3)-forms 12123

13123 12@]

and n are O-harmonic. Therefore, the Dolbeault cohomology classes [n and

2,3
H23 (M)

[7713@] H23 () Are not vanishing. On this accounts, Corollary 2.4.2 implies that if there exists
El

a smooth curve of balanced metrics {w; }+; along the smooth curve of deformations ¢ — (t), then
we must have that

{a2(|a23|2 = Qy303) + ar (lagzayg + ay30,3) =0 (2.4.7)

(13(|042§|2 — Qly50053) + a1 (TQg505 — Qy5003) = 0.
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We notice that, if a; = 0, i.e., ¢(0) = a2lj* ® Z3 + aszn' ® Z3, condition (2.4.7) becomes

ag = 0
as = 0

since |0z2§|2 — Q3043 # 0, being g a Hermitian metric. Hence, by Corollary 2.4.2, we can conclude
that there exists no smooth curve of balanced metrics {w;}e; such that wy = w, along @(t) with
©'(0) = aon' ® Zo + azn' ® Z3.

Viceversa, let us consider the case in which a; # 0 and at least one between as and ag vanishes,
i.e., for example, ay = 0. Then, condition (2.4.7) reduces to

al = 0
(13(|042§|2 — Qly50053) + a1 (G505 — Q5003) = 0,

since the term iayz043 — ;5053 # 0, being g a Hermitian metric. We assumed ay # 0, therefore by
Corollary 2.4.2, there exists no smooth curve of balanced metrics {w;}se; such that wy = w, along
the smooth curve of deformations o(t) with ¢’(0) = 15! ® Z; + asn' ® Z3. We come to the same
conclusion if we consider ag = 0.

We can then summarize what we obtained in the following theorems.

Theorem 2.4.3 ([130]). Let (M, J) be the complex parallelisable Nakamura manifold with
dim Hg’l(M) = 3, where J is the integrable left-invariant almost complex structure induced by the

left-invariant coframe {n',n?,n3} with structure equations

dn' =0
dn? = —n12
dn? = '3,

Let g be any left-invariant Hermitian (balanced) metric with associated fundamental form
U ~ _\pik
w:§Zaj377 +§Z(aﬂ—aﬂ)n :
j=1 J<k

Defining the left-invariant (0,1)-forms {f*, 72,73} by

~1 . 1
=n

~2 . zl-21_2

no=e n

3. Z'-z'_3

no=e n,

lettm(t) =t Z?,jzl aiji’ ® Z; € ASL(THO(M)) be a smooth curve of deformations of (M,J), for
{aij}?,jzl cC,tel=(-¢€¢),e>0.
Then,

e if aj; # 0,a12 = a13 = azs = age = 0, there exists no smooth curve of balanced metrics {wy }er
such that wo = w, along the curve of deformation t — p(t), if

(au(i%zalg - Qyp003) + a31(|042§|z ~ Qg503) = 0) * (0) ;
ar (iaygong + a30y3) + an (Jagsl” — agags) =0) - \0)°
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e if a1 = axe = agg = 0, there exists no smooth curve of balanced metrics {wy}ies such that
wo = w, along the curve of deformation t — ¢(t), if

(o) 0)

Theorem 2.4.4 ([130]). Let (M,J) be the complex parallelisable Nakamura manifold with
dim Hg’l(M) =1, where J s the integrable left-invariant almost complex structure induced by the
left-invariant coframe {n',n*,n*} with structure equations

dn' =0
dn? = —n12
dn® = '3,

Let g be any left-invariant Hermitian (balanced) metric with associated fundamental form

. 3 _ _

i -1 N

“w=y D o+ B ;(O‘jﬁ —apn
j

Let t v o(t) =t Y3 a7’ ® Z; € AN (T (M) be a smooth curve of deformations of (M,.J), for
0% (a1,as,a3) € C3, tel=(—¢€ce), €e>0.

Then, there exists no smooth curve of balanced metrics {wy }ter such that wy = w, along the curve
of deformation t — o(t), if

(ag(]a23|z — agzagz) + ar(iagzos + a13623)) + (O) .
a3 (|agz]” — agzag3) + a1 (iagza gz — ayz0n3) 0

In particular, if one the following holds:
e a1 =0;
e a1 #0, (az,a3) € {(az,0),(0,a3)},

there exists no smooth curve of balanced metrics {wi}er such that wy = w, along the curve of
deformation t — o(t).

2.4.2 Example 2

(Iwasawa manifold). Let G = H(3;C) be the 3-dimensional complex Heisenberg group. It well
known that G is a 2-step nilpotent Lie group. Let us consider the lattice I':= H(3,Z[i]) of G, i.e.,
I' = H(3;C) n GL(3;Z[i]). The quotient M :=T'/G is a compact manifold, known as the fwasawa
manifold. In particular, M is a 3-dimensional 2-step complex nilmanifold with universal covering
C3.

If {z!, 22,23} are the standard coordinates on C?, the forms {n*,n% 73}, defined by

771 — dzl
772 _ dZZ
nd = dz? - 21d2?,
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are a left-invariant coframe of (1,0)-forms on G, therefore they descend to the quotient M. The
dual frame of (1,0)-vector fields {Z1, Z3, Z3} on G has local expression

o 1 0
1= g51+% 53

_ 0
Za = 0z2

_ 0
Zy= 2s

We notice that, by looking at structure equations

dn't =0
dn? =0 (2.4.8)
d773 _ —7712

the coframe {n',1? 13} induces a left-invariant almost complex structure J on M, which is inte-
grable.

Let g be any left-invariant Hermitian metric on (M, J). Its associated fundamental form w can
be written as

. 3 _ _
; -1 o
w=3 Zl agn? + §j§<k:(0<jﬁ —apn’,

with complex numbers {O‘jﬁ}?,k:l such that the matrix respresenting g

is positive definite. By structure equations (2.4.8), it is easy to check that dw? = 0, ie., the
left-invariant Hermitian metric g is balanced.

In [105], Nakamura gives a complete description of Kuranishi space of the Iwasawa manifold.
In particular, any small deformation of (M, J) can be parametrized by the (0, 1)-vector form

3 2 ,
e(t) =3 > 7 ® Zi - (tirtos — tiato1)° ® Zs,
io15-1

with t = (tn,tlz,tgl,tm,tgl,tgg) € B(O,(5) c (C6, 6> 0.
Let us consider the smooth curve of deformations
o —1 —2 —1 —2 —1
t— go(t) -—t(a117] ® Zl +a19n” ® Zl +ao1m ® ZQ +agn” ® ZQ +azin ® Z3
+ a32ﬁ2 ® Zg) - t2(a11a22 - algagl)ﬁ?’ ® L3 € Ao’l(Tl’O(M)),

with t € I = (=¢,€), € >0 and (a1, a12, a1, a,az1,ass) € CO. Its derivative in ¢ = 0 is
oy =1 —2 1 ) -1 —2
) (0) =ain ® Zl +aon” ® Zl +agm ® Zg +agn” ® Z2 +a31n ® Z3a3277 ® Z3.

With the aid of structure equations (2.4.8), we compute

1

. 2 2 2
00y (w) =5 (mz(lalgl - ayagg) + a1 (g3 — |agg]”)

o — i = = _ . V), 12123
— an (iaggag + ay303) + a(—icggog + O‘130‘23))77 :
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We notice that the (2,3)-form 1712@ is both O-closed and 5*—Closed, i.e., it is O-harmonic. Hence,

the corresponding Dolbeault class [nlz@]g is non-vanishing in Hg’?’(M ). Applying Corollary 2.4.2,
we see that there exists no smooth curve of balanced metrics {w; }+c; along the curve of deformations

t — @(t), such that wy = w, if the following equation holds
2 2 . — . — —
ara(logg|” - aggagz) + azi(agpags = lags|”) — an(iaggang + agliyg) + az(—iaga)g +a@zagg) # 0.

We observe that, for a;; = 0 for (¢,7) # (1,2), we find the same curve of deformations that Alessan-
drini and Bassanelli costructed in [8] to prove the non stability of the balanced condition under
small deformations of the complex structure.

We gather what we have obtained in the following theorem.

Theorem 2.4.5 ([130]). Let (M, J) be the Twasawa manifold with integrable left-invariant complex
structure J, induced by the left-invariant coframe {n',n*,n>} with structure equations

dnt=0
dn®=0
dn = —n'2.

Let g be a left-invariant Hermitian (balanced) metric on (M, J) with associated fundamental form
¢ 23: i, 1 S @ )"
2 4 2440 J

Let t — o(t) = t(X3, Z§=1 aij i’ ® Z;) — t*(a11a22 — a12a21)7° ® Zg € ASN(THO(M)) be a smooth

curve of deformations of (M, J), with {aij}?=1?:1 cC,tel=(-¢€¢),e>0.

Then, if the following condition holds
2 2 . — . — _
arz(lagg]” - ayagg) + asi(ayzaag = lagl”) — an (iaggayy + a303) + az(—iaggd g + ajgam) # 0,

there exists no smooth curve of balanced metrics {wt}ier such that wy = w along the curve of defor-
mations t — @(t).



Chapter 3

p-Kahler and balanced structures on
nilmanifolds with nilpotent complex
structures

In this chapter, we will first determine obtructions to the existence of p-Kéhler forms, as recalled in
section 1.5, on nilmanifolds endowed with a invariant nilpotent complex structure. In particular, we
will determine an optimal p such that there exist non p-Kéahler structures on such complex manifolds.
Then, we will study in detail the existence of special structures on the Bigalke-Rollenske manifolds
M*"=2 (such a family of 4n — 2 dimensional complex non-Kéhler manifolds, n > 2, were introduced
in [25] to show that the degeneration step of the Frolicher spectral sequence can be arbitrarily high).
Using the mentioned obstructions, we will show that the Bigalke-Rollenske manifolds do not admit
any p-Kéhler form, p e {1,...,4n—-4}, except for p = 4n -3, i.e., they admit a balanced metric, thus
proving that, unlike the Kéahler setting, on a balanced manifold the degeneracy step of the Frolicher
spectral sequence can be arbitrarily high, adding to the results in [119], where it was shown that the
existence of a balanced metric does not imply the degeneration at the first step. In fact, whereas
the degeneracy step of the Frolicher spectral sequence on a non-Kéahler manifold might be higher
than one, as first shown in [84] (see also [43]), weaker metric conditions might impose restrictions
on the degeneration of the Frolicher spectral sequence. Note that, starting from Bigalke-Rollenske
manifolds, Kasuya and Stelzig in [82] have recently constructed compact complex manifolds which
provide counterexamples to Popovici’s conjecture [120, Conjecture 1.3] on the relation between the
existence of SKT metrics and degeneration of the Frolicher spectral sequence at the second page
on a compact non-Kéahler manifold.

3.1 p-Kahler structures on nilmanifolds with nilpotent complex
structures

We begin this section by recalling the following lemma by Hind, Medori, and Tomassini, which
provides a geneal obstruction to existence of p-Kéhler structures on complex mnaifold, see |71,
Proposition 3.4].

Lemma 3.1.1 ([71]). Let (M, J) be a compact complex manifold of complex dimension n. Suppose
that there ezists a non-closed (2n —2p — 1)-form n such that the (n — p,n — p)-component of dn
satisfies

(dn)" PP =3 b Aty
k

o7
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where the Yy are simple (n —p,0)-forms and the ¢y have the same sign. Then, (M,J) does not
admit a p-Kdhler form.

We will use this lemma to prove the non-existence of a p-Kéhler form (for suitable p) on
nilmanifolds with nilpotent complex structures.

Let M = I'\G be a nilmanifold of complex dimension n and let J be an invariant complex
structure on M, i.e., J is induced by a left-invariant complex structure on G. We denote with g
the Lie algebra of GG. Recall that J is a nilpotent complex structure if, and only if, there exists a
co-frame of invariant (1,0)-forms {ni}?zl satisfying

dn® € Spanc {7, 07 )i j-1,...n1, k=1, n.
Then, we prove the following.

Theorem 3.1.2 ([131]). Let M = T'\G be a nilmanifold of complex dimension n endowed with a
wnvariant nilpotent complex structure J. With the above notations, let k be the index such that

dn'=0 for i=1,--k and dn'+0 for i=k+1,--n. (3.1.1)
Then, there are no (n —k)-Kahler forms on M.

Proof. In order to prove the result we will exhibit a (2k — 1)-form « satisfying the hypothesis of
Lemma 3.1.1.

Since dn**! # 0 then at least one between 9n**! and dn**! is different from 0. Suppose now
that On**1 # 0. We will deal later with the other case. Since J is nilpotent,

—_— k —
877k+1 _ Z Clﬁmnlmio

I,m=1

for some constants Cj. Hence, we fix two indices 7, j < k such that C;; # 0.
We define the following (2k — 1)-form

Lokt Tooger o
=1 T,

where 7' and 77 mean that we are removing the forms 7’ and 7/ from .
By the structure equations, since dn* =0 for ¢ =1,---, k and J is nilpotent,

doc = £Cyn'F T

hence « satisfies the hypothesis of Lemma 3.1.1 and so there is no (n — k)-Kéhler structure on M.
On the other side, suppose that 9n*** = 0 and 9n**! % 0.
Since J is nilpotent,

k
ank+1 _ Z Almnlm £0
l,m=1,l<m
for some constants A;,,. Hence, we fix two indices ¢ < j < k such that A;; # 0.
We define the following (2k — 1)-form

o= n1---1---;---k+1 Ik

By the structure equations, since dn =0 for i = 1,---,k and J is nilpotent,

do = ﬂ:Aijnl"'M"'l5

hence « satisfies the hypothesis of Lemma 3.1.1 and so there is no (n — k)-Kéhler structure on M.
O
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As a Corollary for k =1 one gets immediately

Corollary 3.1.3 ([131]). Let M = I'\G be a nilmanifold of complex dimension n endowed with
an invariant nilpotent complex structure J, with co-frame of (1,0)-forms {771}1‘:1 n satisfying the
following structure equations,

dnt =0 and dn'+0 for =2, n.
Then, there are no balanced metrics on M.

We notice that there are large classes of complex nilmanifolds where Theorem 3.1.2 can be
applied. For instance, if J is abelian, namely [Jx, Jy] = [x,y] for every z,y € g, or bi-invariant,
namely J[x,y] = [Jz,y] for every z,y € g, then it is nilpotent (cf. [126]). Moreover, by [110] if
(M, J) is a 2-step nilmanifold with invariant complex structure and J-invariant center, then J is
nilpotent.

Remark 3.1.4. We notice that the nilpotency of the complex structure of the nilmanifold is crucial
in the previous results. Indeed, when the hypotesis of nilpotency on the complex structure of the
nilmanifold is dropped, Theorem 3.1.2 and Corollary 3.1.3 are not valid in general. More precisely,
in [40] the authors consider the real 6-dimensional nilmanifold, whose associated Lie algebra is
hio =(0,0,0,12,23,14-35) and they prove that it is endowed with invariant non nilpotent complex
structures (see [40, Theorem 2.1] ) which satisfy condition (3.1.1) for k£ =1 (|40, Table 2| ), indeed
the complex structure equations are

dnt =0, dn? :7713“713’ dn® = +i (7712 _7721).

As shown in [40, Remark 5.4] such nilmanifolds admit invariant balanced metrics, i.e., 2-Ké&hler
forms.

We now show that p = n—k in Theorem 3.1.2 is optimal. Indeed, we will show now two examples
of 2-step nilmanifolds with invariant abelian complex structures that admit a (n -k — 1)-Ké&hler
form and a (n -k + 1)-Kéhler form.

Example 3.1.5. Let M be the 2-step nilmanifold of complex dimension 3 with abelian complex
structure defined by the following structure equations

d771 _ d’l72 — O7 d773 — 7712

where {ni}izl 5 3 15 a co-frame of (1,0)-forms.
With the pre{/ibus notations we have n =3 and k = 2. So, by Theorem 3.1.2 there are no 1-Kéhler
forms on M. Of course, this was already known since on non-toral nilmanifolds there are no Kéhler
metrics.
Now, we show that there exists a 2-Kéhler form on M, namely a (n -k + 1)-Kahler form.
Let

0= _771122 _ 771133 _ n2§33 ]

Then, ) is a real transverse (2,2)-form and by the structure equations

dQ2=0.

Hence, € is a 2-Kéhler form on M. In particular, there exists a balanced metric w on M such that
w? = Q. In fact, it is easy to see that

w = inn + i7722 + in33.
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Example 3.1.6. Let M be the 8-dimensional 2-step nilmanifold with abelian complex structure
defined by the following structure equations

d771 - 0’ d772 — d773 — d’l’]4 - ,'711

where {ni}izl 534 18 a co-frame of (1,0)-forms.
With the pre\;ibﬁs notations we have n =4 and k£ = 1. So, by Corollary 3.1.3 there are no balanced
metrics on M.
Now, we show that there exists a 2-Kéhler form on M, namely a (n — k - 1)-Kéhler form.
Let

Q0= _771122 _ 771133 B 771144 B 772?3:’3 B ,'722421 _
2433 + n4§33

n3344+

+772234 + 772243 +1) + 772344 4 ,’73244 ]

Then, Q) is a real transverse (2,2)-form and by the structure equations one can see directly that
dQ2=0.

Hence, € is a 2-Ké&hler form on M.

3.2 Special Hermitian metrics on the Bigalke and Rollenske’s man-
ifolds

In this section, we discuss the existence of special Hermitian metrics and p-Ké&hler forms on the
2-step nilmanifolds with the nilpotent complex structure constructed by Bigalke and Rollenske in
[25]. In particular, for every n > 2, these (4n —2)-dimensional compact complex manifolds are such
that the Frolicher spectral sequence does not degenerate at the F, term.

We start by recalling the construction. Fix n > 2 and let GG,, be the real nilpotent subgroup of
GL(2n +2,C) consisting of the matrices of the form

1 0 0 Y1 w1
1 0 0 z1 —x1 0 . 0 we
1 0 - 0 Zn-1 —Tp-1 0 w,
1 0 0 u
1 0 yn
1 Z1
1
With Z1,..., Tn-1,Y1, -+, Yn, 21, -+ - Zn-1, W1, ..., Wy € C.

Let T" be the subgroup of G,, consisting of the matrices of the same form and entries in Z[].
Then, T is a discrete uniform subgroup of G,, and the quotient M*"~2 := T\G,, is a compact (4n—2)-
dimensional 2-step nilmanifold with an invariant complex structure. A global co-frame of invariant
(1,0)-forms is given by

dxy,...,dTn_1,dy1,...,dY,,dz1,...,d2n-1,w1,...,Wn

where
wi =dwy - Y1dz1, Wi = dwg — Zp_1dyp-1 + Tp-rdye (k=2,...,n).
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The structure equations become
d(dz;) = d(dz;) =0, (j=1,...,n-1)
d(dy;) =0, (j=1,...,n)
Ow1 =0, 5&)1 =dz1 A dy
8(,0]' =dz;_1 A dyj, gwj =dyj-1 ANdZjq (j=2,...,n)

In [25] the authors show that that the Frolicher spectral sequence of M%""2 has non-vanishing
differential d,,, namely the Frolicher spectral sequence does not degenerate at the E, term.

We now rename the forms dz;, dy;, dz;, and w; by considering the basis of (1,0)-forms {y ?Zl‘ 2
defined as follows
drj, 1<j<n
;. )dyj, n<j<2n
T dzj, 2n<j<3n-1
wj, 3dn-1<j<4n-2.
As a result, the structure equations become
0, 1<j<3n-1
dif = {2 AT, j=3n-1 (3.2.1)
,',]j73n+1 /\njf2n+1 +,'7j72n /\ﬁjﬂ’L7 3n S] < 4n — 27
or, more precisely,
-0 1<5<3n-1
J _ b
M =9 st joonet . 3 (3.2.2)
n AT , dn<j<dn -2,
and
0, 1<j<3n-1
o =" Aq", j=3n-1 (3.2.3)

WA, 3n<j<4n -2,

Now we study the existence of special Hermitian metrics on Bigalke and Rollenske’s nilmanifolds.
In particular, one can apply Theorem 3.1.2 and get immediately the following proposition.

Proposition 3.2.1 ([131]). For every n > 2 the Bigalke and Rollenske’s nilmanifold M*"2 does
not admit any n-Kdhler form.

In fact, we can show more, namely there are no p-Kéhler forms except for balanced metrics.
More precisely, we prove the following theorem.

Theorem 3.2.2 ([131]). For every n > 2 the Bigalke and Rollenske’s nilmanifold M*"% does not
admit any p-Kdhler form for 1 <p<d4n-3.

Proof. We will show that on any Bigalke and Rollenske’s manifold M*" 2, for every fixed p, with
1 < p<4n-3, we can construct a non closed (8n—2p—5)-form a such that the (4n—2-p,4n—-2-p)-
component of doy, satisfies

(doyy) 4" 2PA2R) = € A, (3.2.4)
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with 1, € A127PO(M4""2) a simple form and €, € {~1,1}. By Lemma 3.1.1, this will assure that
there exists no p-Kéhler form on M2,

Let us consider separately the cases
(i) 1<p<m;
(it) n<p<dn-2.
Before doing so, we remark that, by structure equations (3.2.1), the index j such that every term
of the expression of dn/ contains forms with the highest indices, is j = 4n — 2. Such expression is

4n—2 n—1 2n—1 2n—-2 ., =3n-2
A =" AT T AT,

whereas, in general, we have that dn’, di/ # 0 if, and only if, 3n - 1< j < 4n - 2.

(i) Even though it is well-known that on non-toral nilmanifolds there are no 1-Kahler forms,
since they coincide with Ké&hle metrics, we will consider the case p = 1 for the benefit of the
following constructions. We must construct a non closed (8n — 7)-form satisfying property (3.2.4).
In particular, if we start from the (8n — 4)-form

DL A AR ATE A A2,

3In—

we must remove three 1-forms. For this purpose, we select 7?72, 73”2 and 7" 2, therefore

considering the (4n —3,4n —4)-form «; given by

a1 = 171 Ao /\772;l*2 Ao /\774n_2 /\ﬁl /\.../\ﬁ3ﬁ_2 /\.../\ﬁ4n_3‘
We now compute the (4n — 3,4n — 3)-component of daj. By the structure equations (3.2.3), we
remark that the only non trivial relevant differentials are

57}371—1 — ,,7271 /\ﬁn,

JZ2 AP 3n<j<dn-2.

=1
In order to have a non vanishing term, we must ensure that dn’ = "2 A7%"2. However, this can
happen if and only if j = 4n — 2, resulting in

da§4”_3’4"_3) _ 3n-2 —4n—3)

d(’l’]l/\"‘An2ﬁ_2/\"‘/\n4n_2/\ﬁl/\"'/\ﬁ Ao AT

cp A A AT A A
Thus, considering ¢ = nt A--- A3 € A130(M4"2) | we can conclude by Lemma 3.1.1.
Therefore, for the case 1 < p <n, we can construct «, starting from the (8n — 7)-form «; and
then remove the forms 53771, p3n, .. p3n+p=3 pdn-l gdn  73n+P=3  (which accounts to removing
2p -2 forms), obtaining a non closed (8n—2p—>5)-form. Then, the (4n—2-p,4n—2-p)-component

of day, is of type B
wp A wp7
with 1, € A172PO(A4772) given by

3n-2 A 3n+p-2 A 4n—3‘

Yp=n" A A " AT

Again, we can conclude by Lemma 3.1.1.

(i7) Let us now consider the case n < p < 4n — 2, starting from p = n for the benefit of the following
construction.

We must find a (6n—5)-form a,, such that the (3n—2,3n—2)-component of day, satisfies condition
(3.2.4). We construct the form «,, as we have previously done, setting

an:771/\‘”/\772n—2/\“'An3n—2/\n4n—2/\ﬁl/\'_‘/\ﬁ3n—3’
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with a,, € A3"23773(M47=2), By structure equations, we see that we have removed all the forms
with non trivial differential but dn*"=2. Therefore, when computing the differential dov,, we obtain

dan = -0 A AP 2 AT A ATE2,
By setting ¢, :==n' A--- A7>""2, we conclude by Lemma 3.1.1.
Now, if n +1 <p < 4n -3, we construct the (8n —2p - 5)-form «,, starting from the (6n — 5)-form
o, and then removing the forms o', ..., n?™, 7%, ..., 77" We clarify that, for p —n > 2n - 2, since
n*"=2 has already been removed, we keep removing the (1,0)-forms with higher index starting from
n-1 7272 and remove 72"~ and so forth, so to remove (1,0)-forms for a total

n , whereas we keep 7j
of p—n forms and (0,1)-forms for a total of p —n forms. This procedure accounts to building
ap € A4n—p—2,4n—p—3 as

p—n+1 2n-2 3n-2 , An-2  =p-n+l o =3n-3

ifn+1<p<3n-3, and

ap = np—n+2 Ao A ,,7371—2 A 77471 A ﬁQn 2 \ N n+l ﬁSn 3
if 3n -3 <p <4n-4. We then compute da,. Since the only non trivial differential is dn*" 2, we
obtain
do —Epﬁp_ml/\'”/\'”/\ng” AP n+2 ﬁ3n2
ifn+1<p<3n-3, and
dOép — 6p772n—2 A np—n+1 A A n3n—2 A ﬁQn A np n+2 N ﬁ3n_3

if 3n —3 <p <4n-4. The number €, € {1} is a sign term. Therefore, by setting

wp :np_n+1 /\-../\.../\77377’_2
forn+1<p<3n-3and

w _ n2n—2 /\np—n+1 A /\77377,—2

p =

if 3n —3 <p<4n -4, we can finally conclude by Lemma 3.1.1. O

However, we show that there exist (4n—3)-Kéhler forms. More precisely, we prove the following
theorem.

Theorem 3.2.3 ([131]). For every n > 2 the Bigalke and Rollenske’s nilmanifold M*"% admits
balanced metrics.

Proof. We show that the diagonal Hermitian metric

4n2

Z i ATP
is balanced, i.e., dw?"3 = 0. Notice that
An3 i 4n-3 1 4n-2 & k 4 4 2
w == ATA- AR AT A AT AT
(2) (An—3)! { Z WA AT A

N ~k 9 4 .
We denote by o := n' ATE A=~ AGEAT Ao A2 A2 From the structure equations, when
we compute dw?™ > we consider separately each term

dozk:d(nl/\ﬁl/\'-‘/\ﬁk/\Lk/\--'/\n‘l” AT2).
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By the structure equations we have that day = 0 for every k = 1,...,4n — 2. Indeed, by Leibniz
rule, the only way to have do* # 0 would be that for some index j = 1,..., /%, . 4An =2, diy or diy
contains exactly n* A 7*. But this is not the case as showed by the structure equations. Hence,
day, =0 for every k=1,...,4n -2 and so dw®™ ™3 = 0 and so w is balanced.

O

As a consequence, combining this with [25, Theorem 1], we get that there is no relation between
the existence of balanced metrics and the degeneracy step of the Frolicher spectral sequence.

Corollary 3.2.4 ([131]). On balanced manifolds the degeneracy step of the Frolicher spectral se-
quence can be arbitrarily large.

In particular, this is in contrast with the situation in Ké&hler geometry where for compact
Ka&hler manifolds the Frolicher spectral sequence degenerates at the first step and with a conjecture
by Popovici stating that on compact SKT manifolds the Frolicher spectral sequence degenerates
at the second step (cf. [120, Conjecture 1.3|). In fact, in relation with this conjecture we show
explicitly the following.

Proposition 3.2.5 ([131]). For every n > 2 the Bigalke and Rollenske’s nilmanifold M*"2 does
not admit any SK'T metric.

Proof. In order to show that M*"2 does not admit any SKT metric we use the characterization of
[48] in terms of currents. More precisely, we will construct a non-zero positive (1, 1)-current which
is 00-exact. Indeed, by a direct computation using the structure equations

b=t AL A AginS A 8 2

85(7’]1 /\771 /\‘”/\ﬁn—l /\ﬁn_l /\_”/\ﬁ?ﬂ—l /\Ti]Qn—l A _”/\n4n—2 /\,’7]477,—2) )
The (4n - 3,4n — 3)-form 1) gives rise to a dd-exact non-zero positive (1,1)-current on M. O

Notice that this follows also by [56] where the authors show that on non-tori nilmanifolds
balanced and SKT metrics cannot coexist. We recall that an Hermitian metric w on a complex
manifold is called locally conformally Kdhler if

dw=0Aw

where 6 is a d-closed 1-form. We then have immediately the following proposition.

Proposition 3.2.6 ([131]). For every n > 2 the Bigalke and Rollenske’s nilmanifold M*"~2 does
not admit any locally conformally Kdihler metric.

Proof. This follows directly combining Theorem 3.2.3 and [110, Theorem 4.9] where it is proved that
on non-tori complex nilmanifolds endowed with an invariant complex structure, locally conformally
Kahler metrics and balanced metrics cannot coexist. O



Chapter 4

Dolbeault and BottLChern formalities:
deformations and 0d-lemma

In this chapter we study the behaviour of the complex formalities for a complex manifold recalled
in section 1.4 under the action of deformations of the complex structure. In particular, complet-
ing the picture started with the non-openness theorems for Dolbeaul formality by Tomassini and
Torelli (see [150]), respectively, Tardini and Tomassini (see [147]), we prove that the properties of
being Dolbeault formal, admitting a Dolbeault formal metric, and the vanishing of every Dolbeault
Massey products are not closed properties under deformations, see Theorem 4.2.1. Analogously,
the property of admitting a geometrically Bott-Chern formal metric and the vanishing of every
Aeppli-Bott-Chern Massey product are not closed under deformations of the complex structure,
see Theorem 4.3.1. In particular, we prove Theorem 4.2.1 by constructing a holomorphic family
of compact complex manifolds {M; };cp obtained as a deformation of the complex structure of the
holomorphically parallelizable Nakamura manifold, such that each M; is geometrically Dolbeault
formal and Dolbeault formal for ¢ € D \ {0}, but My has a non vanishing Dolbeault-Massey triple
product. This will assure that on each M; every triple Dolbeault-Massey product is vanishing,
for t € D~ {0}, but Mj is neither Dolbeault formal, nor geometrically Dolbeault formal. To prove
Theorem 4.3.1, we use a different presentation of the holomorphically parallelizable Nakamura man-
ifold selecting a suitable family of lattices. Then, we consider a holomorphic deformation of the
complex structure such that each M; is geometrically-Bott-Chern-formal, for ¢ # 0, but My has a
non vanishing ABC-Massey product, hence on each My every ABC-Massey product vanishes but
M)y is not geometrically-Bott-Chern-formal.

We then further investigate the notion of Aeppli-Bott-Chern Massey triple product and we
highlight an interesting behaviour, i.e., we are able to provide an example of a smooth non-Kahler
complex manifold which satisfies the d9-lemma but admits a non vanishing Aeppli-Bott-Chern-
Massey product, see Theorem 4.4.1. This is in contrast with the Sullivan (respectively, Dolbeault)
formality setting, since a manifold satisying the 90d-lemma is both Sullivan formal and Dolbeault
formal, hence every Massey (respectively, Dolbeault Massey) product vanishes on such a manifold.
In order to prove Theorem 4.4.1, we start by constructing a complex orbifold obtained as a quotient
of the Iwasawa manifold and by showing that it satisfies the 9-lemma and it admits a non vanishing
ABC-Massey product. Then, we explicitly construct a smooth resolution M of such orbifold and
we conclude the proof by showing that M still admits a non vanishing ABC-Massey product and
it still satisfies the 09-lemma.

65
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4.1 Cohomologies of complex orbifolds

In this section, we briefly recall the main facts about complex orbifolds and their cohomologies as
proved classically in [22, 79, 128] and more recently in [9, 16, 135, 136], which will be needed later
in this chapter. In particular, we will focus on complex orbifolds of global-quotient-type, which we
will make use of in section 4.4.

The notion of orbifolds has been firstly introduced by Satake [128] under the name of V-
manifolds and later studied by many authors, among the others, by Baily [22]. For the sake of
completeness, we start by recalling the definition of a complex orbifold, following [22, Section 2].

Definition 4.1.1. Let M be a Hausdorff space and let U be an open subset of M. A local
uniformizing system, shortly l.u.s., for U is a triple {U, G, } such that

e U c C" is a connected open neighborhood of the origin of C”,
e (G is a finite group of biholomorphisms of U,

o U >TU Is a continuous map such that ¢ oo =1, for every o € GG, and the induced map of
U/G onto U is a homeomorphism.

Let us now consider two Lus.’s {U,G, ¢} and {U’,G’, ¢’} for, respectively U and U’, open
subsets of M such that U ¢ U’. A biholomorphisms A\:U — U’ is an injection of {U,G,v} into
{U',G' 4"} if, for any o € G, there exists o’ € G’ satisfying the relations

!
Aoog =0 o,

Y= oA
We recall the definition of complex orbifold.

Definition 4.1.2. A complex orbifold is a connected Hausdorff space M and a family F of Lu.s.’s
for open subsets of M such that

o If {U,G, ¢}, {U",G'¢'} ¢ Fand U = ¢(U) c U’ = ¢(U"), then there exists an injection of
{U,G, v} into {U",G", 9"}

e The open sets U for which there exists a lLu.s. {U,G, 1} € F form a basis of open sets in M.

Let F be the family of l.u.s.’s for open subsets of a complex orbifold M. Then a complex
differential form 6 on M is defined to be a collection of complex differential forms {67} on U which
are G-invariant for {U,G,¢} € F and such that if »:{U’,G',¢'} - {U,G,4} is an injection, we
have that

N0y =0y

Tensors such as vector fields and metrics on a complex orbifold M are similarly defined.

Let us then consider the graded complex of complex forms on the complex orbifold M, namely,
(A& M, d), and its associated bigraded complex (A** M,d,d). As recalled in Section 1.3 for the
usual cohomologies of manifolds, we can define de Rham, Dolbeault, Bott-Chern, and Aeppli orbifold
cohomologies as

Kerd

HPA(NT) = Kerd o Apa( ), HgtI(M) - AP, (4.1.1)
HE3 (1) = Kecdnend o, npa(5p), wrany = 500 vainy. )
Im 99 Imo+1Imo



4.1. COHOMOLOGIES OF COMPLEX ORBIFOLDS 67

Starting from the complexes (A* M,d) and (A®* M,@,E), a spectral sequence {(Er,d,)} can be
defined, so that £ ~ H%"(M ). From such sequence, known as Hodge and Frolicher spectral sequence

of M, one can derive the Frélicher inequality

> dime HE4(M) > dime Hig(M;C). (4.1.3)
p+q=k

A complex orbifold is said to satisfy the 0-lemma if the natural map Hgg(M) - Hg’q(M) is injec-
tive. Among many other characterizations, such property is equivalent, for a complex orbifold, to
equality holding in equation (4.1.3) and to have isomorphisms induced by conjugation in Dolbeault
cohomology, i.e.,

ng(M) ~ Hgvp(M), (4.1.4)

see [46].
Once we fix an Hermitian metric g on a compact complex orbifold M of complex dimension 7,
one can define the C-antilinear Hodge *-operator

: NP4 N — AP
the operators
d*=—xdx, 0" =-#0% 0O =-—x0x,
the de Rham Laplacians A, Dolbeault Laplacian Az, Bott-Chern Laplacian Apc, and Aeppli
Laplacian A4 and their kernels
HE(M, g) = {ace NFM : A = 0},
HPU(M,g) = {ae APIM : Ay =0}, for je{d,BC,A}.
Harmonic forms on M with respect to each Laplacian can be characterized as in section 1.3 in
equations (1.3.6), (1.3.7), and (1.3.8).

For a compact complex orbifold, the following theorem holds, see [128, Theorem 1],[22, Theorem

Theorem 4.1.3. Let M be a compact complex orbifold of complex dimension n and g a Hermitian
metric on M. The following isomorphisms hold

H§R(M;C) - HSR(MJ)
HE4(N) » HEY(M , g).

Moreover, the Hodge *-operator yields, respectively, the isomorphisms

Hjp(M,C) = Hii™" (M, C)
Hg’q(M) o Hg_p’”_q(M).
Let us now consider the following class of complex orbifolds.
Let M be a complex manifold and G a finite subgroup of the group of biholomorphisms of M.

If we consider the quotient
M =M|G,

it turns out that, by the Bochner linearization theorem, see [28, Theorem 1|, the space M is an
orbifold as in the definition by Baily.

Definition 4.1.4. Orbifolds costructed in this way are said to be of global-quotient-type.
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For compact orbifolds of global-quotient-type, besides Theorem 4.1.3, also Bott-Chern and
Aeppli cohomologies can be computed in terms of harmonic representatives, as in the following
theorem.

Theorem 4.1.5. Let M be a compact complex orbifold of global-quotient type and g a Hermitian
metric on M. Then, the following isomorphisms hold

Hy¢ (M) > Higt, (M, g)
HYy' (M) - HY(M, ).

In particular, the Hodge *-operator induces the isomorphisms
HYAL(M) ~ H) P (M), (4.1.5)

We conclude this section by recalling the property of the pull-back map of a proper surjective
morphism of compact complex orbifolds, see [9].

Theorem 4.1.6. Let M and N be compact complex orbifolds of the same complex dimension, and
let m:M — N be a proper surjective morphism of complex orbifolds. Then the map M - N
induces injective morphisms

W;R:HgR(N) - HgR(M)
TS Hg’q(N) - HB’Q(M)
The HBL(N) - HEL(M).

4.2 Dolbeault formalities are not closed

In this section we state and prove the non closedness result for the Dolbeault formalities as defined
in section 1.4.

Throughout this section, we will denote by D the unit disc centered in the origin of C, i.e.,
D={zeC:|z|<1}.

We recall that, by definition of a property closed under holomorphic deformations, for our
purposes it will suffice to show the existence of a holomorphic family of compact complex manifolds
{M;}1ep such that each M; is geometrically Dolbeault formal and Dolbeault formal for ¢ € D~ {0},
but My has a non vanishing Dolbeault-Massey triple product. Given the relations (1.4.2) and
(1.4.3) of section 1.4, this will assure that each M; is also weakly-Dolbeault formal and every triple
Dolbeault-Massey product is vanishing, for ¢t € D~ {0}, but Mj is neither weakly-Dolbeault formal,
Dolbeault formal, nor geometrically Dolbeault formal, yielding the following result.

Theorem 4.2.1 ([132]). The property of being geometrically Dolbeault formal, Dolbeault formal,
weakly Dolbeault formal, and the vanishing of Dolbeault-Massey triple products are not closed under
holomorphic deformations.

In order to prove Theorem 4.2.1, we will provide a family {Z; }+cp of holomorphic deformations
of the holomorphically parallelizable Nakamura manifold such that Z; is geometrically Dolbeault
formal and Dolbeault formal, for ¢ # 0, but Zy has a non-trivial Dolbeault-Massey triple product.

To this purpose, let us start by considering the 6-dimensional simply-connected solvable Lie
group G, with Lie algebra g defined by the following structure equations of the frame
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{617 627 637 64’ 657 66} Of g*

de? = el + €%,

de3 = —30 + 15 (4.2.1)
det = ¢35 — 16,

de® = deb = 0.

We then consider the holomorphically parallelizable complex structure on g*. Define the almost
complex structure on g*, which we will denote by J(q ), by setting

J(0,0)el = —62, J(070)€2 = 61, J(O’O)eg = —64, J(070)€4 = 63, J(070)€5 = 66, J(070)€6 = —65.

Therefore, the following complex forms

1
1 1, .2 2 3., . 4 3 5_..6
Mooy =€ *+i€e, Moo =€ +ie, 77(070)=§(6 -ie’),

form a basis of (1,0)-forms for (g*)'Y whose complex structure equations are

d77(10,o) =2i 77(1370), dn%o,o) =-2 17(2370), d”:(so,o) =0. (4.2.2)

According to Nakamura [105, p.90], G admits discrete uniform subgroups I', hence M =T'\G is a
complex 3-dimensional holomorphically parallelizable solvmanifold. If we fix any discrete uniform
subgroup I' of G, it turns out that {7](1070),77(20’0),7]?070)} is a global frame of left-invariant (1,0)-
complex forms on M.

We note that the relations between the choice of discrete uniform subgroups of the Nakamura
holomorphically parallelizable manifold and the dimensions of the Dolbeault and Bott-Chern co-
homologies have been studied, for example, in [105, 14|. In particular, for every discrete uniform
subgroup T, the left-invariant (0, 1)-form 77(30,0) defines a non-zero Dolbeault cohomology class on

the compact complex manifold M) = (I'\G, J(0,0)), where we denote ?7?070) = ngo,o)' Hence, we

can use the class [77(3070)] € Hg’l(M(O’O)) to construct an appropriate holomorphic family of defor-
mations.
Let B=Cx D c C2. For any t = (t1,12) € B, we set

M= 00) + B 00y T = Mooy e = Mooy + 12 M(00)- (4.2.3)

Denote by Ji the left-invariant almost complex structure on g associated to the coframe {77%, nf, 175’}
It follows that Jy gives rise to an almost complex structure on T'\G. A direct computation shows
that the structure equations of the (1,0)-forms {nt,nZ,ni} are

1 _ 21 13 2ity 13 2it; 33
dnt T 1-]tef? U 1-|to|? g+ 1-]to]? U

2 _ 21 23 2ito 23
dig = e A (4.2.4)
dnd = 0.

Let us set My := (I'\G, J;). Then, for any fixed t € B, equations (4.2.4) imply that, for any given
Qg € Al’OMt,
day € A2 My @ AV M.

Hence, J is integrable for any t € B.

Therefore, for any t = (¢1,t2) € B, we have a left-invariant complex structure Jy on I'\G, and so
a compact complex manifold M of complex dimension 3.

Before proceeding, we need the following result.



70 CHAPTER 4. DOLB. AND B-C FORMALITIES: DEFORMATIONS AND 09-LEMMA

Lemma 4.2.2 ([132]). Ift; # 0 and t2 = 0, then the compact compler manifold M_(;, oy has a
non-vanishing Dolbeault-Massey triple product.

Proof (of Lemma 4.2.2). Let us consider the Dolbeault cohomology classes [n?tl 0)] € Hg’O(M(thO))
and [n?tl 0)] € Hg’l(M(tl’o)). From (4.2.4) for t2 = 0 and ¢; # 0, we have the following relations:

3 3 _ 3 3 _5(=ta
Mier,0) M0 = 0 Mt 0) A M 0) = 9 (27177(::1,0)) -

Hence, ([nf’tho)], [77(3t170)]’ [n?tho)]) is a Dolbeault-Massey triple product which is represented (up to
a constant) by the (2,0)-form 77(1751,0) /\n?tl,o). This (2,0)-form obviously defines a non-zero Dolbeault
cohomology class in H;’O(M(tho)). Now, for showing that the product is non-trivial, it remains to
prove that the class [77(11&1,0) A 77(3“’0)] does not belong to the ideal [n?tl,o)] : Hé’O(M(tLO)).

Suppose that [”(ltho) /\nf’tho)] € [77?1:170)] -Hg’O(M(tl,o)). Then, there exists a (1,0)-form « on the
manifold M, oy satistying OJa =0 and 77(1“70) /\77(375170) = /\n?tho). Now, since the complex structure

is left-invariant, we can apply the symmetrization process (it preserves the bidegree of the forms)
to get an invariant (1,0)-form & which is 0-closed and satisfies (77(1t1 0~ a) A n?tl 0y = 0. But from

(4.2.4) for to = 0 and t; # 0, it follows that & = )\n(2t1 0+ Mn?tl 0) for some constants A, € C in
order to be d-closed, so the condition (77(1t1 0y~ Q) A 77:(3151 0) = 0 cannot be satisfied. O

Proof of Theorem 4.2.1. Let us now fix any t{ € C ~ {0}. For any ts € D, we consider the left-
invariant complex structure Jt:(t?,tg) on G. By (4.2.4) the complex structure equations are

1 _ 2 13 2ty 13 2it) 33
dng = Tt e TPt 1nE

2 _ 2i 23 2ity 23
dng = ~1nE M T e %o (4.2.5)
dng = 0.

If we take any t2 € D\ {0}, we consider the basis {r, 72,70} of (1,0)-forms with respect to J;

defined by

tO
1._0o:.,3 2._ .1 1 3 3._ .2
Ty =20, T =) +577t, Te = Tg-

It is easy to check with respect to this basis, the complex structure equations become

dr = 0,
2 _ 1 _12 ty o1

drg = TR ¢ T 12 Tt o (4.2.6)
3 _ 1 13ty 31

dry = THE T T TeE T

In [13] it is proved that there is a family of lattices {I's, }1,ep on the Lie group G such that the
compact manifold I'y,\G endowed with the complex structure { J(19.12) }pep given by (4.2.6) satisfies
the d0-lemma for any ¢, € D \ {0}, and, therefore, is Dolbeault formal. Indeed, notice that the
equations (4.2.6) are precisely the complex equations found in [13, Table 3] for the holomorphic
deformation (C1) in [13, Proposition 4.2].

Also, it is easy to check that the harmonic representatives of Dolbeault cohomology listed in
[13, Table 3| with respect to the canonical metric have a structure of algebra with respect to A,
therefore My is also geometrically Dolbeault formal.
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Hence, we consider the following holomorphic family of compact complex manifolds {Z;}iep.
Let us fix any ¢) € C \ {0} and consider ¢ = t5 for t € D. We take the previous lattices Ty := 'y, on
the Lie group G given in [13] and the (left-invariant) complex structure J; = J(10.4) on G, to obtain
the family of compact complex manifolds {Z;} = {(T\\G, J)}.

As we pointed out above, each compact complex manifold Z; is Dolbeault formal and geo-
metrically Dolbeault formal for any ¢ # 0. However, the central fiber Z; has a non-vanishing
Dolbeault-Massey triple product by Lemma 4.2.2, since this result holds for any lattice of maximal
rank in G, in particular for the given lattice T O

4.3 Bott-Chern formality is not closed

In this section, we prove the non closedness result for geometrically-Bott-Chern-formal manifolds
and the vanishing of Aeppli-Bott-Chern-Massey products.

As for Dolbeault formality in section 4.2, it suffices to show the existence of a holomorphic
family of compact complex manifolds {M;}iep, D = {z € C:|z| <1}, such that M, is geometrically-
Bott-Chern formal for t € D~ {0}, but M, admits a non-vanishing Aeppli-Bott-Chern-Massey triple
product. In fact, by Proposition 1.4.10, M; is geometrically-Bott-Chern formal and also has no
non-vanishing Aeppli-Bott-Chern-Massey triple products, whereas My would be not geometrically-
Bott-Chern formal, thus proving the following result.

Theorem 4.3.1 ([132]). The property of being geometrically-Bott-Chern-formal and the vanishing
of Aeppli-Bott-Chern-Massey triple products are not closed under holomorphic deformations.

In order to prove Theorem 4.3.1, we will use a different representation of the Nakamura holo-
morphically parallelizable manifolds by choosing a suitable family of lattices.
Let (M =T\G, J) be the Nakamura holomorphically parallelizable manifold, where

e G := Cx C? is the solvable complex Lie group defined by v(21) * (22, 23) = (e *' 22, " 23);
o [':=(aZ+2miZ) x T is a lattice of G of maximal rank, with T a lattice of C?;

e J is the holomorphically parallelizable complex structure on M induced by the natural stan-
dard complex structure on C? ~ C x C2.

In particular, we point out that with this choice of T', it holds that h%’l(M ,J) =3 (see [14]) and
a basis of invariant (1,0)-forms is given by {n' := dz!,n? := e7*1d22,1® := €*1dz3} whose structure
equations are

dnt =0, dn?=-n'% dnp®=n'. (4.3.1)

Since [n'] € Hg’l(M ) is a non-zero cohomology class, we can consider the deformation constructed
in [13] given by the (0,1)-vector form ¢(t) as follows

a —
gD(t) = tg@?’]l, teD.

The resulting almost complex structure J; is then characterized by the following coframe of (1,0)-
forms on (M, Jy)

np =0+t
0=y
=1,



72 CHAPTER 4. DOLB. AND B-C FORMALITIES: DEFORMATIONS AND 09-LEMMA

whose structure equations are

dn; = 0,
i = e+ T (4.3.2)
dn} = Tt - e

It is clear that J; is integrable, thus giving rise to the holomorphic family of compact complex
manifolds (M, J;), for every t € D.

Let us fix on M; the Hermitian metric g; whose fundamental form is w; = 5 (77t +n? +77t3)~ Then,
as proved in [13], for every ¢ # 0, the manifold (M, J;) satisfies the d0-lemma and the harmonic
representatives of the Bott-Chern cohomology of (M, J;) for t # 0 are as in Table 4.4.16.

It is easy to check that ”HE;C(M ,g+) has a structure of algebra induced by the A product of
forms. Therefore, the manifolds (M, J;) are all geometrically Bott-Chern formal for ¢ # 0.

Proof (of Theorem 4.3.1). It will suffices to construct a non zero Aeppli-Bott-Chern Massey triple
product on (M, Jo) = (M, J).

As proved in [14], the harmonic representatives of the Bott-Chern cohomology of (M, J) with
respect to the canonical diagonal metric g are as listed in Table 4.4.17.

As a first remark, we notice that ’H]'sz(M ,g) does not have a structure of algebra induced by

the A product of form. In fact, the product n'? A (ezl_zl 7731) is not harmonic with respect to the

Bott-Chern Laplacian, since
ezl zl 1231 88( ezl 21 23)

Therefore, take the following Bott-Chern cohomology classes

a:=[n"%pe, b=[e"n*pe, o= [n"]pe. (4.3.3)
Since au b = [651_217]1231] =0¢ Hgé(M) and clearly buc=0¢ Hég(M), by Definition 1.4.8 we
obtain that 0o
[ g e Hy (M) (4.3.4)
[1'2]pe v Hy* (M) + [12] po v H3" (M)

is the Aeppli-Bott-Chern-Massey triple product (a, b, c)apc-
We proceed by showing that, as a cohomology class, [e*™*! 2312L Indeed, it can be

2312

easily seen from structure equations (4.3.1) that the form e***lp is 88 closed and, since

* (egl_zl 7]23ﬁ) = ezl_zlnlg, it is a light matter of computations to show that
8 % (621—21 n23ﬁ) -0 5 % (621—21 7723§) = 0.

Z1—-21 2312

Therefore, conditions (1.3.11) assure that e 7 is A 4-harmonic and therefore, as a Aeppli

cohomology class, [e 772gﬁ] A # 0. Actually, from Table 4.4.17, one can directly compute the
spaces HZ’Q(M), Hi’O(M) and HY 2(M) by the relations Hpq(M) =% (Hga""%(M)), obtaining
2,0 -z - :
H (M) =C([e19"2], [ 7], [n°]),
HZQ(M) =C<[621—E1n1213] [ Z1— 21771223] [ Z1— z1771312]
[621—217713ﬁ]7 [621—21 7723 ]’ [6'21_21172373], [7]2323]%

H%2(M) :(C<[621_Z1771 ], [ez1—51nﬁ]’ [eﬁ]%

Z1—21



4.4. AEPPLI-BOTT-CHERN-MASSEY PRODUCTS AND THE 99-LEMMA 73

in which we displayed the A s-harmonic representatives with respect to the canonical diagonal
metric g on (M, J).

It remains to show that [e*=1n2312] 4 ¢ [n'2]pc U HO (M) +[n*2]pc U H O(M).

We point out that a generic element d € [n'%]pc U Hg (M) +[n™2]5c U H (M) can be written

as
2= [Aezl—zlnmu + B€z1—21771213 + 0771223A16z1—§1771313 + B’ezl_'zl’l’]1312 + CI7I2312]A,
for A,B,C,A’,B’,C" ¢ C.
By contradiction, let us suppose that

[651_“772317],4 _ [Aezl—zlnmﬁ+Bez1—zln1213 Cn 1223A/ z1- 21771313 + BleP z1n1 L' 2312],4,
for some A, B,C,A’, B’,C" € C, or equivalently, by definition of Aeppli cohomology, that

621—21772312 — A621—21771212 + Bez1—21771213 + CT]1223A/621_21771313 + Blezl—z1n1312 + 0/772312 + O\ +8H7

(4.3.5)
for some forms A € AY2(M), pe A% (M). 3
However, we observe that the following forms are 9 or 9 exact, i.e.,
1223 8(,'7223)
ezl z1 1212 8( 1 zl 21 212)
772312 (- 77232)
621—21 1313 a( 1 eF1 Z1 133)
therefore equation (4.3.5) reduces to
621—21772312 Bezl Z1771213+B, Z1— 21 1312 +8A+81U/ (436)

In particular, since e*!=%1 7723ﬁ, 621_517712ﬁ, 651‘217713ﬁ € HiQ(M,g), it must hold that
651—21 n23ﬁ _ (Bezl—zl leﬁ + Blezl—zlnliﬂﬁ) c 7_[124,2(]\47 g)
therefore, equation (4.3.6) boils down to

Z1_21772312 _ Bezl—zl 1213 _ Bl€z1—21771312 — 0’

€ n

for some B, B’ € C, but this clearly cannot hold. Thus, we obtain a contradiction and hence
[P ¢ [ ]me U HYA () + [ pe 0 HE (),

showing that (a, b, c) defines a non vanishing Aeppli-Bott-Chern-Massey triple product on (M, J).

By Proposition 1.4.10, we can conclude that (M, J) is also not geometrically-Bott-Chern formal.
O

4.4 Aeppli-Bott-Chern-Massey products and the 90-lemma

In this section, we show that the Aeppli-Bott-Chern-Massey triple products are not an obstruction
for the d9-lemma on a compact complex manifold, unlike Massey triple products and Dolbeault-
Massey triple products, see [106, Theorem §|. In fact, we will costruct a global-quotient-type
complex orbifold by taking the quotient of the Iwasawa manifold with respect to the action of a
finite group of biholomorphisms and we will prove that it satisfies the d9-lemma but it admits a
non-vanishing Aeppli-Bott-Chern-Massey triple product. As a final step, we will we will construct a
smooth non-Kihler resolution of such complex orbifold still satisfying the 99-lemma and admitting
a non-vanishing Aeppli-Bott-Chern-Massey triple product.
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Theorem 4.4.1 ([132]). There exists a compact complex manifold satisfying the 9d-lemma and
admitting a non-vanishing ABC-Massey triple product.

We start by considering the complex 3-dimensional Heisenberg group G := H(3,C), i.e., the
nilpotent group of matrices

1 Z1 23
G = 0 1 V) IZ1,22,236C
0 0 1

As an open set of GL(n;C), G has standard holomorphic coordinates {z1, 22, 23 }.

If we take the lattice I' = GnGL(3;Z[i]), the compact quotient M =T'\G is a complex nilman-
ifold of complex dimension 3, the Iwasawa manifold.

The group G admits a left-invariant coframe of (1,0)-forms

ol =dz, ¢’ =dz, ¢®=dz-21dz

which gives rise to a left-invariant integrable almost complex structure J on G.
We note that the coframe {!, ¢?, ¢3}, and therefore the complex structure J, descends on the
quotient M. Since the structure equations on (M, .J) are

dp' =0, dp?=0, dy®=-¢', (4.4.1)

the complex structure J is holomorphically parallelizable on M. Therefore, by [11, Theorem 2.8|,
we know that de Rham cohomology, Dolbeault cohomology, Bott-Chern cohomology and Aeppli
cohomology of (M, J) are isomorphic to the corresponding cohomologies of the Lie algebra g of G
endowed with the complex structure J.

We point out that the Iwasawa manifold does not satisfy the d9-lemma. In fact, it is not formal
[69].

We now construct an orbifold of global-quotient-type starting from M. We first define the
following action o:C3 - C? by

o(z1,22,23) = (iz1,129,-23), for (z1,29,23)¢€ C3. (4.4.2)

We observe that as a group of biholomorphisms (o) has finite order, since o = idgs.
We need the following.

Lemma 4.4.2. The action o is well defined on M.

Proof. We begin by noting that G can be identified with (C3, x), where the product * is given by
(Zl, z29, 23) * (wl, w2, w3) = (21 + Wi, 22 +W2,23 +2Z1W2 + ’U)3) (443)

for every (21,22, 23), (w1, wa,w3) € C3.

We then need to show that, for [2],[2"] € M, if [z] = [2'], then [o(2)] = [0(2")], or, equivalently,
that if z = (21, 22, 23) ~ 2’ = (2], 25, 23), then o(z) ~ o(2').

The equivalence is given by the action of multiplication on the left by elements of I', which,
through the identification G ~ (C3, ) reads z ~ 2’ if, and only if, there exists v = (v1,v2,v3) € (Z[i])?
such that 2z’ = v » z, which accounts to

B=a+mn
Zé =29+ Y2 (444)

A
Z3 =23 +7122 +73.
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Let us then assume that z ~ 2z’. We point out that
o(2") = (iz),iz3, —23)

and, by (4.4.4),

0(2") = (iz1 +iv1,i22 + iy, ~23 = V122 =~ 73)- (4.4.5)
Now choose 7 = (31,72,%3) = (i71,i7v2, —73) € (Z[i])®. By definition (4.4.3) of the product * and
equation (4.4.5), it is easy to check that

o(2") =7 *a(2).
O

As a consequence of Lemma 4.4.2, we can define an action of o on M, given by o([z]) = [0(2)],
for every [z] € M.

Let us now consider the quotient M /(o). It is not a smooth manifold, as follows from the
following lemma.

Lemma 4.4.3. The action 0 on M has 16 fixed points.
Proof. We need to find all the solution to the following equation

olz] =[z], for z=(z1,2,23)€C (4.4.6)
or, equivalently, to o(z) ~ z, i.e., finding all the distinct solutions (up to equivalence) to

21=21+M
129 = 29 + Yo (4.4.7)

—Z3 = 23 + 7122 + 23,
for v = (71,72,73) € (Z[i])3. Now, by writing z; = z; +iy; and ; = m; + ik, the system (4.4.7)
yields the following solutions
Z1 = %(—ml + k‘l +i(—m1 - ]{21))
zZ9 = %(—mg + kQ + i(—mQ - kg)) (4'4'8)
23 = i(mlmg - k‘lkig - mlkg - kZlTTLQ -2msg + i(mlmg - klkg + mlk‘g + k1m2 - 2k3))

We observe that two points in z = (21, 22,23), 2" = (2], 25, 24) € C3 satisfying (4.4.8) are equivalent
in (Z[i])\C? if, and only if, there exists A = (A1, A2, A3) € (Z[i])? such that 2’ = X\ % 2, i.e.,

z1=21+ A1
2= 204 Mg (4.4.9)
Zé =Zz3+ )\122 + )\3.

We look at the first equation. By writing each \; = a;+ib; and using (4.4.8), we have that 2] —2z; = A\
if, and only if,

1
5(—777,,1 +ki - (—m1 +k1)) =a]

1
5(—””/1 — Ky = (m1~k1)) =br.
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We notice that [-mq — k1] = [-mq + k1] € %. Therefore z] — z; = A1 if and only if [-m + k1] =

[-m] + K] € %. By choosing as representatives for 1 as either 0 or 1, we obtain that the distinct

values of 21, up to equivalence, are either 0 or % + 5. Analogously, this can be done for 22, whose

distinct values, up to equivalence, are 0 or £ + . By plugging those values in the third equation of

2t
(4.4. 8), we get that, in the case where (21, 22), (zl, zh) # (2 + 3, 5 + 2) the third components of z

and 2’ are, respectively, z3 = —%m k:3 and 2§ = —1m3 i k:3. Then, equation z§ — z3 = \122 + A3

is satisfied if and only if

1

§(m3 —-mj4) = as
1

5 (ks = k3) = by,

Hence, by choosing ~3 € {0,1,4,1 + i}, we get that the only solutions, up to equivalence, are

236{07;7;72 2}
Flnally, when z1 = 2] = 29 = 2 = ; + 5, we have expression for z3 = }1(1 —2mg +i(1-2ks)) and
(1 2mf +i(1 - 2k%)) Therefore, z5 — z3 = A1 22 + A3 holds if, and only if,

_

(ms—-m3) =ay +as

— N |

5(]63 - k‘g) = bl + b3.

Thus, ‘if one chooses v3 € {0,1,i,1 + 4}, one gets that the solutions, up to equivalence, are z3 €
{0,1 515 2 2} By counting all the distinct solutions up to equivalence z = (21, 29, 23) satisfying
(4.4.6), i.e., the fixed point of o on M, we find that they are 16 and, clearly, isolated. O

As consequence of Lemma 4.4.3, we obtain that M := M/(o) is a singular orbifold of global-
quotient-type. Since
ot =ip', o't =ip?, otg’ =y
the complex of g-invariant differential forms on M is

/\o,o M = Span(c <1, 4,011, 90127 4,021, s0227 4,01237 4,0 790 7%0 @121 7()013137 (701323’ S023137 @23237 S0123123> .

Let us fix g the Hermitian metric on M with fundamental associated form w = %(cpﬂ + <,02§ + g03§).

We can now compute the cohomologies of M by definitions (4.1.1) and (4.1.2) and via Theorems
4.1.3 and 4.1.5. In particular, we prove the following.

Lemma 4.4.4. M satisfies the 00-lemma.

Proof. 1t suffices to the show that Frolicher equality (4.1.3) holds and also H PA(N) =~ H TP(N) via
complex conjugation. By easy computations of the harmonic representatlves with respect to g, we
see that the non-trivial de Rham cohomology spaces of M are

HY%(M;C) = Spanc(1)
12,07, %)

(

HgR(M;C) = Spanc(p

HgR(M;(C) = Spanc( 123 123)

Hé‘R(M; C) - Spandgpmlg 1323’ <,02313, %02323>
(

HSR(M;C) = Spang (o' #123),



4.4. AEPPLI-BOTT-CHERN-MASSEY PRODUCTS AND THE 99-LEMMA 77

whereas the non-trivial Dolbeault cohomology spaces of M are

Hg’O(M) = Spang(1)
1,612, 0%, o)

H%l(M) = Spanc
Hg’O(M) = Spang(p'* )
Hg’g(M) = Spang (')
H%Q(M) = Sparg @1313 1323,¢23T37 S02?%)

{
(e
(e
{
{
{

H2*(01) = Spang (io'*1%).
By comparing the former and the latter spaces, we easily conclude the proof. ]

As a consequence, Bott- Chern and Aeppli cohomologies of M are immediately determined by
HEL(M) = Hpq(M) and HYY(M) = +(HyZ?™9(M)), yielding

Hpe,(M) = Spanc(1) H% (M) = Spang(1)

Hye(M) = Spanc(p'!, 012, 0%, %) H ;' (1) = Spanc ('], 912, 07", %)
H%g(M) = Spang (¢'** ) Hi’O(M) = Spang ("% )

Hye. (M) = Spang (o) HSP () = Spanc (')

Héé(M) — Span([j(@lglg 13237 902313’ S02323) Hi’Q(M) _ Spaﬂc<§01313 1323’ S02313’ @2323>
H?%é(M) = Span(c(<p123123) Hig(M) = Spang (@' )

We now define an ABC-Massey triple product on M.

Lemma 4.4.5. M admits a non vanishing ABC-Massey triple product.
Proof. Let us consider the following Bott-Chern cohomology classes
[a] = ("] € HEL(ND), (8] =[] € HEL (M), (7] = [0%] € HE4(M).

We notice that, by structure equations (4.4.1), we have that cpﬁ A <p2§ = 85g03§. Then, it is well-
defined by, -
Hy“ (M)

(el 15l bhane [e"]Bc U HA’I(M) +[¢*]c v Hi{l(M) 7

which, by Definition 1.4.8, is represented by the non zero Aeppli cohomology class [gpﬁg’ﬁ] €

Hj’Q(M ). By the previous description of Aeppli cohomology, we note that the ideal [¢!']pc U
HYN(M) + [9P2]peu Hy' (M) is actually trivial in H7?(M).
Hence, ([¢"], [¢?%],[¢**]) aBc is a non-vanishing ABC-Massey triple product on M. O

Proof (of Theorem 4.4.1). (I) In view of Hironaka singularities resolutions theorem, see [72], it
turns out that M admits a resolution.

We will construct an explicit smooth resolution M, proceedings as follows, see [36]. Define 1 = o2,
i.e.,

Y(21,22,23) = (-21,~22,23)
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for every (z1,22,23) € C3. Clearly, 1 descends to M and has order 2 on M, i.e., since ¥? = idy;.
The locus of fixed points by the action of ¢ on M is the disjoint union of 8 curves on M given by

C; = {[z(l),zg,zg] : 23 € C},

with (Z?vzg) € {(07 %)7 (07 %)7 (07 % + %)7 (%70)7 (%70)7 (% + %70)7 (2 + 57 E + 2)}
Let us set C :=Cy = {[0,0,23]}. In a neighborhood U of C and local coordinates (z1, 22, 23), we
write, locally, C = {(21 =0, 22 =0,23)}. We perform the blow-up of M along C by taking the set

U = {((Zl,ZQ,Zg), [ll . 12]) : leg —Zgll = O} cU x ]PQ.

Through the resulting the map p: BleM — M, if E:= p~'(C) = IP’(NC/M) is the exceptional divisor,
U \ E projects biholomorphically onto U \ C.

On ﬁl ={l; # 0}, we have that z9 = %21 and local coordinates on Ul are given by

l
Cfl) =21, 2(1) = fa ,?El) = Z3,

whereas on Us = {ls # 0}, we have that z; = ;1 29 and the following

2y b 2 2
1()25’ DL .,

are local coordinates on Us. In the following, we will show the procedure only on U; since on Us
the approach is analogous.
Notice that 1 induces a morphism 1 on BleM. In particular, we have that, on U,

1 1 1 1 1 1
B¢, 8, e8Vy = (¢ 8D V).

Let us then consider the quotient M’ = BleM/{(1)). On the quotient U;/(x)) ¢ M’, the action o’
induced by ¢ acts as

o' (¢t V. ¢5V1p) = gtV 8V, -5V (4.4.10)

Note that, through local coordinates, U /(1)) is identified with with C3/(1)). So we construct local
coordinates for the latter in the following way. The holomorphic map f:C? - C? defined by

2 3
flwy,wa,w3) = (wy,ws,ws), for (w1, ws,w3)eC”,
which on local coordinates on Uy acts as

FED el ¢y = ()2, 8, ¢y,

gives rise to the following diagram

f 3
(C(g(l) él), él)) 5 C(w1,wz7w3)

| 5

C3/(¥)

where f([{(l)]q/;) = f(¢M) is well defined and, in fact, a biholomorphism.
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Therefore, we can identify U /(¢)) with C?

(w1,w2,w3)"

Locally, we must then consider the action of o', which on C

We now look for fixed point of ¢’ on M’.

3

~ £-1 rof
= (o) o .
(wr,wo,ws) BCLS A8 T f o'of

Recalling equation (4.4.10), we see that
o (wy,we,ws) = (—wy, we, —w3) (4.4.11)

for any (w1, ws,ws) € C3, yielding that the locus of the fixed points of o’ on Uy /(1)) is given, locally,
by the set

D = {(w1, w2, ws3)} = {(0,w2,0)}.

We now perform the further blow-up p": BlpM’ — M’, by considering
U(l) = {((’UJl,U]Q, ’LU3), [Ul : ’U3:|) W13 —w3vy = 0}.
On ﬁl(l) :={v; # 0}, we have that w3 = g—?wl and local coordinates are given by

- (4.4.12)

1
77§ ) = 1wz, 7]51) = wWa,
V1

whereas on ﬁgfl) := {vg # 0}, we have that w; = z—;wg and the following

) = Z—; s = wy, 77?(,3) = ws, (4.4.13)

: (1)
are local coordinates on Us .
We now study the quotient Blp M’ by the induced action of (’). By recalling the local action

of & (4.4.11) and the expressions (4.4.12) and (4.4.13) for local coordinates, on T}fl) , we have that

- 1 1 1 1 1 1
& (S0 My = (=t D i),

whereas on ﬁél), we have that

& () n$P n$y = (P -y,
ie.,
=1 B C
O 1") = 233 % o iy
and

U?El)/<5,> = ﬂ:£1d x C?ﬂgs)més))'
Hence, since Ul(l)/<5',> and Uél)/(é’) are smooth manifolds, the manifold BlpM'/(¢") is smooth.
As mentioned before, the same procedure can be applied starting from Us, which results in
finding smooth resolutions of the singular points in the chart Us c BlgM.
Therefore, if we denote by M, the resulting complex manifold and the projection p: My - M /{(c),
we obtain a smooth resolution of the fixed curve C = C; on M /(o).
By repeating the analogous procedure for every fixed locus C;, we obtain a smooth resolution

m M — M,
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as the diagram summarizes

M < Blea:wM

| |

M () 4——— M= Blpip, M/($}) ¢——— Blpsp, M’

| | |

M := M/{c) +——— M'/{0") ¢———— Blpiz, M'/{5").

(IT) We now show the following:

i) M admits a non-vanishin -Massey triple product;

(i) M ad hing ABC-Massey 1 d

(ii) M satisfies the 9d-lemma.

1 e proceed by considering the pull-back through 7 of the Bott-Chern cohomology classes use
Wi db ideri h ll-back th h 7 of the Bott-Ch h 1 1 d

in Lemma 4.4.5, i.e., we consider the classes [7*p!1] ¢ H1 ; (M) and [7¢?2] € H1 : (M) They

are well-defined and non-vanishing, by Theorem 4.1.6. Since 7* (o) A 7% (¢22) = 99(7*©3), the
ABC-Massey product

22,1~
Hy*(M)
[ ]pcu Hi{l(M) +[m*¢??]pcu Hflfl(M)

([TF*QOlI)L [ﬂ*¢2§]7 [W*SOQEDABC c

is well-defined and represented by [7*¢223] ¢ H% 2(M ). Again, by Theorem 4.1.6, this class is not
vanishing.
It remains to show that

(7 ¢* ] ¢ 7" s v Hy' (M) + [0 pe u H ' (M),
By contradiction, let us suppose the converse, i.e.,
(7% 4 = [7* 0N pe U [Fla + [7* ¢ ]5c U [Gla, (4.4.14)
for some [F'],[G] € HY(M). Let us now multiply by [7* 11 Bc each side of (4.4.14), to obtain
A ¥

[ﬂ'* 123123

0 ]A * 11

[7* o' A 0?2 ] pe U [Gla
[7*(80¢*)]5c L [Ga
[00(r* ™) |5 U [Ga

= [00(7* o™ A G)]a = 0 € HY(M),

which leads to contradiction, since 7w* is injective by Theorem 4.1.6 and [90123@] 4 %0.

(i7) We now observe that the fixed points loci along which we perform the blow-ups are complex
lines, which are naturally Kéhler. Therefore, they satisfy the dd-lemma. As proved in Lemma
4.4.4, also M satisfies the 90-lemma. We can then apply [16, Theorem 25|, to conclude that the
resolution M of M satisfies the 9d-lemma. 0

Remark 4.4.6. Notice that the obtained manifold M is not a Kéhler manifold. Indeed, let us
assume by contradiction the opposite, i.e., let us suppose there exists a Kéhler metric § on M with
fundamental form @. Then, by Stokes theorem and structure equations (4.4.1), we obtain

0= f A& A 7 (0123)) = f u)/\d(7r*g0123)——/w/\7r*<,01212 (4.4.15)
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123

However, since the form w is transverse, the above integral vanishes if and only @ A 75" is

identically 0, if and only, 77*4,012g

is identically 0, which is a contradiction.

(»,9)

HPL(M, J;), teD~{0}

(0,0)

C(1)
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Chapter 5

(Geometric formalities along the
Chern-Ricci flow

In this chapter, we focus on geometric formalities of complex manifolds and their dependence on the
Hermitian metric. In [150, 147], the authors study the behaviour of Dolbeault formality, respectively
geometric-Bott-Chern formality, under small deformations of the complex structure. Here, we keep
the complex structure fixed, and we study geometric formalities with respect to Hermitian metrics
evolving along a geometric flow. More precisely, we consider the Chern-Ricci flow [63, 151] that
evolves the fundamental form w(t) of a Hermitian form by the Chern-Ricci form,

%w = —Ric""(w),
and we study the possible algebra structure on the space of (de Rham, Dolbeault, Bott-Chern,
Aeppli) harmonic forms with respect to w(t) varying ¢.

We study in details geometric formality according to Kotschick for a whole class of surfaces
evolving by the Chern-Ricci flow, i.e. compact complex non-Kéahler surfaces with Kodaira dimension
Kod(X) = —oco and first Betti number b;(X) = 1, known as class VII of the Enriques-Kodaira
classification. In particular, we first rule out class VII surfaces with second Betti number by > 0
by applying arguments as in [87]. Then, we exploit the structure of quotients of Lie groups with
invariant complex and Hermitian structure on the only class VII surfaces with by = 0, that is Hopf
and Inoue surfaces see [30, 83, 95, 148|, in order to reduce the description of harmonic forms and
the equation of the Chern-Ricci flow of such surfaces at the level of invariant forms and thus make
explicit computations. We obtain Theorem 5.3.1. We also study the evolution of geometric formality
according to Kotschick on other compact complex non-Kéhler surfaces that are diffeomorphic to
solvmanifolds, e.g. Kodaira surfaces. Since any complex structures on such surfaces is left-invariant,
see [68, Theorem 1], we focus on invariant forms also in this case; we obtain Proposition 5.3.2. We
note that, also in this case, it is possible to rule out primary Kodaira surfaces by the obstructions
in [87] or [69], and therefore we focus on secondary Kodaira surfaces with initial invariant metrics.

Regarding Dolbeault and Bott-Chern geometric formalities evolving by the Chern-Ricci flow,
by applying the analogous procedure on Hopf, Inoue, and Kodaira surfaces, we have reached results
as follows. We also checked how the algebraic structures of Aeppli cohomology and its harmonic
representatives are modified along the Chern-Ricci flow, obtaining Proposition 5.4.1.

Throughout this chapter, we give a complete description of harmonic forms on such compact
complex surfaces depending on the invariant Hermitian metrics. We made computations with the
aid of SageMath [117].

We ask whether for Dolbeault and Bott-Chern geometric formalities there exist obstructions
(such as the ones found in [87]) which would help complete the picture for geometric formalities for
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class VII surfaces. We also ask whether the behaviour we observed is more general or there exist
counterexamples.

5.1 Chern-Ricci low on Hermitian manifolds

The Chern-Ricci flow (introduced in [63] and studied in [151]) is a parabolic geometric flow that
preserves the Hermitian condition of the initial given metric. The equations that describe such flow
on a Hermitian manifold (X", J, g9) are

0 .
Ew(t) = ~Ric“"(w(1)), w(0) = wo,

where wg, w(t) are the foundamental forms associated, respectively, to the Hermitian initial metric
go and the evolution metric g(¢) by the usual relation w(:,-) = g(J(-),-). For an arbitrary real
(1,1)-form w, Ric®"(w) is the Chern-Ricci form of w. The first Chern-Ricci curvature Ric“® is
defined starting from V*, the Chern connection on (X, J,g), i.e. the unique connection V on the
holomorphic tangent bundle 7%°X such that V is compatible with both g and J and V%! = 0.
In a holomorphic chart, the curvature tensor R¢” of such connection has components R%ZZ, for
i,j,k,01€{1,...,n}. The Chern-Ricci tensor is obtained by contracting the last two indices via the
metric B
. +Ch ._ kIl pCh
RlCClZ.; =g Rﬁki’
where (gkz) is the inverse of the matrix (g,;) representing in local coordinates the metric g. The
Chern-Ricci form is defined by
Ric®" := Ricci“" (J(-), ).
Such form has important properties, among which a very simple form in local coordinates:

Ric“"(w) = —/-1881og det(g),

from which we can deduce that Ric“"(w) is a 8-, d-closed form, hence it defines a cohomology class
in H }B’é(X ). Such class is a holomorphic invariant, denoted by cjlg ¢(X), which plays a fundamental
role in the classification of complex manifolds.

5.2 Cohomology and Chern-Ricci low on compact complex sur-
faces and quotients of Lie groups

In this section, we analyze in details complex structures, cohomologies, and Chern-Ricci flow on
non-Kéahler compact complex surfaces that can be described as quotients M = H\G of Lie groups
G by a subgroup H, with M endowed with invariant complex structure J [68], namely Hopf, Inoue,
and Kodaira surfaces.

Complex structure

As recalled in section 1.6, we can describe the complex structure J by a coframe of left-invariant
(1,0)-forms {¢',©?} on G and their conjugates, and by their structure equations

do' = ~cpep" n ",
equivalently, by the dual frame {1, 2} of (1,0)-vector fields and their conjugates, with structure
equations ¢, ¢ ] = CLKQOI. Note that here capital letters here vary in the ordered set (1,2,1,2)
and refer to the corresponding component. Moreover, the Einstein summation is assumed, for
increasing indices in case of forms.
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Hermitian structure

85

The arbitrary invariant Hermitian metric ¢ := w(-,J(+)) on (M, J) has associated (1,1)-form

2w=+-1

2 — -
3 0176 e =V VTG g -

I1,7=1

where the coefficients satisfy

>0, §%>0, 25 > |ul?.

That is to say, the Hermitian matrix

(9xL)K,L = % : (\/7;—2112 _gu) € GL(g)

is positive-definite. Its inverse is

(gKL

kL= (9KL) K L =

2

o (v )

21
up

(5.2.1)

The Christoffel symbols of the Chern connection can be computed as follows, see e.g. [112]:

(FCh)IH

where

1K 1KA B B

1
9BICHA — 5 9 gBHCIA + —gKLCIHL,

PR 2 2

Crur = dw(Jor, ¢m, L)

We can then express the (4,0)-Riemannian curvature of the Chern connection as

(RCh)IHKL = gAL(FCh)I?IK(PCh)?B - gAL(PCh)jIBK(FCh)gB - gALC?H(PCh)gKv

and the Chern-Ricci tensor as

(RiCCiCh)]H = gKL(RCh)[HKL.

Then the Chern-Ricci form is

Ric

“h = Ricci?"(J (), ) € P9(X) € Hyh(X;R).

Finally, we collect here some explicit description of the Hodge-star-operator on forms for the
arbitrary Hermitian metric associated to the form (5.2.1), in order to describe harmonicity, see also
[116, Lemma 2|. It is straightforward to check that:

1 _
*gpn =

-1
*g@ =

12
*gp =

Vgl =
V*Q‘Pﬂ =
Vi, ol =
Vg ¥ =
V*gwml _
Vgl =

where we set V' = 911922 -

T—lmpmi N %52801257 kg? = _%TQQOHT N gucpmé,
_gwnz . %S%QQ vy = _%r2(p1ﬁ _ gwm;
o2 s gpl2 = 12

|ul*p 1 —V-1us?p!? +\/_us<p +3g0

—\/—_1Er2g0ﬁ T252(p12+u2(p21 \/—_Es go

VTur? o 4 u201% Zp 2207 4 Tuso?

rip 1 —V-Tur?p'? +\/_urg0 +|u|2 2,

—2\/—_1u<p +25%0%, V*ggp ——2T2g01—2\/—_1ﬂ<p2,

9291 2—|u|2.

WU +25%3%, Vg 0?2 = —2r2¢" + 2v/ 1 ug;

(5.2.2)

(5.2.6)
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Cohomologies
Consider the inclusion of invariant forms into the double complex of forms,
1 (A"gY,0,0) = (A**M, 0, 0).

By choosing an invariant Hermitian metric, (the easier finite-dimensional version of) elliptic Hodge
theory also applies at the level of invariant forms; in particular, any cohomology class of invariant
forms admits a unique invariant harmonic representative. It follows that the above inclusion induces
injective maps in de Rham tgg, Dolbeault i3, Bott-Chern tpc, Aeppli ta cohomology, see [41,
Lemma 9]. We claim that they are in fact isomorphisms.

The de Rham cohomology of Hopf, Inoue, Kodaira surfaces is well known, and it happens that
the above maps (g are actually isomorphisms, that is, any de Rham class admits an invariant
representative. In fact, the Hopf surface is diffeomorphic to the product S! x S? of two compact
Lie groups, so one can use the Kiinneth formula and e.g. [50, Theorem 1.28]; the primary Kodaira
surface is a nilmanifold, so one can use the Nomizu theorem [108]; the secondary Kodaira surfaces are
quotients of primary Kodaira surfaces by finite groups; the Inoue surface of type S* is a completely-
solvable solvmanifold, so one can use the Hattori theorem |70]; and the de Rham cohomology of
the Inoue surface of type Sjs can be computed by exploiting their number-theoretic construction
as [109] does in a more general setting.

As for the Dolbeault cohomology, for compact complex surfaces, we know that the Frolicher
spectral sequence degenerates at the first page, see e.g. [23], that is,

dime Hip(X;C) = Y dime H2(X)
p+q=k
for any k. By explicitly computing the Dolbeault cohomology of invariant forms [12]|, one then
notice that the above maps ¢z are actually isomorphisms.

Finally, Bott-Chern cohomology of compact complex surfaces is well-undestood since [149]. By
[14, Theorem 1.3, Proposition 2.2|, (that fits in the general theory later developed by [135],) also
tpc are isomorphisms. Explicit computations can be found in [12]. Finally, ¢4 are isomorphisms
thanks to the Schweitzer duality between Bott-Chern and Aeppli cohomologies, where one can use
the Hodge-star-operator with respect to an invariant Hermitian metric.

Finally, by uniqueness of the harmonic representative in a cohomology class, we also deduce
that harmonic representatives with respect to invariant metrics are invariant.

Chern-Ricci flow

Recall that the Chern-Ricci form represents the first Bott-Chern class ¢P¢(X) e H}}é(X ). Since a
class in Hjlg’é(X ) contains only one invariant representative, the Chern-Ricci form Ric®”(w) does
not depend on the invariant Hermitian metric w. In particular, the Chern-Ricci flow starting at wq
reduces to

0

—w
ot
We notice that the solution of the Chern-Ricci flow starting at an invariant metric remains
invariant for any existence time. Indeed, by short existence and uniqueness assured by parabolicity,
the symmetry group is preserved along the flow (and possibly increases in the limit, see e.g. [93]).
Denote by p;, ps, pu the coefficients of the Chern-Ricci form,

WRIcT" = V1 pro L+ VT pso? + puip'? = pug?L,
and let the initial metric wg be of the form

2w = V-1 9011 +v/-1s2 cpzi + ug goli ) 9021, (5.2.7)

(t) = -Ric(wp),  w(0) = wo. (CRF)
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where 79,50 € R\ {0} and ug € C such that rgs2 - [ug/> > 0. The solution w(t) of the Chern-Ricci
flow starting at wq is then

20(t) = V=1(rd — tp )" + V=1(52 — tps) 0 + (uo - tpu)p'2 = (T — tpu) 2,

defined for times ¢ such that 7(¢)? = r —tp, > 0, s(t) = s3 — tps > 0, u(t) = ug — tp, € C such that
r(t)2s(t)? - |u(t)]* > 0.

5.3 Geometric formality according to Kotshick

In this section we state the main theorem of this note, regarding class VII surfaces of the Enriques-
Kodaira classification of compact complex surfaces.

Theorem 5.3.1 ([15]). On class VII surfaces of the Enriques-Kodaira classification, geometric
formality according to Kotshick is preserved by the Chern-Ricci flow starting at initial invariant
Hermitian metrics.

Proof. Let X be a class VII surface, that is, Kod(X) = —oo and b;(X) = 1. By [87, Theorem
6], for a compact oriented Kotschick-geometrically formal 4-manifold X, the first Betti number
satisfies b1(X) € {0,1,2,4}. Since all class VII surfaces are non-Kéhler, they must have odd first
Betti number by [33, 90], that is, b;(X) = 1. By [87, Theorem 9], the Euler characteristic of such
manifolds vanishes, implying that by(X) = 0. Since the characterization result by [30, 83, 95, 148],
class VII surfaces with ba(X) = 0 are necessarily Hopf or Inoue surfaces, then we see that the
only Kotschick-geometrically formal class VII surfaces can be Hopf and Inoue surfaces. Therefore,
Chern-Ricci flow starting at any metric cannot produce geometrically formal metrics on class VII
surfaces other than Hopf and Inoue surfaces: we will then check the statement for those surfaces.

Case 1: Hopf surfaces

Hopf surfaces X are compact complex surfaces in class VII defined as a quotient of C?\ {0} by a
free action of a discrete group generated by a holomorphic contraction vy(z,w) = (az + Aw?, fw)
where «, 5,A € C and p € N are such that 0 < |a| < [8] <1 and (o - BP)\ = 0, see [91], [137, page
820], see [155, Remark 1].

The diffeomorphism type is S! xSU(2), and the complex structure is a special case of the Calabi-
Eckmann complex structure on product of spheres [35]. See also [115, Theorem 4.1|. In terms of a
coframe (!, p?) of (1,0)-forms, they are described as

d(plz‘/—lg01/\(p2+ /_lgpl/\(ﬁQ’ d(pQZ— /—_1()01/\()51
The de Rham cohomology of Hopf surfaces is

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2w = /=1 + /=1?? instead of their classes.

We look at how harmonic representatives of de Rham cohomology change with respect to the
invariant Hermitian metric, and in particular whether their product is still harmonic.

We notice that, varying the invariant Hermitian metric, the harmonic representatives are
V-1 122, 1 o 112+§W212

H&R(X;R):C(1)®C(<p2—<p§)€9© 22 Y0 ~ 2y @C«plzii).

1
2 2 2
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Indeed, it suffices to check that the harmonic representative of the class [<p2 - @2] does not depend
on the invariant metric. This is because harmonic representatives are invariant, and the class
[¢? - @?] = {¢?* - @? +dc : c € R} contains only one invariant representantive, which is then
harmonic with respect to any metric. Then we compute the harmonic representative of the dual
class in H 3R(X :R) by applying the Hodge-star-operator to ¢? — @ with respect to the arbitrary
Hermitian metric. In any case, the product of an invariant 1-form and an invariant 3-form is either
zero or a scalar multiple of the volume form. It follows that any invariant metric on the Hopf
surface is geometrically formal in the sense of Kotschick.

Clearly, on the Hopf surface with invariant Hermitian metrics, the properties of geometric
formality in the sense of Kotschick is preserved along the Chern-Ricci flow. Nonetheless, for com-
pleteness and for later use, we compute the Chern-Ricci form and the Chern-Ricci flow on X.

We start by computing the Chern-Riemann curvature of an invariant Hermitian metric. We
follow notation as in [112, Section 2| (see also [96, Section 6| for another argument). With respect
to the frame (g1, 2, ¢1, P2) and to the dual coframe (gpl, 0%, P, @2), we set the structure constants

[901, SOH] =: C?HSOK-

Here, capital letters vary in {1,2,1,2}, and the Einstein summation is assumed. In our case, the
non-trivial structure constants are

1 2 / 2 / 1

012 = - _].7 (zli = _1, Cli = _1, Cl? = - _17
1 1 2 2
chi=v-1, ci=-V-1, & =-V-1, & =-V-1,
1 / 1 / 1 / 1

612 = _1, cié = _1, c?l = _].7 Cii = - _1.

Recall that the Christoffel symbols of the Levi-Civita connections (with respect to the above non-
commutative frame) can be computed as

1
C
TNy = 59“ (9(Lereulyon) - 9(lem, el o1) - 9([er or) om))
1 1 1 s
= §C§<H_§QK gBlch_igK QBHC?A-

Set V =12s% - |u]2 for simplicity. In our case, up to conjugation, the non-trivial ones are

(T = =s*uV (PEY, = V=1’V
12 =3\ 7"V~™ - o 12~ 779 - o
(FLC)I 1( \/_184+\/_1’u|2)v 1 (FLC)2 1(7,2 32)uV 1
(ML) = 3s2av (TEOYL = 2V/-1r2s2V L
(T :lészuv-l, (T2, = gw_—wsf - 2V-1[u)V,
(TEO) = —5V-1s'V 1, (TEO)E; = 3s2uV
(TEOYL, = V-1V, (IEOY3, = Sr2uvVt,
(P31 = 5(2V-1r%s? = V15" = V=1V, (PEO)3) = —5(r? = s)uV ™,
(DEC)50 = =s”aV ", (P93, = ==V,
7 (TEO) 3 = —3V-1a*V L, (TEO)2, = 3riav
(I‘Lc)éi = 3(=2 % V=1r?s? + /=15 + 2/-1|u[?) V1, (FLC)% = 3s2uV 1,
(IEO) 1, = —3s*uv (TEOYZ, = =3V -TjuPV
(T = =52 uV ™, (TH9)55 = 5V-1juf VT,

We can now compute the Christoffel symbols (I‘Ch)f(H of the Chern connection by the formula [112,
Equation (7)]:
() = (CF) oy +eg™  Trr + pg™  Crare,
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by setting (e, p) = ( ) where
Trar = —dw(Jer, Jou, Jer), Crur =dw(Jer, o, L)

We get
(TM2, = 2Vt (DCML, :7\/—_17’232‘/_1,
(FCh)Q _ \/__1’ (FCh)%I — _\/__1’
(FCh)u -1V, (FCh)%2 = s*uV 1,

the others being equal to the corresponding Levi-Civita symbols or deduced by conjugation. We
can compute the (4,0)-Riemannian curvature of V** as

(R inxr = 9an(TP) (D7) 15 - gan (D) e (097 ) v 5

A
—QALC}BH(FE’/))BK

By using the symmetries for the Chern curvature (R“");pxr = ~(Rurxr = —(R™) gk and
the conjugation, we get that the only non-zero components are

(RCh)ni 5(2rts? —r2st = 2(r? - )V,
(R "1z = %(\/_|u|2u+( V-1r?s? = /=1 u)vV L,
(RM) 1191 = 2( V-TuPa - (-V-1r2s* - V/-1sHu) V1,

(R h)1122 = ‘SGV 1
(R 1511 = 2( \/_r232u+ 2\/_|U|2U)V717
(RM) 1315 = 35V,

(
(RCh)in = ‘(\/_7"2321‘ 2\/_|U|2U)V !
(R g103 = =57V,
(RCh)m o1 = 35207V,
(RM)a193 = —‘\/_3 uvt,
(R Mozi1 = 2|U|2V_
(R )2212 ——‘\/_7“ uV” 1
(RCh)zzm = 1\/_7"2S2UV 1,
(REM) 9393 = 587 |ulPV Tl

Finally, we can compute the (first) Chern-Ricci curvature by tracing on the third and fourth indices:
(Ric“™) 1 = g™ (R i
then the Cher-Ricci form can be defined as
Ch = (Ric“M) v/ =1dz" A dZ".
In our case, the only non-trivial coefficients are
(Ric“") 1 =2

and the corresponding (Ric®)7; = —(Ric“");1. Therefore the Chern-Ricci form of any invariant

Ric“"(w) = 2v/-1¢' A @

Hermitian metric is

Therefore the solution of the Chern-Ricci flow starting at wg of the form (5.2.7) is
2w(t) = V-1(rd - t)gpﬁ +V- s%cpm +ugp'? - T 21 (5.3.1)
rosg—luol® 2

defined as long as t < 05— <r{.
55
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Case 2: Inoue surfaces

Inoue-Bombieri surfaces |76, 31] X are compact complex surfaces in class VII with second Betti
number equal to zero and with no holomorphic curves [29, 30, 94, 95, 148]. Their universal cover is
C x H, where H denotes the upper half-plane. They are divided into three families, Sy, S}
and S depending on parameters.

D,q,m3t0
N,p,q,r’

Case 2.1: Inoue-Bombieri surface of type Sy,

We focus now on the case Sys: it has a structure of fibre bundle over S', where the fibre is a
3-dimensional torus.

Inoue-Bombieri surfaces of type Sys admit a description as quotients of solvable Lie groups wih
invariant complex structure 68|, that we now describe. We can fix a coframe (¢!, ¢?) of (1,0)-forms
with structure equations

a—v—15(p1A¢2_a V-1p o A G2
2/~1 /1 ’
-V _10“102 A @27

where a e R\ {0} and 8 € R. The de Rham cohomology of X can be explicitly described [149], see
[12, Theorem 4.1]:

dgol =

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2w = /=1 + \/=1¢?? instead of their classes.
We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

HSp(X5R) = (5.3.2)

V-1
C(l)o C{p® - ¢*) o C (- 2121+ Y w4 or20M2 1 Y52 ) o Oy

We conclude that: any invariant Hermitian metric on an Inoue surface of type Sy is geomet-
rically formal in the sense of Kotschick.
The Chern-Ricci form of any invariant Hermitian metric is

2Ric“"(w) = —vV~1a?p? A @2,
whence the solution of the Chern-Ricci flow (CRF) is given by
2w(t) = V-1rp V-1 (53 + oz2t) <p2§ + uogali - ﬂogpﬂ, (5.3.3)

defined for any non-negative time ¢ > 0.
Clearly, on an Inoue surface of type Sjps with invariant Hermitian metrics, the properties of
geometric formality in the sense of Kotschick is preserved along the Chern-Ricci flow.

Case 2.2: Inoue surfaces of class S*

In this subsection, we focus on the case of Inoue surfaces of type S*. Inoue-Bombieri surfaces
of type S~ have an unramified double cover of type S*: we can then restrict to Inoue-Bombieri
surfaces of type S*, which have a structure of fibre bundle over S!, where the fibre is a compact
quotient of the 3-dimensional Heisenberg group.
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Also Inoue-Bombieri surfaces of type S* admit a description as quotients of solvable Lie groups
[68], that we now describe. We can fix a coframe (!, ¢?) of (1,0)-forms with structure equations

1 1

dot = ——
¥ 5 /—_190

1 v-1

1 2 2 -1 2 _2
NP+ —F——Q AN + —@" A",
2v-1 2

2 2 2

dy” = 1 N

where ¢ € R. The de Rham cohomology of X can be explicitly described [149], see [12, Theorem
4.1]:

Hp(X;C) = C(1) @ Clp? - 0%) @ C{p'2 - p112) @ C(p1212)

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form w = \/—_hpll + \/—_1g022 instead of their classes.

The situation is exactly as in (5.3.2). We conclude that: any invariant Hermitian metric on an
Inoue surface of type S* is geometrically formal in the sense of Kotschick.

The Chern-Ricci form of any invariant Hermitian metric is

2RicM (w) = —v/ “1p%2,

whence the solution of the Chern-Ricci flow (CRF) is given by
2w(t) = \/—17«3@11 +v-1 (s% + t) 9022 + uggolé - ﬂoapﬂ, (5.3.4)

defined for any non-negative time ¢ > 0.
Clearly, on an Inoue surface of type S* with invariant Hermitian metrics, the properties of
geometric formality in the sense of Kotschick is preserved along the Chern-Ricci flow. 0

We also analyze in details primary and secondary Kodaira surfaces resulting in the following
proposition, for which we give explicit computations.

Proposition 5.3.2 ([15]). On any Kodaira surface, the properties of geometric formality in the
sense of Kotschick is preserved along the Chern-Ricci flow starting at initial invariant Hermitian
metrics.

Proof. We will look at each case separatedly.

Case 1: Primary Kodaira surface

Kodaira surfaces X are compact complex surfaces of Kodaira dimension Kod(X') = 0 and first Betti
number b1 (X) = 3. Primary Kodaira surfaces have trivial canonical bundle.

We note that, by |87, Theorem 6|, primary Kodaira surfaces are never Kotschick-geometrically
formal, not even with regards to non-invariant metrics, by having by = 3: hence Chern-Ricci flow
preserves geometric formality according to Kotschick. The same conclusion follows by |69, Theorem
1] stating that non-tori nilmanifolds are never formal, therefore never geometrically formal in the
sense of Kotschick. Nevertheless we give explicit computations for this fact.

We recall the description of primary Kodaira surfaces as quotients of solvable Lie groups [68|.
There exists a coframe (!, p?) of (1,0)-forms with structure equations

-1 B
de' =0,  dp® = T<p1 nE'.
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The de Rham cohomology of X can be explicitly described:

Hip(X;R) = C{1)eCph, ol - p?) @ Clp', p'2, 0%, o2)
@C(@lZQ,@QIQ,@12i I_>®C< 121?)

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form w = /=1 +v/=1¢?? instead of their classes.
We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

_ _ _ /_1— _ _ /_1 _ __
H(;R(X7R) _ C<1)@C<§01,g01,g02—()02>@C<()012,g012+ 82 Ug0117¢21_ 82 ngllj()OlQ
1 5 V-1 1 VAT
eC|(= 2 122 + Y g 121 2 212 112
55 g UGSt o up
_%Tzwm . \/2—1 o 4 %Tz(plié N \/2—1 Wm) o C(o1712),

We explicitly notice that, on primary Kodaira surfaces, an invariant Hermitian metric is never
geometrically formal in the sense of Kotschick: indeed, o' A p'? is never harmonic.

As for Chern-Ricci flow, the primary Kodaira surface has trivial canonical bundle, therefore
Ric“" (w) = 0. Then, clearly, the Chern-Ricci flow does not evolve invariant Hermitian metrics.

Case 2: Secondary Kodaira surface

Secondary Kodaira surfaces X are quotients of primary Kodaira surfaces by finite groups; they have
torsion non-trivial canonical bundle.

We recall the description of secondary Kodaira surfaces as quotients of solvable Lie groups [68].
There exists a coframe (¢!, ¢?) of (1,0)-forms with structure equations

1 1, VA
dpl ==S@' ng 4 S n G, gt = St A,

The cohomologies of X can be explicitly described:

Hip(X;R) = C(1)@C(p*- 902> ® Clp'?! - (plié) ® C(@mié)’

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form w = \/—_lcpn + \/—_1g022 instead of their classes.

As for the harmonic representatives for de Rham cohomology, the situation is very similar to
the Inoue case. We list the harmonic representatives with respect to the arbitrary Hermitian metric
as in (5.2.1):

Hjp(X;R) = C(1) @<C<902 ~ %)

eC|(- 2g0121 + —_ugo +=rp T+

We conclude that any invariant Hermitian metric on an secondary Kodaira is geometrically formal
in the sense of Kotschick.

As for the Chern-Ricci flow, the secondary Kodaira surface has torsion canonical bundle, there-
fore Ric®”(w) = 0. Therefore, the Chern-Ricci flow does not evolve invariant Hermitian metrics. [
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5.4 Dolbeault and Bott-Chern geometric formalities

As for Dolbeault or Bott-Chern geometric formality, the situation is clear for Hopf, Inoue and
Kodaira surfaces, as we now describe. We also make computations regarding Aeppli cohomology
and harmonic representatives with respect to the Aeppli Laplacian.

Proposition 5.4.1 ([15]). On Hopf, Inoue, and Kodaira surfaces, the property of Dolbeault ge-
ometric formality and of Bott-Chern geometric formality is preserved along the Chern-Ricci flow
starting at tnvariant metrics. In the same situation, the properties of having a structure of algebra
or a structure of Hpc-module for harmonic-Aeppli forms are all preserved by the Chern Ricci flow.

Proof. We refer to the complex structures used in Theorem 5.3.1 and Proposition 5.3.2, for the
computation of Dolbeault, Bott-Chern, and Aeppli cohomologies.
Hopf surfaces

The Dolbeault cohomology of Hopf surfaces is explicitly described in [73, Appendix II, Theorem
9.5, and see [12, Section 3.1] for the Bott-Chern cohomology:

HY*(X) = C(1)eC(¢”) @ Clp"") o C(p"P?),
Hye(X) = C{1)@Clp") @ Clp'?) @ Clp'?) @ C(p'?1?)
HY'(X) = C(1)eC{p?) @ C{p?) @ Clp™) @ C(p'?12),

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2w = \/—_14,011 + \/—_19022 instead of their classes.

We look at how the harmonic representatives of such cohomologies change with respect to the
invariant Hermitian metric, and in particular when their product is still harmonic.

We summarize them as follows:

vy 21?

H%"(X) = C{l)@Clp Q)@C( ; 2<p112 Y& C(p IQ)
T3(X) = Cl)eClee (-1 121+§wm>®c<—§r% ﬁ—gwmmu 1)
H3'(X) = <c<1>@<c<¢>@<c<¢> C(s'o™ +ufPe!! = V15" uo'? + V15" ) 0 C(0212),

Let us focus first on the Dolbeault cohomology. Here, the only Dolbeault-harmonic represen-
tative that changes is for the generator in HE’Q(X ). We conclude that any invariant Hermitian
metric on the Hopf surface is geometrically-Dolbeault formal.

As regards the Bott-Chern cohomology, to our aim, that is, studying harmon1c1ty of products
of Bott-Chern-harmonic forms, the only case of interest is the product [p!'] « [¢'1], the products
with the class [1] being trivial and the other products being zero because of degree reasons. Since
the harmonic representatives with respect to invariant metrics are invariant, the Bott-Chern class
[5011] {gpll +00c : ceR} contains only one invariant representantive, that is also harmonic with
respect to any invariant Hermitian metric. Again, we have that any invariant Hermitian metric on
the Hopf surface is geometrically-Bott-Chern formal.

We consider the Aeppli cohomology. On the one side, we can consider the products between
Aeppli-harmonic forms: the only possibly non-trivial products concern the classes [¢?] and [@?],
[¢©?] and [©? A @?], [@?] and [p? A @%]. Since the classes [¢?] and [@?] contain only one invariant
representative, we are reduced to study how the harmonic representative of the Aeppli cohomology
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class [¢% A ¢°] depends on the invariant Hermitian metric. The arbitrary representative in the
Aeppli cohomology class [p??] is
hoi= @ Ag®+0(M@" +0p%) + 0 (Ase" + \aip?)

= -V (o M) M VTG Vg,
where A1, A2, A3, \q € C. By (5.2.5), we compute
v (*9 9025 +V-1\ *g 9021 —V-T(A2+\s) *g ‘Pﬁ +V-1)3 *g ‘Pﬂ)
(r4 —Mur? = V=1 Mg + Ayl + /\367"2) cpﬁ
+ (—\/—_lur2 +vV=1u? - (A2 + /\4)us2 - \/—_1/\37“232) cpﬁ
+ (\/—_1Er2 V=128 + (A2 + )\4)U52 + \/—_1)\3@2) <pﬁ
+ (|u|2 —Mus? —V=1(Ag + Ag)st + AgﬂSZ) goﬂ.

Vxgh

By using the structure equations, we now compute

—V/=Tur? + V=1Ixu? = (Mg + Adg)us® = V=1A3r?s? 103
) ur 1u = (Ao + A\g)us 375 90122

d(*gh)

1252 — [uf?
_\/_—1|u|2 —Mus? —/=1(Ag + Ag)s* + Agus? (o1
252 — [uf? L
- V=1ar? = V/=1A1r28% + (Mg + A\)Ts? +V-103T% 015
B(xgh) = V-1 - 2( - ) o
7282 — |u]
_\/_—1|u|2 - )\1US2 -V —1()\2 + )\4)34 + /\3@82 112
252 — [uf? L
Therefore the Aeppli-harmonicity conditions d0h = 9 *gh = 0 *g h =0 yield
V-1u? —us? —/-1r2s? —us? A1 —Tur?
—us? —/~1s4 s> et | PYY B e
—/—1r2s? us? —1u? us? M| | =—v=1ur? |’
—us? —/-1s* us? —/=1s* ] \\4 —|uf?

where the rank of the first matrix is 3 thanks to the condition 72s% - |u|? > 0. By solving the system,

we get

u
A= 2
=1lul?
Ay = 4|“‘ Y
s
u
PP
3 527
Moo= A

varying A € C. We finally get that the harmonic representative of [p??] with respect to g is

- [ul? 11 V—21U@1§+ \/S—2lﬁ(pﬂ+(p2§_

h
84('0 S
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At the end of the day, we get that: Aeppli-hamornic forms have a structure of algebra if and only
if the metric (5.2.1) is diagonal, namely, u = 0.

Finally, we consider the Aeppli cohomology as a Bott-Chern-cohomology-module. By the Stokes
theorem, there is no invariant exact 4-form other than the zero form; in particular, any invariant
(2,2)-form is harmonic with respect to any Hermitian invariant metric. This reduces to consider
only the products [¢ 11]BC [©%]4 and [@'!]Bc ~ [@?]a. By the argument above, both [p!!]5c and
[©%] 4, respectively [@%] 4, contain only one invariant representative that is harmonic with respect
to any Hermitian metric. Therefore: for any invariant Hermitian metric on the Hopf surface,
Aeppli-harmonic forms have a structure of module over Bott-Chern-harmonic forms.

As regards the Chern-Ricci flow, we already have an expression for it computed in (5.3.1).
Clearly, then, on the Hopf surface with invariant Hermitian metrics, the properties of geometric-
Dolbeault formality, of geometric-Bott-Chern formality, of the Aeppli-harmonic forms having a
structure of algebra, of the Aeppli-hamornic forms having a structure of module over Bott-Chern-
harmonic forms, are all preserved along the Chern-Ricci flow.

Inoue-Bombieri surfaces of type Sy,

The cohomologies of Inoue-Bombieri surfaces of type Sy; can be explicitly described [149], see [12,
Theorem 4.1]:

H2'(X) = C{1)@C{p*) @ Clp'") o Clp'?),
Hpp(X) = C(1) @ Clp®) o Clp'?) @ Clp'?) @ Cp'?'?),
HY(X) = C{l)@C(p*) e C{p?) & Clp') ® Cp'*?),

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2w = /=1 +v/=1¢p?? instead of their classes.
We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

H(X) = C(1) 8 C(o)) @ C(—%rzgplﬁ .

/=1 =
290121+ 5 ’LL(,O122

HY*(X) = C(1) @ Cp?) ® Cly?)

i V-lu g5 VE1u o [l o3 1212
@C<s0 B R a e ol 2 ®C(p "),

®C(- ® C(p'1?), (5.4.1)

We conclude that: any invariant Hermitian metric on an Inoue surface of type Sy is
geometrically-Dolbeault formal, is geometrically-Bott-Chern formal, and the Aeppli-harmonic forms
have a structure of module over Bott-Chern-harmonic forms. On the other hand, Aeppli-harmonic
forms have a structure of algebra if and only if the metric is diagonal.

The Chern-Ricci flow has expression as in (5.3.3). Clearly, we can state that on an Inoue surface
of type Sps with invariant Hermitian metrics, the properties of Dolbeault-geometric formality, of
Bott-Chern-geometric formality, of the Aeppli-harmonic forms having a structure of algebra, of
the Aeppli-hamornic forms having a structure of module over Bott-Chern-harmonic forms, are all
preserved along the Chern-Ricci flow.
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Inoue surfaces of type S*

The cohomologies of Inoue surfaces of type S* can be explicitly described [149], see [12, Theorem
4.1]:

I}
Q
=
®
Q
S
N
®
Q
S
o
=
®
Q
S
o
VB:

H2*(X)
Hpe (X) )& Clp'?) @ C(p'?12),

HY(X) = C(1)eC{y?) @ C{p?) @ Clp') @ C(p'?12),

|
Q
=
®
Q
S
N
®
Q
S
S

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form w = \/—_lcpn + \/—_1g022 instead of their classes.

As for the harmonic representatives of Dolbeault, Bott-Chern and Aeppli cohomologies, the
situation is exactly as (5.4.1).

We conclude that: any invariant Hermitian metric on an Inoue surface of type S* is
geometrically-Dolbeault formal, is geometrically-Bott-Chern formal, and the Aeppli-harmonic forms
have a structure of module over Bott-Chern-harmonic forms. On the other hand, Aeppli-harmonic
forms have a structure of algebra if and only if the metric is diagonal.

The Chern-Ricci flow has expression as in (5.3.4). Hence, we have that on an Inoue surface
of type S* with invariant Hermitian metrics, the properties of geometric-Dolbeault formality, of
geometric-Bott-Chern formality, of the Aeppli-harmonic forms having a structure of algebra, of
the Aeppli-hamornic forms having a structure of module over Bott-Chern-harmonic forms, are all
preserved along the Chern-Ricci flow.

Primary Kodaira surfaces

The cohomologies of primary Kodaira surfaces can be explicitly described [149], see |12, Theorem
4.1]:

HX(X) = C{)oC(p') @ Cly',¢") @ Clp'?) @ Clp', ¢™') @ Clp")
oC(p'?!, ¢'%) 8 C(™%) @ C(1?1),
C{p") @ Clp"?) o Ce', ™, ") @ C("?)

Hpo(X) = C{l)eC(p')e
)

|
a
it
®
a
ﬁ»—t
©
\B
&)
Q
ﬁ»—u
©
=
&)
a @
3
g
&)
Qa
AN
o
AN
N
S
[\]
=
&)
Qa
AN
=

Y (X)

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form w = v/~1p' +v/=1¢?? instead of their classes.
We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

HY'(X) = C(1)eCp') e Cle',¢") o Clp'?) @ Clp' —VTsp!, o™ +V-Tsp!) @ Clp™?)
@m_%T%M N gwmészwm . gﬂ‘Pm)
@C(%s%m B gwﬁémc(wuﬁ)’

Hye(X) = C(1)@ Clp') o Clp') @ Clp'?) @ Clp', "2, ¢™') @ C(p™?)
@C(—%rchlﬁ N g’wm, gwlm +%32<p12é)
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1 5 013 V-1 453 1 V-1 _ 13
®C<§S2(p212— 5 u 1127_57,2 112 5 u<p212)69(c<(,01212),
HY(X) = C{)eCp',?) @ Cly, %w%u 12
2 2 11

2 11
= [ul"™)

)
80
g ue'™) & (o212,

We notice that for primary Kodaira surfaces an invariant Hermitian metric is never
geometrically-Dolbeault formal, e.g. @' A @' is never Dolbeault-harmonic. In fact, Cattaneo and
Tomassini noticed in |37, Example 4.3] that primary Kodaira surfaces have a non-vanishing
Dolbeault-Massey triple product, whence they are not Dolbeault formal in the sense of [106]. Also,
it is never geometrically-Bott-Chern formal, e.g. @' A '? is never Bott-Chern-harmonic. The space
of Aeppli-harmonic forms is never an algebra, e.g. @' A @' is never Aeppli-harmonic, neither a
module over the space of Bott-Chern harmonic forms, e.g. ¢' A @' is never Aeppli-harmonic.

The primary Kodaira surface has trivial canonical bundle, therefore Ric®” (w) = 0. Then the
Chern-Ricci flow does not evolve invariant Hermitian metrics.

Then clearly on a primary Kodaira surface with invariant Hermitian metrics, the properties
of geometric-Dolbeault formality, of geometric-Bott-Chern formality, of the Aeppli-harmonic forms
having a structure of algebra, of the Aeppli-hamornic forms having a structure of module over
Bott-Chern-harmonic forms, are all preserved along the Chern-Ricci flow.

Secondary Kodaira surfaces

The cohomologies of secondary Kodaira surfaces can be explicitly described [149], see [12, Theorem
4.1]:

HE* (X)
Hije (X) 7
HY (X) = C(1)oC{p?) @ C(v%) @ C(™) @ C(p"

C(1) @ C{p?) ® Clp'?) @ Cp'2'?),
C(1) @ Clp') @ Clp'!) @ C(p'1%) @ C(p'?12),
1212
)

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form w = \/—_lcpn + \/—_1g022 instead of their classes.

As for the harmonic representatives for Dolbeault, Bott-Chern and Aeppli cohomologies, the
situation is very similar to the Inoue case, only the computations for the class [¢*?] € Hil’l(X )
being slightly different.

We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

HZ*(X) = C(1) ® C(p?) @C(—%r%lﬁ _ gﬂsﬂﬁi) o C(!212)
HE2(X) = C{heClp!)eC ——r%m‘gﬂ@w)
HY(X) = C(1)@C(¢?) @ Clp?)

EBC(MQSOH_ /1 s*upt 24 V-1s? up? +S4<p22>69@(@12ﬁ)_

We conclude that: any invariant Hermitian metric on a secondary Kodaira surface is
geometrically-Dolbeault formal, is geometrically-Bott-Chern formal, and the Aeppli-harmonic forms
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have a structure of module over Bott-Chern-harmonic forms. On the other hand, Aeppli-harmonic
forms have a structure of algebra if and only if the metric is diagonal.

The secondary Kodaira surface has torsion canonical bundle, therefore Ric“®(w) = 0. Then the
Chern-Ricci flow does not evolve invariant Hermitian metrics.

Then clearly on a secondary Kodaira surface with invariant Hermitian metrics, the properties
of geometric-Dolbeault formality, of geometric-Bott-Chern formality, of the Aeppli-harmonic forms
having a structure of algebra, of the Aeppli-hamornic forms having a structure of module over
Bott-Chern-harmonic forms, are all preserved along the Chern-Ricci flow. O

We summarize the results in the last two Sections in Table 5.1.

surface Kotschick Dolbeault Bott-Chern  Aeppli harm. f. Aeppli harm. f.
geom. form. geom. form. geom. form. as algebra as BC-module
class VII">° never ? ? ? ?
Hopf always always always diagonal always
(invariant metrics)
Inoue-Bombieri Sy, always always always diagonal always
(invariant metrics)
Inoue S* always always always diagonal always
(invariant metrics)
primary Kodaira never never never never never
secondary Kodaira always always always diagonal always
(invariant metrics)

Table 5.1:  Summary of Theorem 5.3.1 and Propositions 5.3.2 and 5.4.1 concerning geometric
formalities (for Kotschick, Dolbeault, Bott-Chern) and the structure of Aeppli-harmonic forms
with respect to Hermitian metrics, respectively invariant Hermitian metrics on Hopf, Inoue, Kodaira
surfaces.

In view of further study, we notice that:

e in any mentioned cases, the Chern-Ricci flow starting at an invariant metric clearly preserves
each one of the above properties, since it preserves diagonal metrics. (Compare also [88,
Proposition 3|, showing that, for certain G-homogeneous spaces, every G-invariant metrics is
geometrically formal.) We ask whether this behaviour is more general, or whether there exists
a counterexample for which the Chern-Ricci flow does not preserve the geometric formality in
the sense of Kotschick, or any other of the geometric Hermitian formalities discussed above.
We notice that the above invariant metrics are Gauduchon, that is pluriclosed (also known as
SKT) being defined on four-dimensional manifolds. Therefore, as the Referee kindly suggested
to us, it may be interesting to further investigate the 6-dimensional nilmanifolds admitting
invariant SKT metrics as classified in [53].

e (learly, holomorphically-parallelizable manifolds do not provide such counterexamples when
restricting to invariant metrics, since they have holomorphically-trivial canonical bundle,
whence invariant Hermitian metrics are Chern-Ricci-flat. Our attempts on four-dimensional
Lie groups (possibly not admitting compact quotients), as in [113] and references therein, or
small deformations of the Iwasawa manifold [105, 11] still have not provided further examples.

e The same question may be addressed for other geometric flows other than the Chern-Ricci
flow, for example the Hermitian curvature flows in [140] or in particular the one studied in
[153].
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e It could be interesting to further investigate Massey triple products and Dolbeault Massey
products, see [150, 37|, or other Massey products, in particular on class VII surfaces with
bs > 0 and on primary Kodaira surfaces.
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Chapter 6

Cohomological and formal properties of
Strong Kahler with torsion and
astheno-Kahler metrics

In this chapter, we first construct a family of simply-connected 2-step nilpotent Lie groups G,
admitting discrete uniform subgroups I' and endowed with a left-invariant complex structure J,
such that (I'\G, J) carries an astheno-Kéhler metric (see Theorem 6.2.1 for the precise statement).
Such a construction will be applied in the study of the behaviour of blow-ups. In fact, in [54]
respectively [55, Proposition 2.4] it is proved that the existence of an SKT metric respectively a
Hermitian metric g with fundamental form F' on an n-dimensional compact complex manifold M,
satisfying OOF =0, 00F? =0, is stable under blow-ups of M.

In contrast, in Theorem 6.3.3 we prove that the existence of a Hermitian metric g with funda-
mental form F satisfying 90F™" 2 =0, 00F™3 =0 but O0F # 0, is not preserved by blow-ups.

Then, we investigate the relation between SKT metrics and geometrically-Bott-Chern-formal
metrics. More precisely, we study the 6-dimensional nilmanifolds with a left-invariant complex
structure admitting a left-invariant SK'T metric, which have been characterized by Fino, Parton
and Salamon in [53, Theorem 1.2|. If we denote by FPS-nilmanifold any such a manifold, we prove
the following result.

Theorem (see Theorem 6.4.2). Let (M, J) be a FPS-nilmanifold. Then, any left-invariant (SKT)
metric is geometrically-Bott-Chern-formal.

Moreover, we extend this result to a class of nilmanifolds which are a generalization of FPS-
manifolds in a arbitrary higher dimension (see Theorem 6.4.4).

Contrarily to the mentioned positive results, on a compact complex manifold the existence
of a SKT metric does not imply the existence of geometrically-Bott-Chern-formal metrics. More
precisely, we prove this for the product of a pair of certain compact complex surfaces by providing
a non vanishing Aeppli-Bott-Chern-Massey product on each manifold.

Theorem (see Theorem 6.4.5). Let (M, J) be the product of either two Kodaira surfaces, two Inoue
surfaces, or a Kodaira surface and a Inoue surface. Then (M, J) admits SKT metrics but does not
admit geometrically-Bott- Chern-formal metrics.

Furthermore, a similar result holds also for manifolds which are not a product of manifolds, as
it is shown for a family of nilmanifolds of complex dimension 4 in Theorem 6.4.6.

101
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6.1 p-pluriclosed forms

In order to recall the characterization theorem of compact complex manifolds admitting a p-
pluriclosed structure (see Section 1.5), we review some known facts on positive currents.

Let M be an n-dimensional complex manifold and let AP9(2) respectively DP4(2)) be the
space of (p,q)-forms respectively (p,q)-forms with compact support on M. Consider the C*-
topology on DP4(M). The space of currents of bi-dimension (p,q) or of bi-degree (n—p,n —q) is
the topological dual Dy, ,(M) of DP4(M). A current of bi-dimension (p,q) on M can be identified
with a (n —p,n — q)-form on M with coefficients distributions. A current T of bi-dimension (p,p)
is said to be real if T'(n) = T(7), for any n € DP4(M). A real current T € D,, (M) is said to be
strongly positive if,

T(£2) >0,

for every weakly positive (p, p)-form 2. We have the following (see [4, Theorem 2.4,(4)])

Theorem 6.1.1. A compact n-dimensional complex manifold N has a strictly weakly positive (p,p)-
form Q with 998 = 0 if and only if N has no strongly positive currents T + 0 of bidimension (p,p),
such that T =100A for some current A of bidimension (p+1,p+1).

The following simple yet useful lemma yields an obstruction to the existence of p-pluriclosed
forms on a closed almost complex manifold.

Lemma 6.1.2 ([133|). Let (M, J) be a closed almost complex manifold of real dimension 2n. Let
a be a (2n —2p - 2)-form which is not dd°-closed and such that

(dd°a)" PP = 3 e a3

with * simple (n - p,0)-covectors and c # 0 constants having the same sign. Then (M,J) does
not admit a p-pluriclosed form.
In particular,

e forp=1, (M,J) does not admit SKT metrics;
e forp=n-2, (M,J) does not admit astheno-Kdhler metrics.

Proof. We prove this lemma by contradiction. Suppose there exists a p-pluriclosed form €2 on
(M,J), ie., Qis a (p,p)-real form which is dd°-closed and, for every x € M, Q, € APP(T,M*) is
transverse. Then, let a be a (2n—2p—2)-form on (M, J) as above and let us assume, for example,
that each ¢ > 0. Since M is closed, by Stokes theorem we have that

Oszd(dC(anQ/\a)):[ManQ/\ddca:zk:ck[ManQ/\ibk/\Ek>0a

which is a contradiction. To end the proof, notice that if F' is an astheno-Kéahler metric on (M, J),
the (n —2,n - 2)-form F"2 is a (n - 2)-pluriclosed form on (M, .J). Analogously, if F' is a SKT
metric on (M, J), F is 1-pluriclosed form on (M, J). O

Remark 6.1.3. In Lemma 6.1.2 the thesis on the non existence of Hermitian metrics satisfying
dd°F = 0, for p = 1, respectively dd°F™ 2 = 0, for p = n — 2, is still valid, without assuming the
integrability of J.
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6.2 Astheno-Kahler metrics on 5-dimensional nilmanifolds

We now proceed to construct a family of nilmanifolds of complex dimension 5 endowed with a
left-invariant complex structure admitting an astheno-Kéhler metric.

Let {n',...,n°} be the set of complex forms of type (1,0), such that
dy = 0,5=1,...,4,
AP = ain?+asn®+azn®+asn' +asn' + agn'® + azn'?

+b1 7]23 + b2 7724 + b3 772i + b4 7’]2é + b5 7’]23 + b6 77221 (621)

rer Pt e e3Pt F e + st

wdi !+ den® + dyn®™ + dyn™

where ay,bp,cr,ds € C, h=1,...,7, k=1,...,6, r =1,...,5, s =1,...,4 and we set as usual
nAP = nA AnB. Then, setting g'® = Span(n!,...,n°), we obtain that gc = g0 @ gl0 gives rise
to an integrable almost complex structure J on the real 2-step nilpotent Lie algebra g. Let G be
the simply-connected and connected Lie group with Lie algebra g. Then, for any given choice of
parameters ap, by, ¢, ds € Q7] as a consequence of Malcev’s theorem [98], there exist lattices I c G,
so that (M =T\G,J) is a nilmanifold endowed with a complex structure J with dim¢ M =5. We
have the following

Theorem 6.2.1 ([133]). Let M =T\G and J be the complex structure on M defined by (6.2.1).
Then

I) The diagonal metric g on (M,J) whose fundamental form is

1s astheno-Kdhler if and only if the following condition holds

2R¢e (d4C_L4 + d4l_)4 + d4E4 + cq04 + 641_)4 + b4C_L4) |a1|2 + |a2|2 + |CL3|2 + |CL5|2 + |a6|2 + |a7|2+

+

[b1|* + [ba|* + |b|* + |bs|* + |b|*+

J’_

le1? + [eal? + Jesf? + |di | + [da .
(6.2.2)
1) Let
a2=a3=a5=a6=a7=b1=b2=b3=b5=b6=62=03=05=d1=d2=d3=0.

Then the metric g satisfies dd°F3 = 0 and dd°F? = 0 if and only if the following conditions
hold

2%Re (d4C_L4 + d4l_)4 + d454 + cq0a4 + C4l_)4 + b4C_L4) = |(L1|2 + |Cl|2

2%Re (0467,4 + 6464 + b4d4) = |a1|2
3 (6.2.3)
Re (C4b4 - d4fL4) =0

Re (b4d4 - 64@4) =0.
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Proof. As for I), with the aid of Sagemath and structure equations (6.2.1), it is easy to the see that
%dchg = (2%6 (d4@4 + d4B4 + dyCy + CaQg + 6454 + b4d4)

—la1|* - laz]? - |as]* - |as|* - |ag|* - |az|?

(6.2.4)
~[b1[? = [baf?  [bs[* — [bs]* — [be|?
“ler? = leal? = lesl® ~[da [ - [daf ) 254125,
i.e., the metric F' is astheno-Kéhler on (M, J) if and only if (6.2.2) holds.
IT) Under the assumption
ag=ag3=as=ag=a7=by=by=bg=bs=bg=cr=co=c3=c5=dy=do=d3=0,
taking into account (6.2.4) and by a straightforward computation, we obtain that
dd°F3 =0, dd°F*=0
if and only if
2Re (dytiy + daby + dsCy + caliy + caby + baas) —|ar]* = |e1[* = 0
2NRe (c4aq + c4by + byay) — |ay* = 0
2NRe (dydy + dyby + bady) —|ar)? = 0
20Re (daly + daCy + caay) —|c1* =0
20Re (dyby + daCy + caby) —|c1? = 0.
The last system is equivalent to (6.2.3). O

Remark 6.2.2. Recall that an Hermitian metric g on a n-dimensional complex manifold (M, J)
is said to be balanced if its fundamental form w satisfies dw™ ! = 0. In [146, p. 185] the authors
asked for an example of a non-K&hler compact complex manifold which admits both balanced
and astheno-Kédhler metrics. In [52], and independently in [92], the authors constructed explicit
examples of such manifolds in any dimension. As a direct application of Theorem 6.2.1, we obtain
families of 5-dimensional complex nilmanifolds carrying both astheno-Kéhler and balanced metrics.
We apply a similar construction as in [92, Remark 2.6]. Let

Fe %(AUH +n2§ +7733 +77421 +7755)
where A is a positive real number. Then dE* =0 if and only if

a4 + Ab4 + AC4 + Ad4 = 0, (6.2.5)

where ay, by, ¢4, dy are the parameters as in (6.2.1) Let g be the diagonal metric whose fundamental
form is

i — — — — _
o 5(7711 R )
Then, according to I) of Theorem 6.2.1, g is astheno-Kéhler if and only if condition (6.2.2) holds.

Take 1
a4:_ﬁ(1+2i), by =1, cy =1, dy=1, A=—.
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Then, with this choice of parameters, we obtain

1 1 1 1 1
ag + Aby+ Acy + Ady=—— ——i+ —i+ —i+— =0,
10 5 10 10 10

that is (6.2.5) is satified and so, for such a choice of parameters, F' gives rise to a balanced metric
on M =T\G. A straightforward calculation yields

2Re (dyy + dyby + dyCy + c4ly + c4by + byay) = 1.
Therefore, the Hermitian metric ¢ is astheno-Kahler if and only if condition (6.2.2) reads as
1 = |a1|? +|agf? + |as? + |as|? + |ag|?® + |ar|*+
+ [byf? + [baf? + [b3]? + [bs|* + [b6[*+ (6.2.6)
+ ea]? + ol + sl + |di* + |dof? .
One can check that there exist solutions in Q[¢] of equation (6.2.6), so that, for any given solution,
the associated complex nilmanifold defined as in (6.2.1) admits both a balanced metric and an

astheno-Kahler metric.

As an application of Lemma 6.1.2, we provide a family of compact almost complex nilmanifolds
without 2-pluriclosed forms.

Proposition 6.2.3 ([133]). Let {4}, ..., 4%} be the set of complex forms of type (1,0), such that

dy? = 0, j=1,...,3,
i} _ _ _ _ (6.2.7)
dpt = a1 +ag® +ag ! + ag v + a5 P + agp'? + ag P,
where ay,...,a7 € Q[i]. Let G be the corresponding simply-connected and connected nilpotent Lie
group and T c G be a lattice such that N =T\G is a compact nilmanifold. Assume that
ai1as + agay = 0 (6.2.8)
and set a = (ai,...,a7). Then (N,J,) does not admit any 2-pluriclosed form.
Proof. A straightforward calculation using (6.2.7) yields to
%ddcwﬂl _ (|a1|2 + |a6|2),¢12ﬁ + (|a2|2 T |a7|2)¢23§3 4 (a1@+a—6a7)w1223
+(aga + Grag)y* 12
= (laa? + lagl) 22 + (|ag|* + |a7[*)y*323
The thesis follows immediately from Lemma 6.1.2. O

Remark 6.2.4. For any given a such that (ag,a7) # (0,0), J, is a non integrable almost complex
structure on N. Consequently, for such an a, (N, J,) is an almost complex manifold with no
2-pluriclosed forms.
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6.3 Blow-ups of astheno-Kahler metrics

By classical results and more recent ones, (see [27, 154, 4, 54|), we know that, for compact complex
manifolds, the property of admitting, respectively, Kéhler, balanced, or SKT metrics, is stable
under blow-ups either in a point or along a compact complex submanifold. Regarding astheno-
Kéhler metrics, in [55], it is proved the following result.

Proposition 6.3.1. (/55, Proposition 2.4]) Let (M, J,g) be an astheno-Kdhler manifold of complex
dimension n such that its fundamental 2-form F satisfies

dd°F =0, dd°F?=0. (6.3.1)

Then both the blow-up Mp of M at a point p € M and the blow-up My of M along a compact
complezx submanifold Y admit an astheno-Kdhler metric satisfying (6.3.1), too.

In this section, we will show that blow-ups of astheno-Kéhler metrics do not preserve additional
differential properties of the metric, namely we construct an example of a 5-dimensional manifold
M admitting a metric F' satisfying

dd°F? =0, dd°F?=0, (6.3.2)

and we will consider the blow-up of such manifold along a submanifold. We will prove that such
blow-up does not admit any Hermitian metric F which satisfies dd°EF? = 0 and dd°F* = 0.

We note that if dd°F = 0, conditions (6.3.1) of [55] would be verified, thus yielding stability.
Therefore, when we consider a Hermitian metric F' which satisfies weaker conditions than (6.3.1),
e.g., the astheno-Kihler condition and the differential condition dd°F™3 = 0, in general such
conditions are not stable under blow-ups

Now, we construct a family of 5-dimensional compact complex nilmanifolds endowed with a
Hermitian metric whose fundamental form F' satisfies (6.3.2) and such that the blow-up of M
along a suitable 3-dimensional complex submanifold Y has no Hermitian metrics satisfying (6.3.2).
To this purpose, we start by considering the following nilpotent Lie group G := (C?, +), where the
operation » is defined for every w = (wy, w2, w3, wy, ws), z = (21, 22, 23, 24, 25) € C° by

w * 2z =

(w1 + Z1,W2 + 29,W3 + 23,Wq + 24,25 + A1 W122 + a4@1z1 + b4@22’2 + Clwszzy + 04@323 + d4@42§4 + w5),
with a1, a4,bs,c1,c4,ds € Q[i]. We can then consider the following forms on G
0t =dz, ie€{l,2,3,4}
775 =dzs —a121dzo — a4z1dz1 — baZodzo — c123d24 — caZ3dzs — daZadzy.

It can be easily seen that {n',...,n%} are left-invariant global forms on G with structure equations

dn'=0, ie{l,2,34}
d775 _ —017712 + a47711 + b47722 _ 017734 + 047733 + d47744.
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The dual left-invariant complex vectors fields {Z1, Za, Z3, Z4, Z5} on G are given by

_ 0 a0
Zl = 9a +a42’18z5

_ 0 = Je]
ZQ = 8_22 + (CLlZl + b422)8—25
L0 .m0
Z3 = 92 +Cq23 923

o) = o)
Z4 = 8—Z4 + (6123 + d4Z4)a—25

_ 0
Zs = Yo
We note that TeG = (Z1,...,25,Z1,...,2Z5) and the distribution D = (Zy,...,Z5) is integrable.
Therefore, if we denote by J the almost complex structure on G for which {Z,..., Z5} is a frame of
(1,0)-vector fields and {n',...,n°} is a coframe of (1,0)-forms, then .J is an integrable left-invariant

almost complex structure on G.

Since the constant structures ai,ag, by, c1,cq,ds are numbers in Q[i], Malcev theorem assures
the existence of a discrete uniform subgroup I' such that M := I'\G is a compact nilmanifold. In
particular, since J is left-invariant on G, it descends to M, i.e., (M,J) is a complex 5-dimensional
nilmanifold. In particular {Z1,...,Zs} and {n',...,n°} are a global left-invariant frame of (1,0)-
vector fields, respectively (1,0)-forms on M.

In particular, we point out that M is the nilmanifold associated to the Lie algebra g of Section
4, with structure constants

a2=a3=a5=a6=a7=b1:b2=b3:b5=b6=62=63:05=d1=d2=d3=0.

If we denote by
p:G->M

the natural quotient projection from G to I'\G' and we set
Yo = {(21,22,23,24,25) : 22 = 24 = 0} € G,

then p(Yp) =Y ¢ M is a compact complex 3-dimensional submanifold of M whose complexified
tangent bundle T¢Y is spanned by {Z1, Z3, Z5, 21, Z3,Z5}.
It is immediate to check that Y is a 3-dimensional nilmanifold and {n*,7?,1°} is a global coframe
of (1,0)-forms on Y with complex structure equations given by
dn' =0,
dn®=0 (6.3.3)

dn® = ' +can™.

For the convenience of the reader, we set a' := n!, a? := 3, and o® := n°, so that we can rewrite
(6.3.3) as

da! =0,
da?=0 (6.3.4)

da?® = agatt + cja??.

Now fix the following constant structures

a1=-1-3i, ag=1, by=1, c1=-4, c4=2, dy=2,
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and consider the metric .
F= % Z W A 775.

7=1
For such choice of coefficients, by Theorem 6.2.1, we have that

dd°F?=0, dd°F3=0, dd°F 0.

Now, let us consider the blow-up m: My — M of M along the compact complex submanifold Y, with
E the exceptional divisor. We note that F has complex dimension 4, since each fiber 77! (y) c My
over a point y € Y has dimension 1 and dim¢ Y = 3.

By contradiction, now let us assume that the astheno-Kihler condition dd°F? = 0 and the
condition dd°F? = 0 are stable, i.e., there exists a Hermitian metric on My such that dd°F? = 0
and dd°F? = 0.

Then, the restriction of F on E gives rise to a astheno-Kéhler metric on E, that is ddC(F |E)2 =0,
i.e., F/ is a 2-pluriclosed manifold.

We now recall the following useful proposition by Alessandrini (|3, Proposition 3.1]), adapted
here to the setting of p-pluriclosed manifolds.

Proposition 6.3.2. Let M and N be connected compact complex manifolds, with dim N =n >m =
dim M > 1, and let f: N — M be a holomorphic submersion, where a:=n —m = dim f~*(z),z € M,
1s the dimension of the standard fibre F. If N is p-pluriclosed for some p, a<p<n-1, then M is
(p — a)-pluriclosed.

Let us consider the map 7r|E:E - Y. We note that «|_ is a holomorphic submersion with
1-dimensional fibers, therefore by Proposition 6.3.2, we have that Y is 1-pluriclosed, i.e., it admits
a SKT metric.

However, this is absurd by either the characterization of 3-dimensional SKT nilmanifolds by
[53], or Lemma 6.1.2, observing that dd®(-a>3) = 8a!?'2.

Summing up, we have proved the following

Theorem 6.3.3 ([133]). On a compact complex manifold of dimension n, the existence of a Her-
mitian metric F such that

dd°F"2 =, dd°F" 3 =0

s mot preserved by blow-up.

6.4 Geometric Bott-Chern formality and Strong Kahler with Tor-
sion metrics

In this section we investigate the relation between the notions of SKT metrics and geometrically-
Bott-Chern-formal metrics in the setting of nilmanifolds endowed with a left-invariant complex
structure J and a Hermitian metric g.

In complex dimension 3, the existence of SKT metrics is fully characterized by Fino, Parton, and
Salamon, in terms of the complex structure equation of the manifold, as we recall in the following.

Theorem 6.4.1. ([/53, Theorem 1.2]). Let M = I'\G be a 6-dimensional nilmanifold with an
invariant complex structure J. Then the SK'T condition is satisfied by either all invariant Hermitian
metrics g or by none. Indeed, it is satisfied if and only if J has a basis (') of (1,0)-forms such
that

da'=0

da?=0 (6.4.1)

do? = Aa'? + Ba?? + Call + Da'? + Ea'?
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where A, B,C, D, E are complex numbers such that
|AP? +|D|? + |E? + 293¢ (BC) = 0. (6.4.2)

We will refer to 6-dimensional nilmanifolds satisfying (6.4.1) and (6.4.2) as
Fino-Parton-Salamon-nilmanifolds, shortly FPS-nilmanifolds and we will denote the Lie algebra of
the group G by the symbol g.

By this classification result, we are able to prove the following theorem.

Theorem 6.4.2 ([133|). Let (M, J) be an FPS-nilmanifold. Then, any left-invariant (SKT) metric
is geometrically-Bott-Chern-formal.

Before proving Theorem 6.4.2, we will need the following lemma for the 99 operator on this
class of manifolds.

Lemma 6.4.3. Let (M,J) be a FPS-nilmanifold. Then,

0.

00 |Apag

Proof. (of Lemma 6.4.3). We begin by observing that it suffices to prove that 990 = 0. In fact,
let us consider the left-invariant (p, ¢)-form on M

oc=a""A- AP AT AL e,

We note that if o does not contain &3, them 99 = 0. In fact, let us consider the two cases:
(1) i 3,5, #3 for every ke {1,...,p}, le{1,...,q}.
(2) ip =3 for some k€ {1,...,p} and j, # 3 for every [ € {1,...,q}, or iy # 3 for every ke {1,...,p}
and j, = 3 for some [ € {1,...,q}.

In case (1), by structure equations (6.4.1) we immediately have that da’* = da’t = 0. Hence,
by Leibnitz rule, 890 = d(do) = 0.

For case (2), let i, =3 for ke {1,...,p} and j, # 3. Then, up to a sign change, by Leibnitz rule
we have that do = 0a® A &, where ¢ is o from which we remove o?. Since da® = Aa'? + Ba?? +
Ca' + Da'?, we can write that

do = Aa2 A6+ Ba® A6+ Calt A6+ Da'? A 6.

Since do does not contain o or o, once again by (6.4.1) and Leibnitz rule, we obtain 0do =

d(0c) = 0. Analogous computations can be carried out when ij, # 3 for every k € {1,...,p} and
j; =3 for some l € {1,...,q}.
Let us then consider d9a3. If g is any left-invariant metric on (M,.J) with fundamental

associated form

- 3 _ _ _
F= % > B+ % > (Fkﬁakh - Fkﬁo‘hk)
k=1 <h

then, by the above argument 9OF = %Fﬁagoﬁ’g. By Theorem 6.4.1, any left-invariant Hermitian
metric on (M, J) is SKT, therefore, g is SKT, i.e., 9OF = 00a>3 = 0.
Therefore, up to swapping the forms and changing the sign accordingly, for a left-invariant

form o = o33 A & with & not containing a® nor a3, for the above arguments we have that 0do =
00(a®3) A6 = 0. Then, by linearity of the 9 operator, we can conclude. O
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Proof (of Theorem 6.4.2). First of all, we observe that the complex structure J on the nilman-
ifold M := IL\G is nilpotent, i.e., there exists a basis of (1,0)-forms {a;}7, such that da €
Spanc{a®, )%le. Hence, [11, Theorem 3.7] (see also [124, Corollary 3.12]) yields the isomor-
phisms

Hpl(g,7) = HpL (M), (6.4.3)

i.e., the Bott-Chern cohomology of (M, J) can be computed via the subcomplex of left-invariant
forms.

Now, let g be a left-invariant metric on (M, J) with fundamental associated form F. We will
show that ¢ is geometrically-Bott-Chern-formal. Let us then fix two Bott-Chern harmonic forms
BeMpL(M,g), v € Hp(M,g). Then, the product § A~y is Bott-Chern harmonic with respect to
g if, and only if|

d(BAy) =0, 8Dx,(BAYy)=0.

By Leibnitz rule, d(B A~) =0 since both 3 and ~ are Bott-Chern harmonic. Moreover, by Lemma
6.4.3, 90(*gB A7) =0, ie., Bry e HELT(M,g). Hence, g is a geometrically-Bott-Chern -formal
metric on (M, J). O

A similar result also holds for a class of manifolds which generalizes the FPS manifolds in higher
dimensions.

Theorem 6.4.4 ([133]). Let M be any 2n-dimensional nilmanifold endowed with an invariant
integrable almost complex structure J induced by a coframe {n',... 0"} of left-invariant (1,0)-
forms on (M, J) with structure equations given by

dn*=0, die{l,...,n-1},
dn™ € Span(nij,nij)@',jzl,...,n—l-

Then, any invariant SKT metric is geometrically-Bott-Chern-formal.

Proof. In a similar fashion to proof of Theorem 6.4.2, it can be shown that, if there exists a
left-invariant SKT metric on (M,.J), then 99n™ = 0, and in particular the d9 operator vanishes
on any left-invariant form on (M, J). Notice that the Bott-Chern cohomology of (M,.J) can be
computed via the subcomplex of left-invariant forms and its Bott-Chern harmonic representatives
are invariant since the complex structure J is nilpotent and [11, Theorem 3.8| applies. Hence, if g
is a SKT metric on (M, J) and we take two Bott-Chern harmonic forms o and § of bedegree (p, q),
respectively (7, s), then a and (8 are left-invariant and a A 8 € AP*9° g satisfies d(a A §) = 0 and
by, structure equations, 99( #gaeA B) = 0. Therefore a A 8 is Bott-Chern harmonic, i.e., the product
of two left-invariant Bott-Chern harmonic forms with respect to ¢ is Bott-Chern harmonic. This
implies that every left-invariant SK'T metric is geometrically-Bott-Chern-formal.

O

In higher dimension and under more general conditions on the complex structure of the nil-
manifold, however, similar results do not hold. Certain products of compact complex surfaces, e.g.,
are SKT but do not admit geometrically-Bott-Chern-formal metrics, as proved in the following
theorem.

Theorem 6.4.5 (|133]). Let (M,J) be the product of either two Kodaira surfaces, two Inoue
surfaces, or a Kodaira surface and a Inoue surface. Then (M, J) admits SKT metrics but does not
admit geometrically-Bott-Chern-formal metrics.
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Proof. We begin by noticing that given the product of any two of the above compact complex
surfaces (M, J) = (M',J") x (M",J"), such manifold admits an SKT metric.

Let us consider the product metric g := ¢’ + ¢, given by the sum of the diagonal constant
metrics ¢’ and ¢"” with respect to certain coframes {n!,1?} and {n3,7*} on, respectively, (M’,.J")
and (M",J") and let

i, T, 3 i, 3 4
F/: 5(7711"’7722)7 FII: 5(7733"'7744)

be the fundamental forms associated to, respectively, ¢’ and ¢”. By a dimension argument, we have
that on each factor

QOF' =0, OOF" =0.
Therefore, if F:= F' + F" it is clear that
OOF = 9OF' + 9OF" =0,

i.e., the product metric g is SKT on (M, J). (We will refer to such metric by g.)

We will show that none of the above product manifolds admits geometrically-Bott-Chern-formal
metrics by exhibiting a non vanishing Aeppli-Bott-Chern-Massey product on each manifold.

Note that on each product, Bott-Chern and Aeppli cohomologies can be computed via the
subcomplex of invariant complex forms, as follows. First of all, the de Rham cohomology and
the Dolbeault cohomology of compact surfaces diffeomorphic to solvmanifolds can be computed in
terms of invariant forms, see, e.g., [12]. Therefore, applying Kunneth formula, it follows that the de
Rham and the Dolbeault cohomologies of the product of any two such surfaces can be computed in
terms of the invariant forms. By [11, Theorem 3.7|, also the Bott-Chern and Aeppli cohomologies
can be computed in terms of the invariant forms.

(i) The product of two Kodaira surfaces of primary type.

Let (M,J) = (KT,Jgr) x (KT, Jgr) be the product of two Kodaira surfaces. The complex
structure J is determined by the coframe {n',n? n3,1n*} of left-invariant (1,0)-forms such that its
structure equations read

dnt =0

dn? = Ap'!

dn =0

dn* = B,

(6.4.4)

for A,BeC~{0}.
From (6.4.4), it is easy to see that the following Bott-Chern cohomology classes

(n"'1se,  [1*1se,  [7°]sc

are non zero. Also, we have that

— _ _ 1 _ _
1T, 33 24 33 .3
A =00 (— — ) ) An®=0. 6.4.5
n n B77 n n ( )

Then, it is well defined the following Aeppli-Bott-Chern-Massey product

) ) . ~ H2,1 M
(7" o [ e [n*scasc = |——=n"T)] < 0000 s f H,)?(M )o [n'lse

Since d * 7723Z = —d(leSﬁ) =0, the form 1723Z is Aeppli harmonic, hence, as a cohomology class in
Hi’l(M), we have that
1 —
|:——_77234:| 0.
AB A
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It remains to show that [‘%77231]14 ¢ Hi’O(M) u [nﬁ]Bc + Hil’l(M) u [7%]BC.

Let us then suppose, by contradiction, the opposite, i.e.,

1 Ny hi
_ _—7)234 = Tigi A 1711 + Z sjij}j A 773 +0R +55, (6'4'6)
AB i=1 j=1

where h5y? := dim H5Y(M, g), ri,s; € C, R e AVY(M), S € A*°(M), and {¢'} and {¢’} are the
left-invariant harmonic representatives of, respectively, Hi"o(M ), and Hil’l(M ), with respect to g.
It is immediate to compute the invariant Aeppli cohomology of (M, J) of bi-degree (1,0) and
(1,1), resulting in
51:771a 52:7727 ’53:7737 54:774?
Wl = 77157 W2 = 7713’ WP =ttt o 772T’ W = 77257 S = 77237 W = 773T>

U® = 7735, 0O = 7735, 10 = 77317 Y1 = zﬁ’ W12 = 77457 W1 = 7721 _ £n4§
AB
Then, equation (6.4.6) can be rewritten as
1 — — — — — — — — —
_En234 = o 2T BT g AT g 132 g 188 13T 23T 25 (6.4.7)

; : . . : AB 43 _
— 56?8 1 10731 1 51138 1 s 1onP 51 n? —813E77342 +OR +9S.

We note that the form nlgm is d-closed. Therefore, if we multiply (6.4.7) by anm, we obtain

0= 813é_Bn1234m+ a(R/\nHm) +5(8Anl2m)’
AB
ie., .
AB oo 12134y | 7y 12134
slngVol—a( RnAan )+0(=SAn ). (6.4.8)

By integrating (6.4.8) and applying Stokes theorem on a manifold with empty boundary, we obtain
that S13 = 0.

If we repeat the same argument, multiplying now (6.4.7) by the d-closed form 7714ﬁ

, we obtain
1 J— _ J—

—Vol = d(R A ') + §(S A n'H123),

IV (RAn 7)) +0(SAn ")

which, by integrating and Stokes theorem, leads to a contradiction.
To summarize,
3§]

(" se. [ ]8c, (n]Be) apc # 0,

i.e., we obtained a non vanishing Aeppli-Bott-Chern-Massey product, which, by [18, Theorem 2.4],
implies that (M, J) does not admit geometrically-Bott-Chern-formal metrics.

(i) The product of two Inoue surfaces of type Sy;.
Let (M,J) = (Sm, Js,,) x (Swm, Js,,) be product of two Inoue surfaces of type Sps. The com-
plex structure J is determined by the left-invariant (1,0)-coframe {n',n? n n*} with structure
equations

1_ a-if 12 _ a-if 12
di = 50" = =5n
dni ) ;ic;nz y—i§  y—id 34 (6‘4'9)
dn” = o T T T

dn’* = =iy,
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for a,y e R\ {0}, 8,6 e R.
From (6.4.9), it is clear that the following Bott-Chern cohomology classes

22]

44

121se,  [*®1se,  [1*]se

are well defined and non zero. Moreover,
— — _ 1 — — —
022 A8 = 88(—2 )28, 7?8 At = 0,
oy
hence the following Aeppli-Bott-Chern-Massey product

3,2
E H (M)
A HY OIP]po+ HY () Ul )sc’

345] 1 234@]

([77123207 (0 BC [7744]BC>ABC = [a—,yn

is well defined. o B o
Note that since d(*,n?**3*) = —~d(n'?') = 0, the form 7?3434 is Aeppli-harmonic and, as a Aeppli
cohomology class,

1 J—
[_7723434] 4 0.
ary A

It remains to show that [%n%‘*?’jh ¢ Hi’l u[n?2] g + Hi’l(M) U[n**]se. In order to do, we prove
that Hj’l(M) = {0}, yielding that Hi’l U 2] sc + Hi’l(M) U [n*] e =0.

By definition, we observe that

Ker(35|A27l(M))

H>Y (M) = —
A (M) Im(0 . )+ Im(0 20 )
ALL(M) A20(M)

With the aid of structure equations (6.4.9) and Sagemath, we can compute
dimc Ker(aéwlg) =15
dimc Im(8|/\L1 g) =12
dim¢ Im(8|/\2yog) =6
dim¢ Im(8|/\171 g) N Im(8|/\2’og) =3,

so that

dimg Hy' (M) = dime Ker(99) ,, ) - dime(Im(9) ., ) +1m(9)] .5, ))
=15-(18-3) =0.

Therefore, Hj’l(M) ={0} and

— — 1 P
(In** 1B, [1**Bos (1" BC) ABC = [04_7“23434]/1 £0,

which, by [18, Theorem 2.4| implies that (M, J) does not admit any geometrically-Bott-Chern-
formal metric.

(i7i) The product of a Inoue surface of type S); and a primary Kodaira surface.
Let (M,J) = (Sm,Js,, ) x (KT, Jgr) be the product of a Inoue surface of type Sps and a primary
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Kodaira surfaces. The complex structure J is determined by the coframe of left-invariant (1,0)-form
{n*,n%,n%,n*} with structure equations

dnl_ a=if,12  a-if, 12

ST N
dn? = —ian*
b~ 0 (6.4.10)
diy' = A,

with a« e R\ {0}, BeR, BeC~ {0}.
We consider the following Bott-Chern cohomology classes
] Ppe,  [1°]sc-

[n**]Bc, [0

They are clearly well defined and they are not zero. Moreover,
72 A - 85( . 1_7724)’ 7 An® =0,
iaA
Therefore, the Aeppli-Bott-Chern-Massey product

' | L 720
(0, 0 O acdane =[] G

is well defined. B o B
Note that d * (ﬁnzﬂ) =L d(n'?%) =0, ie., the form ﬁnx"l is Aeppli-harmonic and

A
[L_nzzm] 40,
oA A
as a Aeppli cohomology class.
It remains to show that [ﬁnzﬁh ¢ HA’O(M) U 2] g + HA’I(M) u [n3]Bc. Let us suppose
by contradiction that this is the case, i.e.,

hl’o hl,l

1 _ A X — A . —
—? = Y NE A Y ! A+ OR + S, (6.4.11)
1A i-1 j=1

with \;,u; € C, R € AYY (M), S € A20(M), and {¢'} and {u/} are, respectively, a basis for
H}L{O(M, g) and 7-[114’1(M, g). By structure equations (6.4.10), we can compute the spaces of Aeppli-
harmonic forms with respect to g

Hy (M, g) = (), My (M,g) = (n* ™, n™).
Then, equation (6.4.11) becomes

1 - - _
— P = A3 1 OR + DS. (6.4.12)
oA
Since the form 7714@ is d-closed, if we multiply (6.4.12) by 1714@’ we obtain
1 R _ R

——Vol = d(-R A n*123) + (=8 A nt1123),

e
which, by integrating over M and applying Stokes theorem, leads to contradiction.

Hence, we showed that B B
("*18c. (0180 [ ]BC) aBC # 0,

i.e., (M,J) admits a non vanishing Aeppli-Bott-Chern-Massey product. By [18, Theorem 2.4|, this
implies that (M, J) does not admit any geometrically-Bott-Chern-formal metric. O
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We prove one more result in this direction, showing that the existence of Aeppli-Bott-Chern-
Massey products obstructs the existence of geometrically-Bott-Chern-formal metrics on a family
of 4-dimensional complex nilmanifolds which cannot be constructed as a product of two or more
manifolds.

We start by considering the set of complex forms {n',n% 7%,1m*} of type (1,0) satisfying the
following structure equations

dnt =0
dn®=0
d’l’}3 - A1721

d’l’]4 — Bl7712 + BQT]lT + B3772§7

with A, By, B2, By € Q[i]. Let g* = Spang(9Re(n")Im(n"))iz1....4. Then, setting
g% = Spang(nt, n?, 1, 1), we obtain that gc = gh? @W gives rise to an integrable almost complex
structure J on the real nilpotent Lie algebra g. We will consider the natural complex structure
J on g which arises by choosing {n',7% 73,17} as a coframe of (1,0)-form on g%. Let G be the
simply-connected and connected Lie group with Lie algebra g. By Malcev’s theorem we have that
the 8-dimensional real Lie group G associated to g admits a discrete uniform subgroup I' such that
M :=T\G is compact and, in particular, (M, J) is an 8-dimensional nilmanifold with an invariant
complex structure.

Moreover, since J is nilpotent complex structure on (M, J), by [11, Theorem 3.8] (see also,

[123, Corollary 3.12|), we have the following isomorphisms
Hyt(g,J) > Hpd (M),
i.e., the Bott-Chern cohomology of (M,.J) can be computed by means of the complex of left-

invariant forms on g.

Theorem 6.4.6 ([133]). Let M =T'\G be a complex 4-dimensional nilmanifold endowed with the
left-invariant complex structure J determined by a coframe of (1,0)-forms {n*,n% n3,n*} with struc-
ture equations

dnt =0
;lzz ] ?47721 (6.4.13)
d774 _ 317712 n Bgnﬁ n B3772§7
with A e C~ {0}, Bj € Q[¢], such that
|A]? + |Bo|? = 293¢ (B2 B3). (6.4.14)

Then (M, J) admits a SKT metric but does not admit any geometrically-Bott-Chern-formal metric.

Proof. Let now consider the diagonal metric g with fundamental associated form

F:

N | .

2 hh
n.
};

With the aid of (6.4.13) and (6.4.14), we can see clearly that g is SKT, i.e., 9F = 0.
We will show that (M, J) admits a non vanishing ABC-Massey product, which suffices to prove
that there exists no geometrically-Bott-Chern-formal metric on (M, .J).
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Let us consider the following Bott-Chern cohomology classes

[n""'1se,  [0™1se,  [0°]se-

Since ~
A =0, plan? 38(|A|2?7 %),
the Aeppli-Bott-Chern-Massey product
<[ 1T:| |: 25] |: 2] > [ 1 233] HXI(M)
n o 1BC, M IBC, M IBC)ABC = |~ 97 € = )
[APT 14 HY (M) u[n]se + Hy (M) U [n?]sc

is well defined.
We notice that the d #, (#n%"g) =R d(n12414) 0, i.e., the form 1?33 is Aeppli harmonic and,

as a Aeppli cohomology class, we have that [—#7]233]

1,0 i 1,1
Hy (M)u[n']pe + Hy (M) U [n*]sc B B
Let us now suppose by contradiction that [—#nzg?’]fl € Hi’O(M) U [1711]30+HA’I(M) u[n?]sc.
By straightforward computations, it is easy to check that the spaces H}L{O(M ,9) and 7-[114’1(M ,9)
are generated, respectively, by (17)? -1 and (€911 where

A # 0. It remains to show that [—W17233]A ¢

wh=ant, =0
and
gh=n =g =P ey
55 _ ,'73T’ &-6 _ ,'7357 &-7 _ ,'7317 58 _ 774T
¢9 = 7745’ 10 = 77457 I 7733 + 7741‘

Then, [~zn*%]a € H (M) U [ ] e + Hy' (M) U [7*]pc implies that

—ﬁn Zrzw Ant +Zs]£7/\17 +0OR+ 08, (6.4.15)
=1

for r;,s; € C, Re AY?(M), S € A>*(M), so that

1 _ _ _ _
_WUQ?B — _7’27]121 _ 8177213 _ 827]124 + 3577 + 3677 3777234 (6416)

+582 2 + s9m”* + 5100”0 + 51177 + s11** + OR + DS.
We note that the form 7713@ is d-closed, therefore, if we multiply (6.4.16) by 7713@7 we obtain
0= 8117’]1234@ + 8(R/\ 7713@) +5(S A 7713@)’

which, by integrating and applying Stokes theorem, forces s11 = 0. Equation (6.4.16) reduces to

1 — — — — — —
—an = —ron'?! = s1?' = son' + s550® ! + 560 (6.4.17)

+s7n? +5817 +59n +510n 3L OR+0S.
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14124 14124

Now, the form n is d-closed, so if we multiply (6.4.17) by 7 , we obtain

1 J— _ J—
—WVOI = (R A1) £ (S Attty
which, by integration and applying Stokes theorem, leads to contradiction.
Therefore, we showed that

((n"Bc. [**1es [n*]Bc) aBe # 0,

i.e., (M,J) admits a non vanishing Aeppli-Bott-Chern-Massey product, which implies that (M, J)
does not admit any geometrically-Bott-Chern-formal metric. O
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Appendix A

We present the notion of complex manifold as a differentiable manifold endowed with an equivalence
class of holomorphic atlases.

Let M be a differentiable manifold of real dimension 2n. A holomorphic chart on M (U, ) is the
datum of a open set U ¢ M and a map ¢:U - ¢(U) c C", which is a homeomorphism. In particular,
for every point p € U, we have holomorphic coordinates ¢(p) = (21(p), ..., zn(p)). We will denote
such coordinates as (z1,...,2,). A holomorphic atlas on M is a collection of holomorphic charts
on M {(Ui, i) }ier such that

e Ui U; = M, i.e., the family {Uj; };cs is a covering of M,

e on any U; nU; # @, the transition function ¢;; := ¢j 0 0 (U nUj) = ;(UinUj) is a
biholomorphism between open sets of C™.

Let 8 = {(Ui, ¢i) }ier, B = {(Vj, %)} jes be two holomorphic atlases on M. We say that a holomor-
phic chart (Uj, ;) of U is compatible with a holomorphic chart (V},1;) of U if, on U; n'V; # &,
the map ¢; o w;lzz/)j(Ui nV;) = ¢i(U;n'V}) is s holomorphic map between open subsets of C".
Moreover, two atlases of M 4 and U are compatible if every holomorphic charts of 4l is compatible
with every holomorphic chart of 2.

Remark. Compatibility yields an equivalence relation on the set of holomorphic atlases.

Definition. A complex manifold M of complex dimension n is a differential manifold M of real
dimension 2n endowed with an equivalence class of holomorphic atlases.
We will denote the complex dimension of M by dim¢ M.

For the sake of simplicity, from now on, unless specified, we will call an equivalence class of
holomorphic atlases simply a “holomorphic atlas".

Let M be a complex manifold and let f: M — C be a continuous map from M to C. We
say that f is a holomorphic function on M if, for every holomorphic chart (U, p) of M, the map
foplip(U) - C is holomorphic.

Remark. Given two holomorphic charts (U, ), (V,%) in the same holomorphic atlas of M, with
UnV # @, if fop™! is holomorphic where defined, then foi)™ = fo(¢ top)ory™ = (fop™)o(porp™h)
is holomorphic where defined.

Let M and N be two complex manifolds of complex dimension, respectively, n and m and let
f:M — N be a continuous s map. We say that f is holomorphic if for every holomorphic chart
(U, ) of M and every holomorphic chart (V,4) of N such that f(U)nV # @, the map

o fop ip(Un fH(V))) > (V)

is a holomorphic map between opens of C"™ and C™. In particular, f is said a biholomorphism if f
is a holomorphic homeomorphism, and the manifolds M and N are said biholomorphic.

119



Let M and let E be a two differentiable manifolds with, respectively dimg M =n and dimg FE =
n+2r. A complex vector bundle of rank r over M is a smooth map m: E — M such that, for every
peM, E,:= 7 1(p), i.e., the fiber of E over p, has a structure of a r-dimensional complex vector
space and M admits a covering {U; };cr such that there exists diffeomorphisms 1;: 7=1(U;) — U; xC",
for every i € I, with the following properties:

o 7| =71 o 9;, where 7 is the projection on the first component of each U; x C", i.e., the

71 (U;)
following diagram is commutative

TI'_I(UZ') L) U; xC"

m —
] T
Ui

e for every p € U;, the restriction z/Ji|E 1B, — {p} x C" is a C-linear map.
P

For every i,j € I such that U; nU; # @, the transition functions 1;; = ;o @Di_l:M(Ui nU;) -
1;(U; nU;) are smooth maps. More precisely, 1;; is a diffeomorphism of (U; nU;) x C" and, for
every p € U; nUj, the restriction ;;(p) of ¢;; to {p} x C" gives a C-linear automorphism of C" and
p > ii(p) € GL(r;C) is a smooth map.

A holomorphic vector bundle of rank r over a complex manifold M of complex dimension n
differs in the fact the one requires E to be a complex manifold of complex dimension n+r, the map
m: E — M to be holomorphic, and the maps 1; and the induced maps p ~ 1;;(p) € GL(r,C) to be
holomorphic.

Remark. A complex vector bundle m: & — M of rank r is also a differentiable vector bundle of
rank 2r, by considering the underlying differentiable structure on E and the structure of real vector
space on each fiber E,, p € M. Viceversa, a differentiable bundle £ — M or rank r can be considered
as complex vector bundle £ ® C - M or rank r by considering the complexification of each fiber
(E®C), = E,®C. Moreover, a holomorphic vector bundle is clearly also a complex vector bundle,
whereas a complex vector bundle over a complex manifold does not have in general a structure of
holomorphic vector bundle.

As for differentiable and complex vector bundles, a holomorphic vector bundle E is uniquely
determined by a cocyle, i.e., a covering {U; }¢s of the base manifold and holomorphic maps {6;;:U; N
Uj = GL(7;C)}; jer, where r is the rank of E, which satisfy the following properties:

e 0;i(p) =idcr, for every p e U;,
o Qi‘jl(p) =0;i(p), for every pe U; nUj,
o 01i(p) 00 (p) 0 b;;(p) =idcr, for every p e U; nU; n Uy,

Example (Holomorphic tangent bundle). Let M be a complex manifold with dim¢ M = n and let
{(U;, »;)} be a holomorphic atlas of M, with ¢; = (2%,...,2.). Locally, we consider the following
sets

Ui x C" = {(p,v")| pe Ui, v' = (vt,...,0v%) e C"}.

On the intersections, if pe U;nU; # @ and (p,v') € U; x C*, (p,v?) € U; x C", we have the relations




so that, if we set

Vij = (8Zl ) € GL(n;C), (6.4.18)
0z, Lk=1

we have that v’ = piv?

Then TM := U;(U; x C™), endowed with the identifications given by ;; as in (6.4.18), is the
holomorphic tangent bundle of M.

Note that the tangent bundle T'M of the differentiable manifold underlying a complex manifold
M of complex dimension n is a differentiable vector bundle of rank 2n and, by considering its
complexified version TcM :=TM ® C, it is a complex vector bundle of rank 2n over M.

Let now my: F1 — M and my: E5 - M be two holomorphic (respectively, complex) vector bundles
over M of rank, respectively r1, and ro. Then a map of holomorphic, respectively complex vector
bundles is a holomorphic, respectively differentiable map ®: Fy - E5 such that the following diagram
is commutative

E1L>E2

o b

M1—d>M

and for every point p € M, the restriction ®(p): (E1), — (E2), is linear and the rank of ®(p) is
independent of p € M.

Let now f:M — C be a complex valued function on M. It may be useful to describe the
local action of the exterior differential d on f. If (z1,...,2,) are holomorphic coordinates on a
neighborhood U c M, then locally on U,

df =8f +df = Zafdﬂ ngd‘J
J 7=1

where dz/ and dz’ are, respectively, the holomorphic (1,0)- forms and anti-holomorphic (0,1)-
forms, dual to the (1,0)-vector fields =2 and (0,1)-vector fields -2 induced by the holomorphic

0zJ 977
coordinates (z',...,2"). In particular, by identifying C"* with R?", the holomorphic coordinates
can be thought of as z7 =z’ + iy’ and one obtains that
i_l(i_-i) i_l(i”i)
9zi  2\9xi Oyl 070 2\0xzi oyl )’
and

d2? = da? +idy’, dz = da? —idy’.
Note that with this notation, a complex function f is holomorphic if, and only if, df = 0.
Analougously, for any given form « on M locally written as
o= aﬁdzl A dEJ,
where I = {1 <ij; <+ <i,<n}and J = {1 <j; << j, <n} and dz! = dz"" A--- A dz% and
dz’ := dz" A--- A dZP4, the local expression of the action of d is given by
— " Jo
do=0a+0da=Y 8”dz ndz' ndz” + Z a”dEk/\dz N

k=1 9%k k=1 0%
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We also recall the implicit formulas for the exterior differential on any differential form o« on M.

More specifically, if a = a3 A+ A, is any complex k-form (see Section 1) on M and Zy,..., Zq €
TcM, then
k+1 - R
da(Zl, cee ,Zk+1) = Z(—l)ﬁ- Zj(Ct(Zl, ceey Zj, ceay ZkJrl)
j=1
+ Z (—1)j+loz([Zj,Zl],Zl,...,Zj,...,Zl,...,Zk+1).
1<y<l<k+1
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Appendix B

In this appendix, we recall the notion of formality according to Sullivan and geometric formality
according to Kotschick as introduced in [143], respectively, [87]. In order to do so, we lend the
terminology from the category of differential graded algebras.

Let M be a n-dimensional smooth manifold and let (A®*(M),d) be its de Rham complex. Such
a complex has a structure of a differential graded algebra (shortly, DGA), i.e., the structure of an
algebra A over some field K which is decomposable as A = @; A;, where each A; is a subalgebra
of A, and which is endowed with a differential d4, i.e., a K-linear map d: A - A such that

o d(Aj) c Ajia,
o d(a-B)=da- B+ (-1)%8%.dp, for every o, B € A,
o d’=0.

In this category, a morphism of DGA’s is an algebras morphism f:(A,d4) — (B,dp) such that
f(Aj) c Bj and dgo f = fody. The cohomology of a DGA (A,dy) is the DGA (H%,0), where
each space H f\ is defined as
Hk L Ker(dAi.Aj - j+1)
= :
Im(da: Aj-1 > Aj)

By definition, a morphism of DGA’s f:(A,d4) — (B,dg) commutes with the differentials d4 and
dg, hence it induces a DGA’s morphism at the level of cohomologies

Hy:(H3,0) ~ (Hg,0)

by H¢([a]) == [f(«)], for every [a] € HY. We say that a morphism of DGA’s f:(A,d4) - (B,dg)
is a quasi-isomorphism if Hy is an isomorphism.

Let us now consider two DGA’s (A,d4) and (B,dp). We say that (A,d4) and (B,dg) are
equivalent as DGA’s if there exists a family of DGA’s {(C;, dcj)}?ffl such that (Co,dc,) = (A, da)
and (Cog+1,dc,,.,) = (B,dg), for each i € {1,...,k}, there exists morphisms f; and g;

(C2iv dcm')
(CQi—h dC2¢71 ) (62i+17 dc2¢+1 )
such that Hy, and H,, are quasi-isomorphisms, for every i e {1,...,k}.

Definition. A DGA (A,d4) is said formal if it is equivalent, as a DGA, to a DGA (B,dp) whose
differential dg is identically zero, i.e., dg = 0.

Whence, the definition of formality according to Sullivan, see [143, Definition |.
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Definition. A differentiable manifold M is said to be formal according to Sullivan if its de Rham
complex (A*(M),d) is a formal DGA.

Examples of formal manifolds are compact Kéhler manifold, or more generally, complex mani-
folds satisfying the 90-lemma, see, e.g., [47]. However, in general a manifold is not formal according
to Sullivan; more precisely, there exist certain cohomological obstructions. We present here the def-
inition adapted to the de Rham complex of a differentiable manifold M, see [99].

Definition. Let [a] € H, (M), [] € Hiz(M), and [y] € Hj(M) be de Rham cohomology
classes on M such that [a] U [8] =0 e HYZI(M) and [B]u[y] = 0 € HI (M), ie., there exist
fap € APTIH(M) and fz, € AT"1(M) such that

anfB=dfas,  BAY=dfpy.

Then, the Massey product ([«],[B],[7]) is the equivalence class of de Rham cohomology classes

defined as
Hp+q+r 1(M)
(lad, [BL, [v]) = [fap Ay = (= 1)paAfﬁy]+\7€#,

where J is the ideal of HY-"" "' (M) defined by J := [a]u HI (M) + [y] u HZHH(M).

Massey products do not depend on the representatives «, 3, and v nor on the primitives f,g
and fg, hence they are well defined. Moreover, if f:(A,d4) = (B,dg) is a DGA’s morphism, then
it is easy to see that Massey products are compatible with Hy, i.e., it holds

He([e],[8], [v]) = (Hylal, H(NBL H(H])-

Hence, we immediately have the following.
Proposition. On a formal manifold M, all Massey products vanish.

In general, on a compact differentiable manifold M, the choice of representatives for the de Rham
cohomology yields just a structure of Ac-algebra in the sense of Stasheff [134], by the Homotopy
Transfer Principle by Kadeishvili [80], see e.g. [156, 102]. We refer to 97, 34| for understanding
the relationship between the higher multiplications and the Massey products. Such an A -algebra
is actually an algebra if and only if X is formal according to Sullivan. In particular, when we can
choose a specific set of representatives, we obtain a strong notion of formality, which has then been
introduced by Kotschick in [87]. Let M be a differentiable manifold endowed with a Riemannian
metric g. Then, set d* := — % od o *, where * is the usual Hodge operator on A*(M), and set
A :=dd* +d*d, i.e., the usual Hodge Laplacian, and

HE (M) = {a e A¥(M): Aa =0}

the harmonic k-forms on M with respect to g, for every k € {1,...,dim M }. Recall that, by Hodge
theory, the following isomorphisms of real vector spaces hold

HA(M) > Hip(M).

In fact, whereas de Rham cohomology has a structure of algebra induced by the U product of
cohomology classes, the wedge product in general does not induce a structure of algebra on the
space of harmonic forms. Hence, the following definition.

Definition. The Riemannian metric g is said to be formal according to Kotschick if H)\ (M) has a
structure of algebra induced by the A product. A differentiable manifold admitting a formal metric
according to Kotschick is said to be geometrically formal.
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As observed by Kotschick, globally symmetric spaces are geometrically formal and any Rieman-
nian metric on rational homology spheres is formal according to Kotschick. Moreover, examples
can be constructed by taking products of formal manifolds. For geometrically formal manifolds, as
Sullivan points out in [143], the following holds.

Proposition. Geometrically formal manifolds are formal according to Sullivan.
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Appendix C

In this appendix, the main facts about the geometry of Lie groups are recalled.
Let G be a connected differential manifold and let

GExGE -G
(g;h) = g-h
be a group operation on G, i.e., - is associative, admits an identity e € G and every g € G admits
an inverse g~ € G with respect to -. If the operations (g,h) + g-h and g+ ¢g~! are C* maps with
respect to the differentiable structure on G, then (G,-) is a said a Lie group.
If (G1,-1) and (Gg,-2) are two Lie groups, a group homomorphism ¢:G; — Go is said to be a
homomorphism of Lie groups if ¢ is also a C* map of differentiable manifolds. An isomorphism of

Lie groups is an invertible homomorphism of Lie groups ¢ such that ¢! is a C* map.
For every g € G, the right translation by g (respectively, left translation by g) are the maps

Ry:G— G
h= Rg(h):=h-g

respectively,

Ly:G—G
hw Lg(h):=g-h

By definition of Lie group, both R, and L, are diffeomorphisms of G' but they are not homomor-
phisms of Lie groups. Note that their differentials at a point h € G are

(ng)h: ThG g Tth
Xp = (dRy)n(Xp)

and

(dLg)h: ThG - ghG
X+ (dLg)n(Xn)-

A C* vector field X e T'(G,TG) on G is said to be right-invariant (respectively, left-invariant)
if dLy(X) = X (respectively, dR,X = X), i.e., for every h e H,

(dLg)n(Xp) = Xgn

respectively,
(dRg)n(Xn) = Xng,
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A C* differential form « € I'(G,T*G) is said to be right-invariant (respectively, left-invariant) if
R (a) = a (respectively, L;(a) = a), where R}, respectively Ly, is the pull back of forms by the
map Ry, respectively, L,.
If on the set of left-invariant vector fields g := {X e I'(G,TG) : dL4X = X, Vg € G} one considers
the bracket of vector fields
[X,Y]=XY-YX, X, Yeg,

then the space (g, [-,-]) has a structure of a Lie algebra, i.e., the structure of a vector space endowed
with a bilinear anticommutative binar operation. In particular, g is called the Lie algebra associated
to G. Viceversa, for every Lie algebra b, there exists a unique (up to isomorphism) Lie group H
such that b is the Lie algebra associated to H.

On a Lie group G, it can be easily seen that the map

g->T.G
XX,

is an isomorphism of Lie algebras, i.e., a linear isomorphisms compatible with the brackets of each
space, hence g can be identified with T.G and dim g = n. Analogously, the dual vector space g* of
g, i.e., the space of left-invariant differential forms on G, can be identified with T)G. Note that,
for every a € g*, X € g, a(X) is a left-invariant function on G, which implies that a(X) € R is a
constant.

The implicit formula for the exterior differential applied to a 1-form a € T'(G,T*G)

do(X,Y) = X(a(Y)) - Y(a(X)) - a([X,Y])
yields that, if a € g*, X,Y € g*, then
do(X,Y) = -a([X,Y]).
Let then {eq,...,e,} be a basis for g and suppose that
[eisej] = C?jek,
with cfj e R. Then, if {e!,...,e"} is the base of g* dual to {e1,...,e,}, it is easy to see that
dei(ej,ek) = _Cj‘k:'

Therefore, the structure constants ci-‘“'j characterizing the Lie algebra g of a Lie group G are deter-
mined by either the brackets of a fixed base {e1,...,e,} of g or the structure equations of its dual
base {el,... e"}.

Let G be a Lie group and g its associated Lie algebra. The derived series is the sequence

0@:=9,  oWe=[gg], ¥ =[g"V, g" V],

whereas the lower central series is defined as

900) = 9, o) = 19,9], 9k = 16, 9k-1)]-

The Lie algebra g is said to be solvable (respectively, nilpotent), if the derived series (respectively,
the lower central series), reaches {0}, i.e., there exists a k’ (respectively, k) such that g(*) =
{0}, respectively, gy = {0}. Consequently, the Lie group G is said to be solvable (respectively
nilpotent) if g is solvable (respectively, nilpotent). Note that for every k, g ¢ 9(k), hence a
nilpotent algebra is also solvable.
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Definition. A solvmanifold M is a compact quotient M = H\G of a simply connected solvable Lie
group GG and a closed subgroup H < G.

A nilmanifold M is a compact quotient I'\G of a simply connected nilpotent Lie group G by a
discrete uniform subgroup I' < G.

Remark. (i) By Mal’cev theorem, a simply connected nilpotent Lie group G admits a discrete
uniform subgroup I' (so that I'\G is a nilmanifold) if, and only if, G admits a basis such that the
constant structures are rational numbers, see [98].

(i7) Notice that on a solvmanifold (respectively, nilmanifold) H\G, left-invariant tensors on G such
as vector fields, differential forms, metrics, and endomorphisms, are in particular left-invariant with
respect to any element of H, therefore they descend to the quotient H\G.

We end this section by recalling two classical fundamental results regarding the de Rham coho-
mology of solvmanifolds and nilmanifolds.

Let us consider (A°® g*,d), i.e., the complex of left-invariant forms on Lie group G endowed with
the exterior differential d. Let I be a discrete uniform subgroup of G, and let us consider M :=T'\G.
Then, the following result assures that the inclusion

/\. g* N .A.(M)
yields an isomorphism between the de Rham cohomology of g, namely
Ker(d: /\k g* N /\k+1 g*)
Im(dl/\k_l g — /\k g*)
and the usual de Rham cohomology Hj,(M;R) of the solvmanifold M.

H*(g") =

Theorem. ([108, Theorem 1]) Let M =T'\G be a nilmanifold, with G a simply connected nilpotent
Lie group and I' ¢ G a discrete uniform subgroup. Then, the inclusion

/\.gx- %A.(M)

induces the isomorphism

H*(g") = Hyr(M;R).

More in general, let G be a completely-solvable Lie group, i.e., its Lie algebra g is isomorphic to
a subalgebra of the upper triangular matrices in gl(m,R) for some m. Note that, in particular, a
completely solvable Lie groups is solvable and a nilpotent Lie group is completely solvable.

Theorem. (/70, Corollary 4.2]) Let G be a simply connected completely solvable Lie group with
Lie algebra g. Let H be a discrete uniform subgroup of G and M := H\G. Then the injection

A g A*(M)

induces an isomorphism

H*(g) ~ H*(M;R).
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