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Introduction

On a compact complex manifold, the existence of special metric structures can yield many infor-
mation concerning its topological and algebraic invariants. As a foremost example, the property of
admitting a Kähler metric, i.e., a Hermitian metric whose associated fundamental form is closed,
imposes strong restraints on a complex manifold: from the topological point of view, the Betti
numbers bk, i.e., the dimensions of the k-th de Rham cohomology spaces of the manifold, must
satisfy

⎧⎪⎪⎨⎪⎪⎩

bk > 0, k ≡ 0 mod 2

bk ≡ 0, k ≡ 1 mod 2.

Moreover, compact complex manifolds admitting a Kähler metric, shortly Kähler manifolds,
satisfy the Kähler identities (see, e.g., [75, Section 3.1]), which yield that the Dolbeault Laplacian
and its conjugate are multiples of the usual Hodge Laplacian, hence the harmonic representatives
of the de Rham cohomology and Dolbeault cohomology coincide. Combined with Hodge theory,
this assures that compact Kähler manifolds satisfy the ∂∂-lemma, i.e., the very special property
that every dc-closed d-exact form on the manifold is also ∂∂-exact (see [46]), where, as usual,
d = ∂ + ∂ and dc = i(∂ − ∂). This property forces the natural complex cohomologies associated to
a complex manifold, that is, Dolbeault, Bott-Chern, and Aeppli cohomologies (see section 1.3 for
the definitions), to be isomorphic; it turns out that on a Kähler manifold they indeed coincide.
Hence, on a compact Kähler manifold, the Hodge decomposition holds and the Frölicher spectral
sequence degenerates at the first step (see, e.g., [64]). From the algebraic point of view, Kähler
manifolds are formal according to Sullivan and every Massey product vanishes; as a consequence the
homotopy type is a “formal consequence” of its cohomology ring, see [143]. Examples of compact
complex manifolds admitting a Kähler metric are complex tori Tn ∶= Γ/Cn, i.e., compact quotients
of the complex space Cn by a discrete uniform subgroup Γ, as they inherit a Kähler metric from
the standard Kähler metric g = i

2 ∑
n
i=1 dz

i ∧ dzi on Cn. Furthermore, there exist suitable tools
to construct a Kähler manifold starting from a known Kähler manifold: by a celebrated result
of Kodaira and Spencer in [86], the property of admitting a Kähler metric is open under small
deformations of the complex structure, i.e., any infinitesimal deformation of a Kähler manifold
is still a Kähler manifold, and either restricting a Kähler metric to a complex submanifold or
performing a complex blow-up of a Kähler manifold along a complex submanifold (see [154]) yields
a Kähler manifold.

However, because of the many restrictions that admitting a Kähler metric imposes, a complex
manifold is not Kähler in general, e.g., the only Kähler manifolds in the class of nilmanifolds,
i.e., compact quotients of connected, simply connected nilpotent Lie groups by a discrete uniform
subgroup, are tori, see [24, Theorem A], and more in general, a solvmanifold, i.e, a compact quotient
of a simply-connected solvable Lie group by a closed subgroup, carries a Kähler structure if and
only if it is a finite quotient of a complex torus, by Hasegawa (see [67] and also [68])). As a
consequence, starting from the 80’s a number of authors have introduced notions of new Hermitian
metric structures which generalize Kähler metric. This has been accomplished by defining Hermitian
metrics whose associated fundamental forms belong to the kernels of differential operators associated
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to the complex structure of the complex manifolds, thus yielding interesting Hermitian metrics,
e.g., strong Kähler with torsion metrics, astheno-Kähler metrics, and balanced metrics. Each of the
mentioned notions arises naturally in relevant settings of complex geometry, and, in particular for
strong Kähler with torsion metrics, also in theoretical physics (see, e.g., [59, 141, 77]). More in
details, let (M,J) be a n-dimensional complex manifold and let g be a Hermitian metric on (M,J)
and ω(X,Y ) ∶= g(JX,Y ), X,Y ∈ TM its associated fundamental form.

Strong Kähler with torsion metrics ([26]). The metric g is said to be strong Kähler with
torsion, shortly SKT, if

∂∂ω = 0.

Strong Kähler with torsion metrics arise in the context of Kähler with torsion geometry. More
precisely, given a Hermitian manifold (M,J, g,ω), in [26] Bismut showed that there exists an unique
connection ∇B, known as Bismut connection, which preserves the Hermtian metric g and the
complex structure J , i.e., ∇Bg = 0, ∇BJ = 0, and for which the tensor g(X,T (Y,Z)) is totally skew-
symmetric, where T stands for the torsion of the connection ∇B. The properties of such connection
are related to what is called Kähler with torsion geometry (we refer to [51, 60, 114, 77, 141] for
further details). The tensor g(⋅, T (⋅, ⋅)) can then be identified with the 3-form Jdω and, in the
particular case in which this form is closed or, equivalently, ∂∂ω = 0 , we say that the Hermitian
metric g is strong Kähler with torsion, shortly, SKT. Such metrics have relevant relations with
generalized Kähler geometry (see for instance [59, 65, 74, 21, 39, 38, 145]) and type II string theory
and in 2-dimensional supersymmetric σ-models (see, e.g., [59, 141, 77]). For compact complex
surfaces, i.e., 2-dimensional compact complex manifolds, the notion of strong Kähler with torsion
metrics is equivalent to the notion of regular metrics according to Gauduchon, see [62]; hence, by
the celebrated Gauduchon theorem [62, Theorem 1], on a compact complex surface, there exists a
unique SKT metric in every equivalence class of conformal Hermitian metrics. In higher dimension,
this does not hold, e.g., in complex dimension 3 Fino, Parton, and Salamon have classified real
6-dimensional nilmanifolds endowed with invariant complex structures admitting a SKT metric,
see [53, Theorem 1.2]. In particular, the authors show that on any such manifold either every
invariant Hermitian metric is SKT or none is, and every invariant Hermitian metric is SKT if, and
only if, the structure constants associated to the complex structure of the manifold satisfy a certain
relation (see (6.4.1)). Existence results have been proved also in complex dimension 4 by Rossi
and Tomassini in [125], in which the authors show that, in contrast to complex dimension 3, there
exist invariant complex structures admitting both SKT and non SKT invariant metrics and they
provide sufficient conditions on the structure constant of any 8-dimensional nilmanifold endowed
with a left-invariant complex structure under which any invariant Hermitian metric is SKT. We
point out that compact complex manifolds admitting SKT structures have been proven to be valid
candidates for the study of generalizations of the Kähler-Ricci flow, see for example [139].

Astheno-Kähler metrics ([78]). The metric g on a (M,J) is said to be astheno-Kähler if

∂∂ωn−2 = 0.

Astheno-Kähler metrics have been introduced by Jost and Yau in [78] in the study of systems of
elliptic non linear equations related to rigidity results for complex manifolds. In particular, the au-
thors have shown that if a compact complex manifold (M,J) admitting an astheno-Kähler metric
is homotopy equivalent to a non compact locally Hermitian symmetric spaces without the upper
plane as a factor of the universal cover or, respectively, is homotopy equivalent to a compact Kähler
manifold with additional assumptions on the curvature, then (M,J) is biholomorphic to said locally
Hermitian symmetric space, respectively, Kähler manifold. By dimension arguments, every Hermi-
tian metric on a compact complex surface is astheno-Kähler. In complex dimension 3, the notion
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of astheno-Kähler metrics coincides with the notion of strong Kähler with torsion metrics; there-
fore, in the setting of nilmanifolds admitting invariant complex structures, Fino-Parton-Salamon’s
results apply. However, already from complex dimension 4, the two notions are independent, e.g.,
in [125] Rossi and Tomassini study the relation between astheno-Kähler and strong Kähler with
torsion metrics on nilmanifolds real dimension 8 endowed with a invariant complex structure. In
fact, they provide sufficient conditions on the structure constants of the complex structure under
which any invariant Hermitian metric is astheno-Kähler, respectively strong Kähler with torsion,
and they construct examples of manifolds admitting both astheno-Kähler metrics and non astheno-
Kähler metrics. Furthermore, astheno-Kähler structures on Calabi-Eckmann manifolds have been
constructed in [100].

Balanced metrics ([103]). A Hermitian metric g on (M,J) is said balanced, or co-Kähler, if

dωn−1 = 0.

Balanced metrics have been introduced by Michelson in [103], as a class of Hermitian metrics which
generalizes the notion of Kähler metrics by requiring weaker assumptions on the torsion tensor
of the Chern connection. In particular, on a n-dimensional Hermitian manifold (M,J, g,ω) the
Chern connection is a connection ∇Ch which preserves the complex structure J and the Hermitian
metric g, and whose (1,1)-component of the torsion TCh is identically zero. Then, the metric g
is Kähler if, and only if, TCh is identically zero. Michelson defines balanced metrics as Hermitian
metrics such that the 1-form obtained by taking the trace of TCh vanishes, i.e., τ ∶= tr(TCh) ≡ 0.
As it turns out, this condition is equivalent to the non linear equation dωn−1 = 0, or, equivalently,
d∗ω = 0 (hence, the term co-Kähler), where d∗ is the formal adjoint to d with respect to the L2

scalar product on differential forms induced by g (see section 1.3). Balanced manifolds are in some
sense dual to Kähler manifolds, e.g., if f ∶X → Y is a holomorphic immersion from a complex
manifold into a Kähler manifold, then X is also Kähler, whereas if g∶X → Y is a holomorphic
submersions of a balanced manifold onto a complex manifold, then Y is balanced. Regarding the
existence of balanced metrics on compact complex manifolds, in complex dimension 2 this metric
notion coincides with the notion of Kähler metrics, whereas for complex dimension n ≥ 3, many
examples of balanced non-Kähler can be constructed as total space of family of Kähler manifolds
parametrized over a complex line, see [103, Theorem 5.5]. Moreover, in [6, Remark 3.1], Alessandrini
and Bassanelli have showed that any compact holomorphically parallelizable manifold is balanced
and Ugarte proved a classification of balanced structures on 6-dimensional nilmanifolds endowed
with nilpotent complex structures in [152]. Furthermore, whereas for SKT metrics it has been
conjectured that on the same non-Kähler compact complex manifold there cannot exist both SKT
metrics and balanced metrics with respect to the same complex structure (see [56]), in [101] it
has been indeed proved that an astheno-Kähler metric is balanced if and only if the metric is also
Kähler, but in [52] the authors show the existence of a compact complex non-Kähler manifold which
admits both a balanced and astheno-Kähler metric.

In the wake of the results by Harvey and Lawson on Kähler manifolds in [66], for a compact
complex manifold (M,J) the property of admitting any of the above metrics has been characterized
in terms of currents by, respectively, Michelson [103, Theorem 4.7], Alessandrini [2, Theorem 2.4],
and Egidi [48, Theorem 3.3]. In particular, the fundamental forms of strong Kähler with torsion
metrics and astheno-Kähler metrics belong to the family of p-pluriclosed forms for p = 1, respec-
tively, for p = n − 2, and the fundamental forms of Kähler metrics and balanced metrics belong to
the family of p-Kähler forms for p = 1, respectively, p = n − 1, where n = dimC(M,J). For the
precise definitions, see section 1.5.
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Geometrically formal metrics. Alongside the above metrics, in this work a relevant role is
played by the study of classes of metrics that arise in homotopic theory as introduced by Sullivan
in [143]. More precisely, a complex manifold (M,J) is said to formal according to Sullivan, if its de
Rham complex (A●C(M), d) is equivalent, in the category of differential graded algebras, the algebra
of its de Rham cohomology (H●

dR(M),0); in this situation, the complex of differential forms and the
complex of its de Rham cohomology share the same minimal model and, hence, the homotopic type
of the manifold is a “formal consequence" of this cohomology ring. Compact Kähler manifolds and,
more in general, compact manifolds satisying the ∂∂-lemma, are formal according to Sullivan. An
obstruction to this property is represented by the presence of non vanishing Massey triple products,
introduced in [99], i.e., elements of quotients of the de Rham cohomology by an indeterminacy
ideal (see Appendix B). Concerning the de Rham cohomology of a differentiable manifold, it is
not possible, a priori, to fix canonical representatives so that they are an algebra with respect to
the ∧ product; however, as Sullivan noticed in [144], if (M,J) admits a Hermitian metrics such
that the space of harmonic forms has a structure of algebra induced by the ∧ product, then the
manifold (M,J) is also formal according to Sullivan. The metrics for which the above property
holds are called geometrically formal (according to Kotschick), see [87], and also the existence of
such metrics is obstructed by of the existence of non vanishing Massey triple products. In order to
study a notion of “holomorphic homotopy theory", Neisendorfer and Taylor have introduced in [106]
the notion of Dolbeault formality and Dolbeault Massey triple products (see Section 1.4) as natural
adaptations of Sullivan’s formality involving the holomorphic structure of a complex manifold. Note
that Dolbeault formality implies that every Dolbeault Massey triple product vanishes and compact
complex manifolds satisfying the ∂∂-lemma are Dolbeault formal (see [106, Theorem 8, Section 7]).
In relation to this, Tomassini and Torelli in [150], respectively, Angella and Tomassini in [18], have
then introduced the notions of geometrically-Bott-Chern-formal metrics, and geometrically-Bott-
Chern-formal metrics and Aeppli-Bott-Chern-Massey triple products, which we are reviewed at the
end of Section 1.4. The links between Dolbeault formality, Dolbeault-geometrically-formal metrics,
and Dolbeault-Massey triple products are clear (see (1.4.2) and (1.4.3)), whereas only recently
Stelzig and Milivojevic have introduced in [104] a notion of formality which can be interpreted as
“Bott-Chern formality" and which is related to both geometrically-Bott-Chern-formal metrics and
Aeppli-Bott-Chern-Massey triple products.

The aim of this thesis work is to study the deformation and cohomological properties of such
special metric structures in a general setting and on concrete examples of both classical and more
recently introduced families of compact complex manifolds. Our goal is also to outline the interplay
between geometrically formal metrics and generalizations of Kähler metrics. Such study can indeed
lead to new interesting tools in a more deep understanding of complex manifolds.

In particular this work is divided as follows.

In the first chapter, we recall the main facts that will be needed through the work. More
specifically, complex manifolds, their cohomologies and Hodge theory, the complex formalities and
the special metric structures, the tools to computate the complex cohomologies of complex manifolds
with a structure of compact quotient of Lie group, and a brief review of deformation theory.

In the second chapter, we study deformations of the notions of the above special metrics. In fact,
whereas the Kähler condition is stable under the action of deformations of the complex structure
of a compact complex manifold, i.e., any small deformations of a Kähler manifold still admit a
Kähler metric, it has been shown in [8], respectively [55], that the same does not hold for balanced,
respectively, SKT and AK metrics, by providing examples of deformations of balanced, respectively
strong Kähler with torsion and astheno-Kähler metrics, which do not admit any of the respective
metrics. Therefore, it seemed natural to ask whether there exist cohomological obstructions to
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the construction of curves of special metrics along curve of deformations, where by a “curve of
special metrics along a curve of deformations" we mean a 1-parameter family of special metrics
{ωt}t along a 1-parameter family of deformations {(M,Jt)}t of a compact manifold (M,J) such
that, if (M,Jt0) = (M,J), then ωt0 coincides with special metric ω on (M,J). This approach led
to the necessary conditions described in Theorems 2.2.1, 2.3.1, 2.4.1 and their following Corollaries.
These results are then a useful tool to obtain obstructions to the existence of deformations by
curve of special metrics on explicit examples of manifolds. For strong Kähler with torsion metrics
and astheno Kähler metrics, we study such obstructions on two different families of nilmanifolds
of complex dimension 4 introduced first contructed in [55] (see also [125]), whereas for balanced
metrics, we study two examples of non tori holomorphically parallelizable solvmanifolds in complex
dimension 3, i.e, the Iwasawa manifold and the holomorphically parallelizable Nakamura manifold.

In the third chapter of this work, we study the existence of p-Kähler structures (in particular,
balanced metrics) and SKT metrics on a family of compact complex manifolds of complex dimension
4n − 2 with n ≥ 2, introduced by Bigalke and Rollenske in [25] to prove that the degeneration step
of the Frölicher spectral sequence can be arbitrarily large. More precisely, we preliminarly prove
obstructions to the existence of p-Kähler structures on nilmanifolds with nilpotent left-invariant
complex structures (see Theorem 3.1.2). With the aid of such obstructions, we are able to prove
that the Bigalke-Rollenske manifolds there exists no p-Kähler structure for p ∈ {2, . . . ,4n − 3} but
the canonical diagonal metric is balanced (Theorems 3.2.2 and 3.2.3); hence, this proves that,
in contrast to Kähler manifolds, there exists no correlation between the degeneracy step of the
Frölicher spectral sequence and the property of admitting a balanced metric. Furthermore, any
element of the Bigalke and Rollenske manifolds does not admit SKT metrics (Proposition 3.2.5)
nor locally conformally Kähler metrics (Proposition 3.2.6, by combining results in [110]).

In the fourth chapter of this thesis, we study the behaviour under deformations of the notions of
complex formality as previously recalled. In fact, it has been shown by Tomassini and Torelli [150,
Theorems 4.1, 4.2, 4.3] that Dolbeault formality, geometric Dolbeault formality, and the property
of admitting non vanishing Dolbeault Massey products are not stable under deformations. Analo-
gously, Tardini and Tomassini have shown that geometric Bott-Chern formality and the property of
admitting non vanishing Aeppli-Bott-Chern Massey products are not stable under deformation of
the complex structure (see [147, Corollary 4.5]). Hence, it seemed interesting to check whether the
above properties satisfy any other stability property under deformations. As a result, by construct-
ing two explicit examples, we are able to prove that the neither the “Dolbeault formalities" neither
the “Bott-Chern formalities" are closed under deformations (in sense of Definition 1.7.3), see The-
orems 4.2.1 and 4.3.1. Moreover, we provide the first known example of a manifold which satisfies
the ∂∂-lemma but admits non vanishing Aeppli-Bott-Chern-Massey triple products, showing that
those products, unlike classical Massey products and Dolbeault products, are not an obstruction
to the ∂∂-lemma (see Theorem 4.4.1). The construction of the example is performed by taking the
quotient of the Iwasawa manifold with respect to a holomorphic action with fixed points, obtaining
an orbifold satisfying the ∂∂-lemma and then by performing in sequence blow-ups at each singular
point so that the resulting object is a smooth complex manifold which still satisfies the ∂∂-lemma.
We note that such a manifold is not Kähler.

In the fifth chapter, we study the geometrically formal metrics according to Kotschick,
geometrically-Dolbeault-formal metrics, and geometrically-Bott-Chern-formal metrics on compact
complex surfaces of the class V I and V II of the Enriques-Kodaira classification, namely, the Inoue-
Bombieri surfaces and Inoue surfaces of type S±, the Hopf surfaces, and the Primary Kodaira and
Secondary Kodaira surfaces. In particular, we focus on the study of the stability of the above metric
notions under the action of the Chern-Ricci flow. Such parabolic geometric flow evolves Hermitian
metrics and has been introduced and studied by Gill in [63] as a natural adaptation in the complex
setting of the celebrated Ricci flow, which has been the central tool used by Perelman to prove
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the Poincaré conjecture and the Thurston ’s geometrization conjecture in the early 00’s. Moreover,
the behaviour of the geometric flows at the limits of its time existence usually provides interesting
features on the complex structure and topology of the manifold, see [138]. In this setting, we were
able to prove that a stability result holds, i.e., the Chern-Ricci flow preserves geometric formalities
on any of the above surfaces, see Theorem 5.3.1 and Proposition 5.4.1. This was accomplished by
finding an explicit solution of the flow starting from an invariant metric and and then computing
the harmonic representatives of de Rham, Dolbeault, and Bott-Chern cohomologies with respect
to the solution metric.

In the sixth and final chapter of this thesis work, we focus on the stability under blow-ups of
astheno-Kähler metrics and the relation between strong Kähler with torsion metrics and
geometrically-Bott-Chern-formal metrics. Voisin has shown that, by blowing up a compact Kähler
manifolds at a point or along a complex submanifold, one obtains a Kähler manifold, see [154].
Analogously, the blow-up of either a compact balanced manifold or a compact SKT manifold at
a point or along a complex submanifold yields again a balanced, respectively, SKT manifold, see
[7] and [55]. Moreover, Fino and Tomassini showed that if the fundamental form ω of a Hermitian
metric satisfies certain differential condition, namely

∂∂ω = 0, ∂∂ω2 = 0, (0.0.1)

then ω also satisfies ∂∂ωk = 0, for every k, and properties (0.0.1) are stable under blow-ups at
a point or along complex submanifolds. On the other hand, we prove in Theorem 6.2.1 that if
the fundamental form associated to a Hermitian metric satisfies weaker conditions than (0.0.1),
those condition are not stable under blow-up. In order to do so, we start by explicitly constructing
a family of nilmanifolds of complex dimension 5 and characterize the complex structures whose
canonical diagonal metric satisfies the astheno-Kähler condition and another suitable differential
property, see Theorem 6.2.1. We proceed by selecting a specific element of such a family and a
suitable complex submanifold along which we perform a blow-up. We then prove the thesis by using
obstructions in [3]. Furthermore, we analize SKT metrics on the Fino-Parton-Salamon manifolds
and we show that any invariant metric is also geometrically-Bott-Chern-formal. The same result also
applies to any nilmanifold of complex dimension n endowed with a left-invariant complex structure
admitting analogous structure equations, see Theorem 6.4.4. We end this chapter, by showing that
in general there exists SKT manifolds which do not any geometrically-Bott-Chern-formal metric.
The counterexamples provided are products of either two copies of a Inoue-Bombieri surface, two
copies of a Primary Kodaira surface, or a copy of a Inoue surface and a Primary Kodaira surface.

The three final appendices are devoted to the definitions of complex manifolds through the a
holomorphic atlas, of holomorphic and complex vector bundles (Appendix A), of formality accord-
ing to Sullivan, of triple Massey products, and the geometrically formal metrics for differentiable
manifolds (Appendix B), and the invariant cohomology of real nilmanifolds (Appendix C).

The content of Sections 2.2, 2.4 of Chapter 2, and of Chapters 3−5 relies, in order, on the published
papers:

• R. Piovani, T. Sferruzza, Deformations of Strong Kähler with torsion metrics, Complex Man-
ifolds 8 (2021), 286–301,

• T. Sferruzza, Deformations of balanced metrics, Bull. Sci. Math. 178 (2022), 103143,

• T. Sferruzza, N. Tardini, p-Kähler and balanced structures on nilmanifolds with nilpotent
complex structures, Ann. Glob. Anal. Geom. 62 (2022), 869–881,
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• T. Sferruzza, A. Tomassini, Dolbeault and Bott-Chern formalities: deformations and ∂∂-
lemma, J. Geom. Phys. 175 (2022), 104470,

• D. Angella, T. Sferruzza, Geometric formalities along the Chern-Ricci flow, Complex Anal.
Oper. Theory 14 (2020). https ∶ //doi.org/10.1007/s11785 − 019 − 00971 − 6.

The content of Section 2.3 is original work (not submitted) from

• T. Sferruzza, "Deformations of astheno-Kähler metrics",

and the content of Chapter 6 is from the submitted paper

• T. Sferruzza, A. Tomassini, On cohomological and formal properties of strong Kähler with
torsion and astheno-Kähler metrics, preprint available at
https ∶ //doi.org/10.48550/arXiv.2206.06904.

The author would to thank the referees for their comments and suggestions, which helped improve
the presentation of this work.
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Chapter 1

Preliminaries on complex manifolds and
Hermitian structures

In this first chapter, we recall the main facts regarding the cohomological structures, the metric
structures, and formal structures of a complex manifold. Unless otherwise stated, we will assume
every manifold to be compact. We will approach the topic of complex manifolds from the point
of view of even dimensional differentiable manifolds endowed with a integrable almost complex
structure; for the definitions of holomorphic atlas, holomorphic maps, and holomorphic bundles,
see Appendix A.

1.1 Complex and Hermitian geometry on vector spaces

We start by recalling one of the fundamental structures in complex geometry, namely, the almost
complex structure endomorphism on a even dimensional differentiable manifold. Throughout this
work, the explicit computations will usually be carried out on manifolds endowed with a structure of
compact quotients of real Lie groups with invariant complex structures; such structures will enable
to reduce many differential problems to finite dimensional linear algebra problems, therefore, it
seemed reasonable to devote this first section to the theory of almost complex structures on vector
spaces and then extend the notions here recalled in the later sections.

Let V be a real vector space of dimension 2n.

Definition 1.1.1. An almost complex structure on V is an endormorphism J of V such that
J2 = − idV .

Clearly, the endomorphism J is invertible, i.e., J ∈ GL(V ), and the assumption dimR V = 2n
for some n ∈ N is necessary, since if V is a k-dimensional real vector space endowed with an almost
complex structure J and B is a basis for V , then

0 < det(MB(J))2 = det(MB(J2)) = det(− idV ) = (−1)k,

forcing k to be even.
Any complex vector space admits a natural almost complex structure induced by the multipli-

cation by i. Viceversa, on a 2n-dimensional real vector space V , an almost complex structure J
induces a structure of complex vector space on V in the following way. For every v ∈ V , a + ib ∈ C,
it is sufficient to set

(a + ib) ⋅ v ∶= av + bJ(v).

It is immediate to check that i2 ⋅ v = J(Jv) = −v. Thus, the space (V, J) can be regarded as
a complex vector space of complex dimension dimC(V, J) = n. Moreover, every 2n-dimensional
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real vector space endowed with an almost complex structure admits an orientation induced by the
orientation on Cn.

Example 1.1.2. Let V = R2n and let B = {e1, . . . , e2n} the canonical basis. Then, the position

Jek ∶=
⎧⎪⎪⎨⎪⎪⎩

ek+n, k ∈ {1, . . . , n},
−ek−n, k ∈ {n + 1, . . . ,2n},

defines an almost complex structure J on R2n. In particular, as a complex vector space (R2n, J)
coincides with (Cn, i). The positive orientation on (R2n, J) is given by the real basis

{e1, Je1, . . . , en, Jen}.

Let now VC ∶= V ⊗R C be the complexification of the real vector space V . Such a vector space
admits a natural complex structure by defining the multiplication

z1 ⋅ (v ⊗ z2) ∶= v ⊗ (z1z2),

for every z1 ∈ C, v⊗ z2 ∈ VC. Note that V can be viewed as V ⊗R 1↪ V ⊗RC and it is clearly a real
subspace of V ⊗R C, i.e., it is invariant under the complex conjugation defined by (v ⊗ z) ∶= v ⊗ z,
for v ⊗ z ∈ VC. A practical way of considering VC is to identify it with the space V ⊕ iV , i.e.,

VC ∶= {v + iw ∣ v,w ∈ V }.

Let us denote by the same symbol the C-linear extension to VC of the almost complex structure
J defined on a 2n-dimensional real vector space V . Such a endomorphism has complex eigenvalues
±i on VC, to which correspond the eigenspaces

V 1,0 = {v ∈ VC ∣Jv = iv} ⊂ VC
V 0,1 = {v ∈ VC ∣Jv = −iv} ⊂ VC.

Notice that both V 1,0 and V 0,1 are complex subspaces of VC and we have immedaitely the following
decomposition

VC = V 1,0 ⊕ V 0,1. (1.1.1)

We remark that if dimR V = 2n, we have that dimC VC = 2n, whereas dimC V
1,0 = dimC V

0,1 = n.
By choosing a C-basis {v1, . . . , vn} for (V, J), one obtains bases B1,0 and B0,1 for, respectively, V 1,0

and V 0,1, by setting

B1,0 ∶= {1

2
(vj − iJvj)}

j=1,...,n
(1.1.2)

B0,1 ∶= {1

2
(vj + iJvj)}

j=1,...,n
. (1.1.3)

We remark that, since dimC(V, J) = dimC V
1,0 = n and the C-linear map

(V, J)→ V 1,0 (1.1.4)

v ↦ 1

2
(v − iJv)

is bijective, we have that (V, J) and V 1,0 are isomorphic as complex vector spaces.
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If V ∗ denotes the dual vector space of a vector space V , an almost complex structure on V
naturally induces an almost complex structure on V ∗, which will be still denoted by J . In fact, if
η ∈ V ∗, v ∈ V , it suffices to set

Jη (v) ∶= η(Jv).

By considering the complexification of V ∗, i.e., V ∗
C ∶= V ∗ ⊗ C, and the C-linear extension of J to

such space, one can define the eigenspaces with respect to the ±i eigenvalues

(V ∗)1,0 = {η ∈ V ∗
C ∣Jη = iη} ⊂ V ∗

C

(V ∗)0,1 = {η ∈ V ∗
C ∣Jη = −iη} ⊂ V ∗

C ,

and a decomposition analogous to (1.1.1) holds

V ∗
C = (V ∗)1,0 ⊕ (V ∗)0,1.

As complex vector spaces, (V ∗)1,0 and (V ∗)0,1 admit bases as in (1.1.2) and (1.1.3). However, it
is sometimes useful to work with dual bases, in the following way. Let {v1, . . . , vn} be the C-basis
of (V ∗, J) dual to the C-basis {v1, . . . , vn} of (V, J), i.e., such that

vi(vj) = δij ∶=
⎧⎪⎪⎨⎪⎪⎩

1, i = j
0, i ≠ j.

The dual bases B1,0 and B0,1 to, respectively, B1,0 and B0,1, are then given by

B1,0 ∶= {vi + iJvi}
i=1,...,n

B0,1 ∶= {vi − iJvi}
i=1,...,n

,

Let us now consider the k-covectors on V , i.e., the elements of the exterior powers ⋀k V ∗
C of the

complexified dual vector space V ∗
C of a real vector space V . If V is endowed with an almost complex

structure J , the spaces ⋀k V ∗
C admit the following decompositions in terms of the ±i-eigenspaces

(V ∗)1,0 and (V ∗)0,1 of J on V ∗
C , namely,

⋀k V ∗
C = ⊕

p+q=k
⋀p,q V, (1.1.5)

where we set
⋀p,q V ∶= ⋀p(V ∗)1,0 ⊗⋀q(V ∗)0,1,

for the space of (p, q)-covectors. In particular, if {η1, . . . , ηn} is a basis of (V 1,0)∗, it is easy to see
that the set

{ηi1 ∧⋯ ∧ ηip ∧ ηj1 ∧⋯ ∧ ηjq ∣ 1 ≤ i1 < ⋯ < ip ≤ n, 1 ≤ j1 < ⋯ < jq ≤ n}

is a basis of ⋀p,q V . Note that one can extend the action of the almost complex structure J to the
space of k-covectors in ⋀k(V ∗

C ) by setting, for any given α ∈ ⋀k(V ∗
C ),

Jα(v1, . . . , vk) ∶= α(Jv1, . . . , Jvk). (1.1.6)

However, such a J is not necessarily an almost complex structure on ⋀k(V ∗
C ).

From the metric point of view, one may want to define scalar products which are compatible
with the almost complex structure endomorphism on a vector space.

More precisely, let V be a 2n-dimensional real vector space endowed a positive definite scalar
product g.
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Definition 1.1.3. An almost complex structure J on V is said to be compatible with g if for every
v,w ∈ V , it holds

g(Jv, Jw) = g(v,w),

i.e., J is an isometry of V with respect to g.

Given a scalar product g on V , it is always possible to extend it to either a Hermitian scalar
product gH , or to a C-bilinear scalar product gC on VC as follows

gH(v1 + iv2,w1 + iw2) ∶= g(v1,w1) + g(v2,w2) + ig(v2,w1) − ig(v1,w2), (1.1.7)
gC(v1 + iv2,w1 + iw2) ∶= g(v1,w1) + g(v2,w2) − ig(v2,w1) − ig(v1,w2), (1.1.8)

for every v1 + iv2,w1 + iw2 ∈ VC. Note that if V is endowed with an almost complex structure
J compatible with g, the decomposition induced by J on VC given by (1.1.5) is orthogonal with
respect to gH .

Let V be real vector space endowed with a positive definite scalar product g and a compatible
almost complex structure J .

Definition 1.1.4. The fundamental form ω associated to g is the positive 2-covector defined by

ω(v,w) ∶= g(Jv,w),

for every v,w, ∈ V .

As by definition, ω is alternating, i.e., ω ∈ ⋀2 V ∗ and, if such form is naturally extended to
⋀2 V ∗

C by
ω(v1 + iv2,w1 + iw2) ∶= gC(J(v1 + iv2),w1 + iw2)

is it clear that ω ∈ ⋀1,1 V and ω = ω, i.e., the fundamental form ω of a positive definite scalar
product g is a real (1,1)-covector on V . Moreover, since ω(v, Jv) = g(v, v) ≥ 0, with equality
holding if, and only if, v = 0, the covector ω is also positive.

Remark 1.1.5. If g is positive definite scalar product on V and J is compatible with g, then it
can be easily seen that the form

h ∶= g − iω (1.1.9)

is a positive Hermitian scalar product on (V, J). Viceversa, if h is a positive definite Hermitian
scalar product on (V, J), then

Re(h)∶V × V → R

is a positive definite scalar product on V and

−Im(h)∶V × V → R

is a positive 2-covector on V .

If V is a real vector space endowed with an almost complex structure J and a compatible
positive definite scalar product g, then via the isomorphism (1.1.4), the Hermitian extension gH
and h as defined in (1.1.9) satisfy the following relation

gH ∣V 1,0
= 1

2
h. (1.1.10)

Equation (1.1.10) is useful for computing the coordinate expression of ω in terms of the coordinate
expression of gH ∣V 1,0

. Let {zj ∶= 1
2(xj − iJxj)}

n
j=1 be a C-basis for V 1,0. If we set yj ∶= Jxj , then
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{x1, y1, . . . , xn, yn} is a R-basis for V , whereas {x1, . . . , xn} is a C-basis for (V, J), via (1.1.4). Let
us now assume that the product gH ∣V 1,0

is expressed locally by

gH ∣V 1,0
= 1

2

n

∑
j,k=1

gjkz
j ⊗ zk,

where {zj}nj=1 is the dual basis of {zj}nj=1 and gjk ∈ C. Since gH is Hermitian, we have that gjj ∈ R
and gjk = gkj .

The fundamental form ω of g is a 2-form on V , therefore it can be written as

ω =
n

∑
j,k=1

ω(xj , yk)xj ∧ yk +∑
j<k

ω(xj , xk)xj ∧ xk +∑
j<k

ω(yj , yk)yj ∧ yk.

From ω = −Im(h) and (1.1.10), we have that ω(xj , xk) = ω(yj , yk) = −Im(gij), and ω(xj , yk) =
Re(gij). Hence

ω =
n

∑
j,k=1

Re(gjk)x
j ∧ yk −∑

j<k
Im(gjk)(x

j ∧ xk + yj ∧ yk).

Since Re(gjj) = gjj and Re(gjk) =Re(gkj), one has that

ω =
n

∑
j=1

gjjx
j ∧ yj +∑

j<k
Re(gjk)(x

j ∧ yk + xk ∧ yj) −∑
j<k

Im(gjk)(x
j ∧ xk + yj ∧ yk).

If one consider the C-linear extension of ω to ⋀1,1 V and exploits the relations

xj ∧ xk + yj ∧ yk = 1

2
(zj ∧ zk + zj ∧ zk),

xj ∧ yj = i

2
(zj ∧ zj),

xj ∧ yk + xk ∧ yj = i

2
(zj ∧ zk − zj ∧ zk),

it turns out that

ω = i

2

n

∑
j=1

gjjz
j ∧ zj + i

2
∑
j<k

Re(gjk)(z
j ∧ zk − zj ∧ zk) − 1

2
∑
i<j

Im(gjk)(z
j ∧ zk + zj ∧ zk)

= i

2

n

∑
j=1

gjjz
j ∧ zj + i

2
∑
j<k

(Re(gjk) + iIm(gjk))z
j ∧ zk + i

2
∑
j<k

(Re(gjk) − iIm(gjk))z
k ∧ zj

= i

2

n

∑
j=1

gjjz
j ∧ zj + i

2
∑
j<k

gjkz
j ∧ zk + i

2
∑
j<k

gjkz
k ∧ zj

= i

2

n

∑
j=1

gjjz
j ∧ zj + i

2
∑
j<k

gjkz
j ∧ zk + i

2
∑
j<k

gkjz
k ∧ zj

= i

2

n

∑
i,j=1

gjkz
j ∧ zk.

Then, if ω is expressed as ω = 1
2 ∑

n
j,k=1 ωjkz

j ∧ zj , the relation between the coeffiecients of ω and
gH ∣V 1,0

is given by
ωjk = i ⋅ gjk.

In the last part of this section, we recall the definition of the Hodge ∗-operator for complex vector
spaces, both in the C-linear and C-antilinear version.
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We start by remarking that a scalar product g on a vector space V induces a scalar product on
V ∗ in the following way. Let B be a basis for V and let {gij} be the matrix representing g with
respect to B. If B∗ is the basis of V ∗ dual to B, then the matrix

{gij} ∶= {gij}−1

represents a scalar product g on V ∗ with respect to the basis B∗.
Then, one can consider the extension of g to the Hermitian scalar product gH on V ∗

C as in (1.1.7)
and then extend gH to a Hermitian product on ⋀k V ∗

C , in the following way. Let {v1, . . . , v2n} be a
C-basis for V ∗

C . For I = {1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ 2n}, J = {1 ≤ j1 < ⋅ ⋅ ⋅ < jk ≤ 2n}, we set vI ∶= vi1 ∧ ⋅ ⋅ ⋅ ∧ vik
and vJ analogously. The position

gH(vI , vJ) ∶= det ( {gH(vil , vjm)}kl,m=1 )

then yields a Hermitian scalar product on ⋀k V ∗
C .

If the vector space V ∗ is endowed with an almost complex structure J and, hence, there holds
a decomposition of type (1.1.5) in (p, q)-covectors, in a similar way the scalar product g can be
extended to a Hermitian scalar product gH on each space ⋀p,q V .

Let V be a real vector space of dimension 2n endowed with a positive definite scalar product
g and let J be an almost complex structure compatible with g and ω the associated fundamental
form of g.

Definition 1.1.6. The C-linear Hodge ∗-operator is defined at the level of (p, q)-forms on (V, J)
by

∗∶⋀p,q V → ⋀n−q,n−p V
β ↦ ∗β,

where α∧∗β ∶= gH(α,β)vol, for every α ∈ ⋀p,q V and vol = ωn

n! is the volume covector, i.e., a positive
2n-covector on V , naturally induced by g.

As the usual Hodge ∗-operator, ∗ is an an isometry with respect to gH , it is self-adjoint up to
a sign and involutive up to a sign. Analogously, one defines the C-antilinear Hodge ∗-operator as

∗∶⋀p,q V → ⋀n−p,n−q V
β ↦ ∗β

where α ∧ ∗β ∶= gH(α,β)vol.

1.2 Complex and Hermitian structures on manifolds

One of the most important objects associated to differentiable manifold M is the tangent bundle
TM . At each point p ∈ M , the tangent space TpM is a real dimensional vector space such that
dimR TpM = dimRM . Definitions from section 1.1 can then be extended to the tangent bundle of
even-dimensional differentiable manifolds by requiring that the objects vary pointwisely smoothly
on the manifold.

Let M be a differentiable manifold of real dimension 2n and let TM be its tangent bundle.

Definition 1.2.1. An almost complex structure on M is an endomorphism J ∈ End(TM) such
that J2 = − idTM . Such an almost complex structure J on M is said to be integrable if it is induced
by holomorphic coordinates, see Appendix A.
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By the Newlander-Niremberg theorem [107], the integrability of an almost complex structure J
is equivalent to the vanishing of the Nijenhuis tensor NJ associated to J , that is, J is integrable
if, and only, if

NJ(X,Y ) ∶= [JX,JY ] − J[X,JY ] − J[JX,Y ] − [X,Y ] = 0, (1.2.1)

for every X,Y ∈ TM . Other equivalent conditions of integrability for an almost complex structure
will be recalled later in this section.

We will denote the complex manifold arising from assigning the integrable almost complex
structure J on a 2n-dimensional differentiable manifold M by (M,J), unless the almost com-
plex structure has already been fixed; in that case, we will denote it simply by M . Note that
dimC(M,J) = n.

One can extend the endomorphism J by C-linearity to the complexified tangent bundle TCM ∶=
TM ⊗C and obtain a decomposition in terms of the ±i-eigenspace bundles of J , namely

TCM = T 1,0M ⊕ T 0,1M,

where T 1,0M = {Z ∈ TCM ∣ (J − iI)Z = 0} and T 0,1M = {Z ∈ TCM ∣ (J + iI)Z = 0}. Also, if J is
extended to the complexified cotangent bundle T ∗CM , one similarly obtains

T ∗CM = (T 1,0M)∗ ⊕ (T 0,1M)∗ (1.2.2)

where (T 1,0M)∗ and (T 0,1M)∗ are the eigenspaces bundles associated, respectively, to the eigen-
values i and −i.

Furthermore, on the exterior powers ⋀kCM ∶= ⋀k(T ∗CM), the decomposition (1.2.2) induces the
following

⋀kCM = ⊕
p+q=k

⋀p,qM, (1.2.3)

where ⋀p,qM ∶= ⋀p(T 1,0M)∗⊗⋀q(T 0,1M)∗. We will denote the spaces of the global sections of the
bundles ⋀kCM and ⋀p,qM , i.e., the spaces of k-complex forms on M (or forms of degree k) and of
(p, q)-forms on M (or forms of bedegree (p, q)), by respectively, AkC(M) and Ap,q(M).

The action of the exterior differential d can be extended to complex forms and maps k-complex
forms into (k + 1)-complex forms, namely

d∶AkC(M)→ Ak+1
C (M).

With respect to any generic almost complex structure J on M , at the level of (p, q)-forms, the
exterior differential d acts as

d∶Ap,q(M)→ Ap+2,q−1(M)⊕Ap+1,q(M)⊕Ap,q+1(M)⊕Ap−1,q+2(M),

i.e., by denoting the projections µ ∶= πp+2,q−1 ○ d, ∂ ∶= πp+1,q ○ d, ∂ ∶= πp,q+1 ○ d, and µ ∶= πp−1,q+2 ○ d,
it holds that d splits as

d = µ + ∂ + ∂ + µ.

Since d2 = 0 and decomposition (1.2.3) is direct, it follows immediately that

µ2 = 0

µ∂ + ∂µ = 0

∂2 + µ∂ + ∂µ = 0

µµ + ∂∂ + ∂∂ + µµ = 0

∂
2 + µ∂ + ∂µ = 0
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µ∂ + ∂µ = 0

µ2 = 0.

It is fairly easy to see that, in addition to the vanishing of the Nijenhuis tensor associated to J ,
necessary and sufficient conditions under which the almost complex structure J is integrable are
either of the following

1. µ = µ = 0,

2. µ∣A1,0(M) = 0, that is π0,2(dα) = 0, for any α ∈ A1,0(M),

3. [T 0,1M,T 0,1M] ⊂ T 0,1M .

In any of the previous situations, it holds that

d∶Ap,q(M)→ Ap+1,q ⊕Ap,q+1(M),

i.e., d decomposes as
d = ∂ + ∂,

with ∂∂ = −∂∂ and ∂2 = ∂2 = 0. From now on, unless specified, we will assume J to be integrable.
It is sometimes useful to define the following operator

dc ∶= J−1 ○ d ○ J, (1.2.4)

or equivalently, dc = −i(∂ − ∂), for which it is immediate to see that

ddc = −dcd = 2i∂∂. (1.2.5)

Let now g be a Riemannian metric on M and let J be an integrable almost complex structure
on M .

Definition 1.2.2. The metric g is said a Hermitian metric on (M,J) if g is compatible with J , i.e.,
g(JX,JY ) = g(X,Y ), for every X,Y ∈ TM . The fundamental form ω of g is the 2-form defined by

ω(X,Y ) = g(JX,Y ),

for every X,Y ∈ TM .

In particular, if ω is extended by C-linearity to A2
C(M), then ω is a form of bidegree (1,1) and

is real, i.e., ω ∈ A1,1(M) and ω = ω.

Remark 1.2.3. If g is Hermitian metric on (M,J) and ω is its fundamental form, then any two
structures of {J, g, ω} determine the remaining one.

A complex manifold (M,J) endowed with a Hermitian metric g with fundamental associated
ω will be referred to a Hermitian manifold, and it will be denoted as (M,J, g,ω). Note that the
form ωn

n! naturally determines a volume on M , i.e., a everywhere non vanishing (n,n)-form, or
equivalently, an orientation on (M,J). Therefore, every Hermitian manifold is orientable.

Let now π∶E →M be a holomorphic vector bundle of rank r over a complex manifold (M,J)
(see Appendix A).
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Definition 1.2.4. The bundle of k-complex forms on M with values in E is the bundle

⋀kC(M,E) ∶= ⋀kCM ⊗E,

and the bundle of (p, q)-forms with values in E is the bundle

⋀p,q(M,E) = ⋀p,qM ⊗E.

The global section of such bundles will be denoted by, respectively, AkC(M) and Ap,q(M,E); the
symbol “M" will be omitted whenerever the situation is clear.

A special case of such bundles is given by E = T 1,0M . In this situation, an element ψ ∈ A0,q(T 1,0)
will be called a (0, q)-vector form on M .

Let now π∶E →M be a holomorphic vector bundle onM . Then, one can define the interior prod-
uct between a (0,1)-vector form on M and any (r, s)-form with values in E. Let ψ ∈ A0,1(T 1,0M),
that is ψ = η⊗Z, with η ∈ A0,1(M), Z ∈ T 1,0M , and β ⊗ s ∈ Ar,s(E). Then, the interior product of
ψ and β ⊗ s is given by

i∶Ar,s(E)→ Ar−1,s+1(E)

iψ(β ⊗ s) ∶= η ∧ ιZ(β)⊗ s, (1.2.6)

where iZ ∶Ar,s(M)→ Ar−1,s(M) is the usual contraction of differential forms by the vector field Z.
The position (1.2.6) can then be extended by linearity to any ψ ∈ Ap,q(T 1,0M) and α ∈ Ar,s(E).
Also, it is possible to define iψ(β ⊗ s) = η ∧ iZ(α) ⊗ s for the conjugate ψ = η ⊗ Z ∈ A1,0(T 0,1M).
We will also denote the map iϕ by the symbol ϕ⌟.

1.3 Complex cohomologies and Hodge Theory

Let (M,J) be a compact complex n-dimensional manifold. Among the main invariants associated
to the complex structure J of (M,J), there are the following cohomology spaces ([32, 1])

Dolbeault cohomology ∶=Hp,q

∂
(M) ∶= Ker(∂∶Ap,q(M)→ Ap,q+1(M))

Im(∂∶Ap,q−1(M)→ Ap,q(M))
(1.3.1)

Bott-Chern cohomology ∶=Hp,q
BC(M) ∶= Ker(d∶Ap,q → Ap+1,q(M)⊕Ap,q+1(M))

Im(∂∂∶Ap−1,q−1(M))
(1.3.2)

Aeppli cohomology ∶=Hp,q
A (M) ∶= Ker(∂∂∶Ap,q(M)→ Ap+1,q+1(M))

Im(∂∶Ap−1,q(M)) + Im(∂∶Ap,q−1(M))
. (1.3.3)

We point out that, sinceM is compact, all the spaces above are finite dimensional; we set hp,q♯ (M) =
dimHp,q

♯ (M), for ♯ ∈ {∂,BC,A}.
The cohomologies spaces (1.3.1), (1.3.2), and (1.3.3) arise as cohomologies of certain complex of

differential forms on the manifold (M,J). In particular, the Dolbeault cohomology is the “column"
cohomology of the complex of (p, q)-forms A●,●(M) endowed with the ∂ operator, i.e., for every p,

Ap,0(M) ∂Ð→ Ap,1(M) ∂Ð→ . . .
∂Ð→ Ap,n(M)

and
Hp,●
∂

(M) =H●(Ap,●(M), ∂),

whereas the Bott-Chern cohomology and the Aeppli-cohomology spaces of a fixed bedegree (p, q)
coincide with the cohomology of the complexes, respectively,

Ap−1,q−1(M) ∂∂Ð→ Ap,q(M) dÐ→ Ap+1,q(M)⊕Ap,q+1(M)
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and

Ap−1,q(M)⊕Ap,q−1(M) dÐ→ Ap,q(M) ∂∂Ð→ Ap+1,q+1(M).

As a direct consequence of the definitions, the following diagram of natural maps between
Dolbeault, de Rham, Bott-Chern, and Aeppli cohomology, is well defined

H●,●
BC(M)

H●,●
∂

(M) H●+●
dR (M ;C) H●,●

∂ (M)

H● ●
A (M)

(1.3.4)

where H●,●
∂ (M) is the conjugate cohomology of H●,●

∂
(M).

A priori, the maps are neither injective nor surjective. However, if the maps are all isomorphisms,
we say that (M,J) satisfies the ∂∂-lemma. There exist many equivalent conditions under which a
complex manifold (M,J) satisfies the ∂∂-lemma, e.g., the injectivity of any of the maps of diagram
(1.3.4). For example, (M,J) satisfies the ∂∂-lemma, if, and only if,

Kerd ∩ Im∂ ⊂ Im∂∂.

Furthermore, recently, Angella and Tomassini in [19, Theorem B] (see also [17]) provided a numerical
necessary and sufficient condition for the validity of the ∂∂-lemma, involving the dimensions of the
Bott-Chern and Aeppli cohomologies, i.e., for every k it must hold that

∑
p+q=k

hp,qBC + h
p,q
A = 2bk,

A class of complex manifolds satisfying the ∂∂-lemma is the class of compact Kähler manifolds,
where a Kähler manifold is an even dimensional differentiable manifold M endowed with a Kähler
structure {g, J}, where J is an integrable almost complex structure and g is a Hermitian metric on
(M,J) such that its fundamental form ω is d-closed, i.e,

dω = 0.

Remark 1.3.1. We remark the following behaviors of the cohomology spaces under the action of
the complex conjugation and the Hodge ∗-operator:

• Hp,q

∂
(M) =Hq,p

∂ (M), but in general Hp,q

∂
(M) ≠Hq,p

∂
(M),

• Hp,q
BC(M) =Hq,p

BC(M) and Hp,q
A (M) =Hq,p

A (M),

• ∗Hp,q

∂
(M) = Hn−q,n−p

∂
(M) and ∗Hp,q

BC(M) = Hn−q,n−p
A (M), where ∗ is the C-linear Hodge

∗-operator,

• the spaces Hp,q

∂
(M) and Hp,q

BC(M) have a structure of algebra induced by the ∪ product of
cohomology classes, which for any two cohomology classes [α], [β], it is defined as [α]∪[β] ∶=
[α ∧ β],

• the spaces Hp,q
A (M) have a structure of Hp,q

BC(M)-module induced by the ∪ product.



1.3. COMPLEX COHOMOLOGIES AND HODGE THEORY 11

Let us now consider the compact Hermitian manifold (M,J, g,ω). The Hermitian metric g
defines a Hermitian product on each Ap,q(M)

(α,β) ∶= ∫
M
α ∧ ∗β. (1.3.5)

Via the Hodge ∗-operator, it is possible to define the adjoint operators of ∂ and ∂ with respect to
(⋅, ⋅) by

∂∗ ∶= − ∗ ○∂ ○ ∗, ∂
∗ ∶= − ∗ ○∂ ○ ∗.

Notice that ∂∗ and ∂
∗
are operators of type, respectively, (−1,0) and (0,−1). We recall the

expressions of the Dolbeault Laplacian, Bott-Chern Laplacian, and Aeppli Laplacian (see [129])

∆∂ = ∂ ∂
∗ + ∂∗∂,

∆BC = ∂∂∂∗∂∗ + ∂∗∂∗∂∂ + ∂∗∂∂∗∂ + ∂∗∂∂∗∂ + ∂∗∂ + ∂∗∂,

∆A = ∂∂∗ + ∂∂∗ + ∂∗∂∗∂∂ + ∂∂∂∗∂∗ + ∂∂∗∂∂∗ + ∂∂∗∂∂∗ ,

which are self-adjoint with respect to (⋅, ⋅) as in (1.3.5), elliptic differential operators on each space
Ap,q(M). The spaces of Dolbeault harmonic forms, Bott-Chern harmonic forms, and Aeppli har-
monic forms are defined as the kernel of such operators, i.e.,

Hp,q∆
∂
(M) = {α ∈ Ap,q(M) ∶ ∆∂α = 0} (1.3.6)

Hp,q∆BC
(M) = {α ∈ Ap,q(M) ∶ ∆BCα = 0} (1.3.7)

Hp,q∆A
(M) = {α ∈ Ap,q(M) ∶ ∆Aα = 0}. (1.3.8)

Note that the same symmetries under complex conjugation and the Hodge ∗-operator pointed out in
Remark 1.3.1 hold true also for the spaces of Dolbeault-, Bott-Chern, and Aeppli-harmonic forms.

Since M is compact and each Laplacian is elliptic, (1.3.6), (1.3.7), and (1.3.8) are finite dimen-
sional and there holds a Hodge decomposition for every case (see [129]), namely

Ap,q(M) = Im∂∣Ap,q−1(M) ⊕ H
p,q
∆
∂
(M) ⊕ Im∂

∗
∣Ap,q+1(M)

Ap,q(M) = Im∂∂∣Ap−1,q−1(M) ⊕ H
p,q
∆BC

(M) ⊕ (Im∂∗∣Ap+1,q(M) + Im∂
∗
∣Ap,q+1(M))

Ap,q(M) = Im(∂∂)∗∣Ap+1,q+1(M) ⊕ H
p,q
∆A

(M) ⊕ (Im∂∣Ap−1,q(M) + Im∂∣Ap,q−1(M)) .

Moreover, the following maps are isomorphisms of vector spaces (not necessarily of algebras or
HBC-modules)

Hp,q∆
∂
(M) ∼Ð→Hp,q

∂
(M), Hp,q∆BC

(M) ∼Ð→Hp,q
BC(M), Hp,q∆A

(M) ∼Ð→Hp,q
A (M),

and the harmonic forms with respect to each Laplacian can be characterized as follows

α ∈H∆
∂
⇐⇒

⎧⎪⎪⎨⎪⎪⎩

∂α = 0

∂
∗
α = 0

(1.3.9)

α ∈H∆BC
⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂α = 0

∂α = 0

∂∂ ∗ α = 0

(1.3.10)
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α ∈Hp,qA (M) ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂∂α = 0

∂ ∗ α = 0

∂ ∗ α = 0

. (1.3.11)

Hodge theory, with slight due changes, can be applied to the setting of Dolbeault cohomology
with values in a holomorphic vector bundle.

Let π∶E → M be a holomorphic vector bundle of rank r over a compact Hermitian manifold
(M,J, g,ω). The ∂ operator on each Ap,q(M) induces a operator ∂E on each space Ap,q(E) in
the following way. Let U be an open subset of M and let ψ∶π−1(U) → U × Cr be a trivialization
of E over U . If {s1, . . . , sr} is a smooth trivializating sections of U , i.e., each si∶U → π−1(U) and
{s1, . . . , sr} is local frame for π−1(U), then a section α ∈ Ap,q(E) has local expression

α =
r

∑
j=1

αj ⊗ sj ,

with αj ∈ Ap,q(M). The position

∂E(α) ∶=
r

∑
j=1

∂E(αj)⊗ sj

gives rise to a well defined and global operator on Ap,q(E) of type (0,1) and such that ∂
2
E = 0.

Then, it is possible to define the Dolbeault cohomology of a holomorphic vector bundle E as

Hp,q(M,E) ∶=Hq(Ap,●(E), ∂E) =
Ker(∂E ∶Ap,q(E)→ Ap,q+1(E))
Im(∂E ∶Ap,q−1(E)→ Ap,q(E))

.

A Hermitian structure h on E is a hermitian scalar product hx on each fiber Ex, for x ∈ M ,
which varies smoothly with respect to x. In particular, since h ∈ E∗ ⊗ E∗, it can be identified
as a C-antilinear isomorphism between E and E∗. Note, also, that a Hermitian structure h and
a Hermitian metric g on (M,J) naturally induce a hermitian structure on every Ap,q(E) by the
position, for every α1 ⊗ s1, α2 ⊗ s2 ∈ Ap,q(E),

⟨α1 ⊗ s1, α2 ⊗ s2⟩ ∶= gH(α1, α2) ⋅ h(s1, s2),

and then extending ⟨⋅, ⋅⟩ by C-linearity, respectively C-antilinearity on the second component, to
Ap,q(E).

For every η ⊗ s ∈ Ap,q(E), the C-antilinear Hodge ∗-operator on Ap,q(E) is the isomorphism
given by

∗E ∶Ap,q(E)→ An−p,n−q(E∗)
η ⊗ s↦ ∗E(η ⊗ s) ∶= ∗η ⊗ h(s)

and extended by linearity to Ap,q(E), where ∗ is the usual C-linear Hodge ∗-operator on differential
forms. Thus, ∗E depends on the Hermitian structure h and on the Hermitian metric g on (M,J).
As in the case of the usual ∗-operator, it holds that ∗E ○ ∗E∗ = (−1)p+q.

By means of ∗E , the adjoint operator of ∂E with respect to the scalar product on each Ap,q(E)

(α,β) ∶= ∫
M

⟨α,β⟩ ∗ 1, for α,β ∈ Ap,q(E),

is defined as
∂
∗
E ∶= −∗E∗ ○ ∂E ○ ∗E
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and the Laplace operator on Ap,q(E) is given by

∆E ∶= ∂∗E∂E + ∂E∂
∗
E .

It is clear that ∆E is an elliptic, self-adjoint with respect to (⋅, ⋅), second order differential operator
on each Ap,q(E).

A form α ∈ Ap,q(E) is said to be ∆E-harmonic if ∆E(α) = 0. The space of ∆E-harmonic forms
will be denoted by Hp,q(M,E). Since ∆E is elliptic, each space Hp,q(M,E) is finite dimensional
and there exists a Hodge decomposition

Ap,q(E) = Im∂E ∣Ap,q−1(E) ⊕ H
p,q(M,E) ⊕ Im∂

∗
E ∣Ap,q+1(E).

and the isomorphism of vector spaces

Hp,q(M,E) ∼Ð→Hp,q(M,E).

1.4 Complex formalities

Let (M,J) be a complex manifold. The study of the de Rham complex (A●(M), d) yields many
interesting insight on the homotopy type of the manifold M . In particular, the manifold M is said
to be formal according to Sullivan, if the de Rham complex (A●, d) has a fairly simple model; as
a consequence, every triple Massey product vanishes. Moreover, a stronger notion of formality,
involving Riemannian metric structures has been introduced by Kotschick in [87]; we recall the
previous definitions in Appendix B.

Exploiting the complex structure, the C∞(M)-algebra of (p, q)-forms A●,●(M) on M endowed
with the differential operators ∂ and ∂ has a structure of bidifferential bigraded algebra. The study
of such an object, started by Neisendorfer and Taylor, yields important information regarding
holomorphic, in particular enables to study the notion of “holomorphic homotopy", see [106].

This section is devoted to first recalling the main definition in the more general context of
bidifferential bigraded algebras and differential bigraded algebras and then adapting them to the
setting of complex manifolds.

Definition 1.4.1. A bigraded bidifferential algebra, (shortly, BBA), is a triple (A, ∂A, ∂A) where
A = ⊕i,jAi,j is a bigraded algebra with a graded-commutative product, i.e., α ⋅β = (−1)degαβ∧α, for
every α,β ∈ A, and ∂A and ∂A are morphisms of A of type (1,0), respectively (0,1), with respect
to the bigradation of A, such that

1. ∂A and ∂A satisfy the Leibnitz rule, i.e., ∂A(α ⋅ β) = ∂Aα ∧ β + (−1)degαα ∧ ∂Aβ, for every α,
β ∈ A (analogously for ∂A),

2. ∂A and ∂A are differentials, i.e., ∂2
A = ∂2

A = 0,

3. ∂A and ∂A anticommute, i.e. ∂A∂A = −∂A∂A.

A morphism of BBA’s between two BBA’s (A, ∂A, ∂A) and (B, ∂B, ∂B) is a map f ∶A→ B which
is morphism of algebras, preserves the bigradation, and commutes with the differentials of both
BBA’s. We say that two BBA’s are isomorphic if there exists a bijective BBA’s morphism between
them.

The cohomology of a BBA (A, ∂A, ∂A) is the BBA (H●,●
∂A

(A), ∂A,0) defined by

Hp,q

∂A
(A) ∶=

Ker(∂A∶Ap,q → Ap,q+1)
Im(∂A∶Ap,q−1 → Ap,q)

. (1.4.1)



14 CHAPTER 1. PRELIMINARIES

The product of elements of H∂A
is given by [α] ⋅ [β] ∶= [α ⋅ β], for every [α], [β] ∈H∂A

(A).
Note that if f ∶A→ B is morphism of BBA’s, it induces a map in cohomology H∂(f) given by

H∂(f)∶H∂A
(A)Ð→H∂B

(B)
H∂(f)[α]A ∶= [f(α)]B,

which is well defined, since by definition, f commutes with both ∂A and ∂B. Moreover, a morphism
of BBA’s f is said to a be a quasi-isomorphism if H∂(f) is an isomorphism.

Definition 1.4.2. Two BBA’s (A, ∂A, ∂A) and (B, ∂B, ∂B) are said to be equivalent if there ex-
ists a family of BBA’s {(Ci, ∂Ci , ∂Ci)}2k

i=0 such that (C0, ∂C0 , ∂C0) = (A, ∂A, ∂A), (C2k, ∂C2k , ∂C2k) =
(B, ∂B, ∂B), and for every j ∈ {0, . . . , k − 1} there exist morphisms of BBA’s fj and gj

(C2j+1, ∂C2j+1 , ∂C2j+1)

(C2j , ∂C2j , ∂C2j) (C2j+2, ∂C2j+2 , ∂C2j+2)

fj gj

such that fj and gj are quasi-isomorphisms of BBA’s.

The same concepts can be adapted to a class of more general algebras. A differential bigraded
algebra (shortly, DBA), is a couple (A, ∂A), where A = ⊕i,jAi,j is a bigraded algebra endowed
with a map ∂A of type (0,1) with respect to the bigradation such that ∂A is a differential and
satisfies the Leibnitz rule. Clearly, any BBA (A, ∂A, ∂A) is a DBA, by “forgetting" the operator
∂A. Morphisms of DBA’s are bigraded algebras morphisms which commute with the differentials
and two DBA’s are isomorphic if there exist a bijective morphism of DBA between them. The
cohomology of a DBA (A, ∂A) is a DBA (H∂A

,0), with each Hp,q

∂A
(A) defined as in (1.4.1), since

the definition of cohomology of BBA’s relies only on operator of type (0,1). Any morphism f of
DBA’s induces a morphism H∂(f) in cohomology; a quasi-isomorphism of DBA’s is a morphism f
of DBA’s such that H∂(f) is an isomorphism of DBA’s. The notion of equivalence between DBA’s
is analogous to the one of BBA’s.

Definition 1.4.3. Two DBA’s (A, ∂A) and (B, ∂B) are said to be equivalent if there exists a
family of DBA’s {(Ci, ∂Ci)}2k

i=0 such that (C0, ∂C0) = (A, ∂A), (C2k, ∂C2k) = (B, ∂B), and for every
j ∈ {0, . . . , k − 1} there exist morphisms of DBA’s fj and gj

(C2j+1, ∂C2j+1)

(C2j , ∂C2j) (C2j+2, ∂C2j+2 , ∂C2j+2)

fj gj

such that fj and gj are quasi-isomorphisms of DBA’s.

Now, let (M,J) be a complex manifold. As pointed out, the double complex (A●,●(M), ∂, ∂)
has a structure of BBA and (A●,●, ∂) has a structure of DBA.

Definition 1.4.4. The complex manifold (M,J) is said to be Dolbeault formal (respectively, weakly
Dolbeault formal) if (A●,●(M), ∂, ∂) (respectively, (A●,●(M), ∂)) is equivalent, as a BBA (respec-
tively, DBA), to a BBA (B, ∂B, ∂B) (respectively DBA (B, ∂B)) with ∂B = ∂B = 0 (respectively,
∂B = 0).
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Clearly, a Dolbeault formal manifold is also weakly Dolbeault manifold. Moreover, by [106,
Theorem 8], a manifold satisfying the ∂∂-lemma is Dolbeault formal. One can define a natural
adaptation of triple Massey products to the complex (A●,●(M), ∂, ∂), see [150].

Definition 1.4.5. Let [α] ∈Hp,q

∂
(M), [β] ∈Hr,s

∂
(M), and [γ] ∈Hu,v

∂
(M) such that

[α] ∪ [β] = 0 ∈Hp+r,q+s
∂

(M), [β] ∪ [γ] = 0 ∈Hr+u,s+v
∂

(M),

i.e., there exist fαβ ∈ Ap+r,q+s−1(M), fβγ ∈ Ar+u,s+v−1(M) such that

α ∧ β = ∂fαβ, β ∧ γ = ∂fβγ .

Then, the triple Dolbeault-Massey product (shortly, Dolbeault-Massey product or ∂-product)
⟨[α], [β], [γ]⟩∂ is the (well defined) coset

⟨[α], [β], [γ]⟩∂ ∶= [α ∧ fβγ + (−1)p+qfαβ ∧ γ] +J ∈Hp+r+u,q+s+v−1

∂
(M)/J ,

where J ∶= [α]∪Hr+u,s+v−1

∂
(M)+ [γ]∪Hp+r,q+s−1

∂
(M) is an ideal of Hp+r+u,q+s+v−1

∂
(M). Note that

the Dolbeault-Massey product ⟨[α], [β], [γ]⟩∂ is independent of the choice of representatives α,β, γ
and of primitives fαβ, fβγ .

If M and N are two complex manifolds and f ∶ (A●,●(M), ∂) → (A●,●(N), ∂) is a DBA’s quasi
isomorphism, then Dolbeault-Massey products are functorial, i.e.,

H∂(f)⟨[α], [β], [γ]⟩∂ = ⟨H∂(f)[α],H∂(f)[β],H∂(f)[γ]⟩∂ ,

for every Dolbeault-Massey product ⟨[α], [β], [γ]⟩∂ on M . Hence, it is easy to see that on a weakly
Dolbeault formal manifold, every Dolbeault-Massey product vanishes (see [150, Proposition 3.2]).

Let (M,J) be a complex manifold. Analogously to [87], as in [150] we have that following.

Definition 1.4.6. A Hermitian metric g on (M,J) is said to be geometrically-Dolbeault formal
if H●,●

∆
∂
(M) has a structure of algebra induced by ∧, i.e., if α ∈ Hp,q∆

∂
(M), β ∈ Hr,s∆

∂
(M), then

α ∧ β ∈Hp+r,q+s∆
∂

(M).

A complex manifold (M,J) endowed with a geometrically-Dolbeault formal metric is called a
geometrically-Dolbeault formal manifold.

Proposition 1.4.7. ([150, Proposition 2.1, 2.2]). Let (M,J, g) be a geometrically-Dolbeault formal
manifold. Then, (M,J) is weakly Dolbeault formal. Moreover, if H●.●

∆
∂
(M) is ∂-invariant, then

(M,J) is Dolbeault formal.

The notions of Dolbeault formality are then related in the following way

Dolbeault formality Weak Dolbeault formality Vanishing of ∂-products

Geometric Dolbeault formality
(1.4.2)

and

Geometric Dolbeault formality + ∂−invariance of H●,●
∆
∂
(M) Dolbeault formality. (1.4.3)

Analogous notions of geometric formality and triple Massey products for Bott-Chern and Aeppli
cohomology has been introduced by [18], (see also [147, 10]).
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Definition 1.4.8. Let [α] ∈Hp,q
BC(M), [β] ∈Hr,s

BC(M), [γ] ∈Hu,v
BC(M) such that

[α] ∪ [β] = 0 ∈Hp+r,q+s
BC (M), [β] ∪ [γ] = 0 ∈Hr+u,s+v

BC (M)

i.e., there exist fαβ ∈ Ap+q−1,r+s−1(M), fβγ ∈ Ar+u−1,s+v−1(M) such that

(−1)p+qα ∧ β = ∂∂fαβ, (−1)r+sβ ∧ γ = ∂∂fβγ . (1.4.4)

Then, the triple Aeppli-Bott-Chern Massey product (shortly, BC -product) ⟨[α], [β], [γ]⟩ABC is the
coset

⟨[α], [β], [γ]⟩ABC ∶= [(−1)p+qα ∧ fβγ − (−1)r+sfαβ ∧ γ] ∈Hp+r+u−1,q+s+v−1
A (M)/J ,

with J ∶= [α]∪Hr+u−1,s+v−1
A (M)+ [γ]∪Hp+r−1,q+s−1

A (M) ideal of Hp+r+u−1,q+s+v−1
A (M). Notice that

this definition is independent of choice of representatives α,β, γ and primitives fαβ, fβγ .

Definition 1.4.9. A Hermitian metric g on (M,J) is said to be geometrically-Bott-Chern formal
if H●,●

∆BC
(M) has a structure of algebra induced by ∧, i.e., if α ∈ Hp,q∆BC

(M), β ∈ Hr,s∆BC
(M), then

α ∧ β ∈Hp+r,q+s∆BC
(M).

A complex manifold admitting a geometrically-Bott-Chern formal metric is said to be a
geometrically-Bott-Chern formal manifold.

These cohomological and metric notions are related as shown by the following proposition (see
[147]).

Proposition 1.4.10. Let M be a compact complex manifold. If M is geometrically-Bott-Chern
formal then the Aeppli-Bott-Chern-Massey triple products are trivial.

1.5 Special structures on complex manifolds

Let (M,J, g,ω) be a compact Hermitian manifold. The metric g is said to be Kähler if

dω = 0.

The existence of such metrics forces many strong topological and cohomological restraints on the
manifold, as recalled in the introduction. As a consequence, there exist many natural classes of non-
Kähler manifolds which admit metrics with weaker properties than Kähler metrics, e.g., compact
quotients of nilpotent Lie groups by a discrete uniform subgroup which are not tori, see [24].

However, depending on the closedness of the fundamental form ω (or its powers) with respect to
certain differential operators, many special metric structures which generalize the Kähler condition
arise.

Definition 1.5.1. ([61, 26, 78, 103]) A Hermitian metric (g,ω) on a complex manifold (M,J) of
complex dimension n is said to be

• Gauduchon, or regular, if
∂∂ωn−1 = 0,

• Strong Kähler with torsion (shortly, SKT ), or pluriclosed, if

∂∂ω = 0,

or, recalling (1.2.5),
ddcω = 0.
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• astheno-Kähler if
∂∂ωn−2 = 0,

• balanced, or co-closed, if
dωn−1 = 0.

Since ω = ω and dωn−1 = ∂ωn−1 + ∂ωn−1 = ∂ωn−1 + (∂ωn−1) = (∂ωn−1) + ∂ωn−1, the metric g is
balanced if, and only if, ∂ωn−1 = 0, if, and only if, ∂ωn−1 = 0.

By definition, for certain complex dimensions these metric notions coincide, i.e., for n = 2,
Gauduchon and SKT metrics and Kähler and balanced metrics, for n = 3, SKT and astheno-Kähler
metrics; however, in higher dimensions there exists many examples of manifolds in which the notions
are well distinct ([125]).

Note that the fundamental forms ω of Kähler, Gauduchon, SKT, astheno-Kähler, and balanced
metrics are particular cases of more geneal special structures on the complex manifold (M,J). In
order to recall the definition of such structures, let us fix (V, J) a 2n-dimensional real vector space
endowed with an almost complex structure J . In the following, we will consider the spaces of real
(p, p)-covectors on V , i.e., elements of the spaces

⋀p,pR V ∶= {ψ ∈ ⋀p,p V ∣ ψ = ψ}, 1 ≤ p ≤ n,

where the space of (p, q)-covectors ⋀p,q V is given, as usual, by (1.1.5). Let us fix the constant
σp ∶= ip

2
2−p. It is easy to check that, for every (p,0)-covector ψ ∈ ⋀p,0 V , it holds

σpψ ∧ ψ = σpψ ∧ ψ,

i.e., the (p, p)-covector σpψ ∧ ψ ∈ ⋀p,pR V . Therefore, if {η1, . . . , ηn} is base for (V ∗)1,0, the set

{σpηi1 ∧⋯ ∧ ηip ∧ ηi1 ∧⋯ ∧ ηip ∣ 1 ≤ i1 < ⋯ < ip ≤ n}

forms a base of ⋀p,pR V . By definition of the extension of J to k-covectors (1.1.6), it is clear that
every real (p, p)-covector ψ is J-invariant, i.e., Jψ = ψ.

With these notation, the (n,n)-covector on V defined by

Vol ∶= ( i
2
η1 ∧ η1) ∧⋯ ∧ ( i

2
ηn ∧ ηn) ;

is then
Vol = σn η1 ∧⋯ ∧ ηn ∧ η1 ∧⋯ ∧ ηn,

i.e., the covector Vol is a volume form on V .

Definition 1.5.2 ([5]). A covector ψ ∈ ⋀p,0 V is said to be simple or decomposable if

ψ = α1 ∧⋯ ∧ αp,

for suitable α1, . . . , αp ∈ V 1,0.

Definition 1.5.3. A real (n,n)-covector ψ ∈ ⋀n,nR V is said to be positive, respectively strictly
positive, if

ψ = aVol,

where a ≥ 0, respectively, a > 0.
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Definition 1.5.4. A real (p, p)-covector Ω ∈ ⋀p,pR V is said to be weakly positive if given any non-zero
simple (n − p)-covector η, the real (n,n)-covector

Ω ∧ σn−pη ∧ η

is positive.

Definition 1.5.5. A real (p, p)-covector Ω is said to be transverse if, given any non-zero simple
(n − p)-covector η, the real (n,n)-covector

Ω ∧ σn−pη ∧ η

is strictly positive.

Let now (M,J) be a (almost) complex manifold of real dimension 2n and denote by

Ap,pR (M) ∶= {ψ ∈ Ap,q(M) ∣ ψ = ψ}

the space of real (p, p)-forms. Fix 1 ≤ p ≤ 2n.

Definition 1.5.6 ([142]). A p-Kähler form on (M,J) is a real d-closed transverse (p, p)-form Ω,
that is dΩ = 0, and, at every x ∈M , Ωx ∈ ⋀p,pR (T ∗xM) is transverse. The triple (M,J,Ω) s said to
be an (almost) p-Kähler manifold.

Definition 1.5.7 ([5]). A p-pluriclosed form on (M,J) is a real ddc-closed transverse (p, p)-form
Ω, that is Ω is ddc-closed and, at every x ∈M , Ωx ∈ ⋀p,pR (T ∗xM) is transverse. The triple (M,J,Ω)
is said to be an (almost) p-pluriclosed manifold.

In general, a p-pluriclosed manifold (M,J,Ω) does not admit an Hermitian metric g with fun-
damental form ω such that ∂∂ωp = 0. However, this is the case for p = 1, for which the existence of
a 1-pluriclosed form on (M,J) implies the existence of a SKT metric on (M,J).

Viceversa, if (M,J) admits an astheno-Kähler metric g (respectively SKT metric) with fun-
damental associated form ω, then (M,J,ωn−2) (respectively (M,J,ω)) is an (n − 2)-pluriclosed
(respectively 1-pluriclosed) manifold.

1.6 Invariant complex structures and cohomology of nilmanifolds

We refer to Appendix C for a basic introduction on left-invariant vector fields and differential
forms and the computation of the de Rham cohomology via the complex of left-invariant forms on
nilmanifolds and completely solvable solvmanifolds.

In this section, we recall the main notion of invariant complex structures on nilmanifolds and
a way to compute the Dolbeault cohomology (1.3.2), the Bott-Chern cohomology (1.3.1), and the
Aeppli cohomology (1.3.3), of such manifolds via the corresponding left-invariant cohomology.

Let G be a real 2n-dimensional Lie.

Definition 1.6.1. An almost complex structure on G is said to be left-invariant if, for every
a, x ∈ G, on TaxG it holds that

ˆ(La)xJx = Jax,

where
ˆ(La)xJx ∶= (dLa)x ○ Jx ○ (dLa−1)ax,

with dLa the differential of the left translation map La (see Appendix C).
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Let g ≃ TeG be the associated Lie algebra of the Lie group G.

Definition 1.6.2. An almost complex structure on g is an almost complex structure on g considered
as a vector space (see section 1.1).

Note that for every almost complex structure J on g, there corresponds a unique left-invariant
almost complex structure Ĵ on G such that Ĵe = J , and it holds Ĵx = ˆ(Lx)eJ , for every a ∈ G.
Hence, a left-invariant almost complex structure Ĵ on G can be induced by assigning an almost
complex structure J on g. Moreover, by Newlander-Niremberg theorem (see section 1.2) such an
induced almost complex structure Ĵ is integrable on G if, and only if

NJ(X,Y ) = [JX,JY ] − J[X,JY ] − J[JX,Y ] − [X,Y ] = 0, ∀X,Y ∈ g,

i.e., if and only if, the Nijenhuis tensor NJ identically vanishes on g×g. Consequently, we now work
on g. The extension of J to the complexification gC of g induces the the usual decompositions

gC = g1,0 ⊕ g0,1,

where g1,0 ∶= {X − iJX ∶X ∈ gC} and g0,1 ∶= {X + iJX ∶X ∈ gC}, and

g∗C = (g1,0)∗ ⊕ (g0,1)∗,

where (g1,0)∗ = {α + iJα ∶ α ∈ g∗C} and (g0,1)∗ = {α − iJα ∶ α ∈ g∗C}. On the exterior powers ⋀k(g∗C),
the following decompositions hold

⋀k(g∗C) = ⊕
p+q=k

⋀p,q g, ⋀p,q g ∶= ⋀p(g1,0)∗ ⊗⋀q(g0,1)∗.

Let {Z1, . . . , Zn} now be a C-base of g1,0. Then, as recalled in section 1.2, the vanishing of J is
equivalent to

[Zi, Zj] = ckijZk, ckij ∈ C, ∀i, j ∈ {1, . . . , n},

or equivalently,
[Zi, Zj] = ckijZk, ck

ij
∈ C, ∀i, j ∈ {1, . . . , n},

i.e., [g1,0,g1,0] ⊂ g1,0, or equivalently, [g0,1,g0,1] ⊂ g0,1. The complex numbers

{ckij ∶ i, j, k ∈ {1, . . . , n,1 . . . , n}} (1.6.1)

are called the complex structure constants, and they completely determine the complex structure J
on g, hence, the complex structure Ĵ on G. For the sake of completeness, we write the commutators

[Zi, Zj] = ckijZk, i, j ∈ {1, . . . , n}

[Zi, Zj] = ckijZk + c
k
ij
Zk, i, j ∈ {1, . . . , n}

[Zi, Zj] = ckijZk + c
k
ij
Zk, i, j ∈ {1, . . . , n},

[Zi, Zj] = ckijZk, i, j ∈ {1, . . . , n}.

Since the bracket [⋅, ⋅] is skew-symmetric, the following relations hold

ckii = 0, ck
ii
= 0, ckij = −ckji, ck

ij
= −ck

ji
, ck

ij
= −ck

ji
, ck

ij
= −ck

ji
.
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Moreover, by complex conjugation, it holds that

ck
ij
= ckij , ck

ij
= −ck

ij
, ck

ij
= −ck

ij
.

Therefore, the complex structure J is actually determined by the commutators

[Zi, Zj] = ckijZk i < j

[Zi, Zj] = ckijZk + c
k
ij
Zk, i ≤ j.

Let then {η1, . . . , ηn} ⊂ (g1,0)∗ be the dual base of {Z1, . . . , Zn}. By the relation between left-
invariant vector fields and left-invariant forms

dα(X,Y ) = −α([X,Y ]),

we obtain the complex structure equations

dηk = −∑
i<j
ckijη

ij −∑
i≤j
ck
ij
ηij +∑

i<j
ck
ij
ηji, k ∈ {1, . . . , n}, (1.6.2)

or, by making use of the splitting d = ∂ + ∂,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ηk = −∑i<j ckijηij , k ∈ {1, . . . , n},
∂ηk = −∑i≤j ckijη

ij +∑i<j ckijη
ji, k ∈ {1, . . . , n}

.

Special properties of a left-invariant complex structure J on a Lie group G are reflected on the
structure constants ckij , c

k
ij
, ck
ij

with respect to a fixed base of gC and g∗C:

• J is holomorphically parallelizable if the holomorphic tangent bundle (T 1,0G)∗ is holomorphi-
cally trivial, i.e., there exist a global coframe of holomorphic (1,0)-forms on G. This holds
if, and only if, there exists a coframe {η1, . . . , ηn} of (left-invariant) (1,0)-forms such that

ck
ij
= ck

ij
= 0.

• J is abelian if [JX,JW ] = [X,W ] for every X,W ∈ g. This implies that, for every coframe
{η1, . . . , ηn} of (g1,0)∗, it holds

ckij = 0.

• J is nilpotent if the ascending series {gJl }l≥0 defined by

gJ0 = {0}, gJl ∶= {X ∈ g∣[X,g] ⊆ gJl−1, [JX,g] ⊆ gJl−1}

satisfies gJk0 = g, for some k0 > 0. This is equivalent ([45, Theorem 2], see also [44, Theorem
9]) to the existence of a C-coframe {η1, . . . , ηn} such that, for every k, if either i ≥ k or j ≥ k
or j ≥ i, then ckij = 0 and if either i ≥ k or j ≥ k, then ck

ij
= ck

ij
= 0 , i.e., for every k,

dηk = ∑
i<j<k

−ckijηij − ∑
i,j<k

ck
ij
ηij + ∑

i,j<k
ck
ij
ηji.

• J is rational if g admits a rational structure, i.e., a vector space h over Q such that h⊗QR = g,
and it holds that J(h) ⊂ h. In particular, this implies the existence of a coframe {η1, . . . , ηn}
of (g1,0)∗ such that

ckij , c
k
ij
, ck
ij
∈ Q[i].
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Let nowM ∶= Γ/G be a real 2n-dimensional nilmanifold, i.e., the compact quotient of a nilpotent
simply connected Lie group G by a discrete uniform subgroup Γ (see definition in Appendix C).
Any left-invariant tensor on G is also Γ-invariant, hence it descends to a well defined object on the
quotient M . We will call invariant a tensor on M which pulls back to a left-invariant one on the
G.

Let then J be an invariant integrable almost complex structure on M . If g is the Lie algebra
associated to G, let us denote the complex of left-invariant forms endowed with the ∂ and ∂ differ-
entials (⋀●,● g, ∂, ∂). Then, the invariant Dolbeault cohomology, invariant Bott-Chern cohomology,
and the invariant Aeppli cohomology of M are defined, respectively, as the spaces

Hp,q

∂
(g) ∶ = Ker(∂∶⋀p,q g→ ⋀p,q+1 g)

Im(∂∶⋀p,q−1 g→ ⋀p,q g)

Hp,q
BC(g) ∶ =

Ker(∂∶⋀p,q g→ ⋀p+1,q g) ∩Ker(∂∶⋀p,q g→ ⋀p,q+1 g)
Im(∂∂∶⋀p−1,q−1 g→ ⋀p,q g)

Hp,q
A (g) ∶ = Ker(∂∂∶⋀p,q g→ ⋀p+1,q+1 g)

Im(∂∶⋀p−1,q g→ ⋀p,q g) + Im(∂∶⋀p,q−1 g→ ⋀p,q g)

As in the differentiable case, conditions on the complex structure under which the inclusion

⋀●,● g↪ A●,●(M)

induces an isomorphism in cohomology

H●,●
♯ (g) ≃H●,●

♯ (M), ♯ ∈ {∂,BC,A}

have been estabilished. The following theorem by Angella in [11] summarizes such conditions.

Theorem 1.6.3. Let (M = Γ/G,J) be a 2n-dimensional nilmanifold endowed with a invariant
complex structure J and let g be the associated Lie algebra of G. If one the following conditions is
satisfied

• (M,J) is holomorphically parallelizable,

• J is abelian,

• J is nilpotent,

• J is a rational complex structure,

then the inclusion
⋀●,● g↪ A●,●(M)

induces an isomorphism in cohomology

H●,●
♯ (g) ≃H●,●

♯ (M), ♯ ∈ {∂,BC,A}.

Remark 1.6.4. In order to make computations in complex cohomology via the previous theorem,
one needs to dispose of a real 2n-dimensional simply connected nilpotent Lie group G which admits
a coframe with rational structure constants and which admits a left-invariant integrable almost
structure satisying one of the conditions of Theorem 1.6.3. One way to do this, is to fix a base of
(1,0)-forms {η1, . . . , ηn} of a formal Lie algebra g and assign complex structure equations (1.6.2)
such that J is both nilpotent and rational. Then, the dual g∗ of the real Lie algebra g underlying
gC is determined by g∗ = SpanR⟨ej⟩, where e2j−1 ∶= Re(ηj) and e2j ∶= Im(ηj), j ∈ {1, . . . , n}.
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Consequently, the real constant structure of g will be determined by the expressions of d(ej) in
terms of the base {ej}2n

j=1 of g∗. By passing to dual, the Lie algebra g is then determined; in
particular, it turns out that g is a real nilpotent Lie algebra. By a classical theorem in Lie group
theory, there exists a unique simply connected nilpotent Lie group G (up to isomorphism) such
that its Lie associated Lie algebra is precisely g. The Lie group G is then endowed with a left-
invariant integrable almost complex structure J such that g∗C = (g1,0)∗ ⊕ (g0,1)∗, where the set
{ηj ∶= e2j−1 + ie2j}nj=1 is a basis for (g1,0)∗. Moreover, since the structure constant of the coframe
{ej}2n

j=1 are rational, by Mal’cev theorem, the Lie group G admits a discrete uniform subgroup Γ
such that M = Γ/G is a nilmanifold. The left-invariant almost complex structure J descends to a
invariant one onM , so that (M,J) is a nilmanifold endowed with a nilpotent and rational invariant
integrable almost complex structure; hence, Theorem 1.6.3 applies.

1.7 Deformations of complex structures

In this section, we recall the fundamental definitions and results of deformation theory of complex
manifolds. Let B be a domain of Rm (respectively, Cm) and {Mt}t∈B a family of compact complex
manifolds.

Definition 1.7.1. We say that Mt depends differentiably (respectively, holomorphically) on t ∈ B,
or, equivalently, that {Mt}t∈B forms a differentiable (respectively, holomorphic) family if there exists
a differentiable (respectively, complex) manifoldM and a differentiable (respectively, holomorphic)
proper map π∶M→ B such that

1. π−1(t) =Mt as a complex manifold for every t ∈ B,

2. the rank of the Jacobian of π is equal to the dimension (respectively, complex dimension) of
B at each point ofM.

From 2. of the definition that every Mt, for t ∈ B, is a submanifold (respectively, complex sub-
manifold) ofM. In what follows, we will denote also by (M, π,B) the differentiable (respectively,
holomorphic) family {Mt}t∈B.

Definition 1.7.2. If M , N are compact complex manifolds, we say that M is a differentiable
(respectively, holomorphic) deformation of N if there exists a differentiable (respectively, holomor-
phic) family {Mt}t∈B over a domain B of Rm (respectively, Cm), with Mt0 =M , Mt1 = N for some
t0, t1 ∈ B.

A classical theorem by Ehresmann, see [49] or [75, Proposition 6.2.2], shows that if {Mt}t∈B is
a differentiable family of complex manifolds, then Mt1 and Mt2 are diffeomorphic as differentiable
manifolds, for any t1, t2 ∈ B. Hence, from the differentiable point of view, it holds

M ≃Mt0 ×B, (1.7.1)

i.e., the manifold M can be regarded as the product of a fixed Mt0 , for t0 ∈ B, and the base
manifold B. The complex manifold Mt0 is usually called the central fiber. From the complex point
of view, each fiber Mt, t ∈ B, can be seen as the complex manifold (Mt0 , Jt), where Mt0 denotes
the underlying differentiable structure of the central fiber and Jt is an integrable almost complex
structure on Mt0 which varies smoothly with t ∈ B.

Definition 1.7.3. A property P depending on the complex structure of a complex manifold (M,J)
is said to be
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• open under holomorphic (respectively, differentiable) deformations if for every holomorphic
(respectively, differentiable) family (M,Jt)t∈B such that (M,Jt0) = (M,J), if P holds for
(M,J), then P holds for every (M,Jt), for t ∈ B;

• closed under holomorphic (respectively, differentiable) deformations if for every holomorphic
(respectively, differentiable) family (M,Jt)t∈B such that (M,Jt0) = (M,J), if P holds for
every (M,Jt), for t ∈ B, then P holds also on (M,J).

Let (M, π,B) be a differentiable family of compact n-dimensional complex manifolds over B.
For the sake of simplicity, we assume t0 = 0 and B = B(0,1) ⊂ Rm, i.e. B = {t ∈ Rm ∶ ∣t∣ < 1}.

Let us consider a system of local coordinates {Uj , (ζj , t)} of M such that each Uj can be
identified with the set

{(ζj , t) ∶ ∣ζj ∣ < 1, ∣t∣ < 1} ⊂ Cn ×Rm, π(ζj , t) = t,

with transition functions fjk, which identify points in Uj ∩ Uk ≠ ∅ by

ζj = fjk(ζk, t),

and which are differentiable with respect to (ζk, t) and are holomorphic with respect to ζk for any
fixed t. We note that each Uj ≃ Uj ×B, where Uj = {ζj ∶ ∣ζj ∣ < 1}.

By (1.7.1), we can describe the local coordinates of Uj as differentiable functions of coordinates
of M0 = π−1(0), that is,

ζj = ζj(z, t), (1.7.2)

where z are local holomorphic coordinates onM0 which at this moment we consider as differentiable
coordinates. In particular, the coordinates ζj(z, t) are differentiable functions of (z, t), whereas they
depend holomorphically on z for each fixed value of t.

With the aid of the expressions (1.7.2), we can actually describe the complex structure on each
Mt, t ∈ B, via a smooth (0,1)-vector form ϕ(t) ∈ A0,1(T 1,0M0), defined starting from the local
transition functions fjk (see [85, page 150]).

In fact, since both {ζ1
j (z,0), . . . , ζnj (z,0)} and {z1, . . . , zn} are local holomorphic coordinates

on M0,

det(
∂ζαj (z,0)
∂zλ

)
λ

α

≠ 0.

Therefore, in a small neighborhood of 0 ∈ Rm, it holds that

det(
∂ζαj (z, t)
∂zλ

)
λ

α

≠ 0.

Set Aλjα ∶= ((∂ζ
α
j (z,t)
∂zλ

)
λ

α
)
−1

and

ϕλj (z, t) ∶=
n

∑
α=1

Aλjα ∂ζ
α
j ,

which is a local 1-form in a neighborhood of M0 in Uj . The local expression

ϕj(z, t) =
n

∑
λ=1

ϕλj ⊗
∂

∂zλ
, (1.7.3)

defines a global (0,1)-vector form on M0. In fact, the forms ϕλj do not depend on the choice
of the neighborhood Uj and ζj . Let ζk be another set of coordinates on a different Uk, so that
fjk(ζk(z, t), t) are the transition functions. We remember that fjk are holomorphic in ζk, hence
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Aλjα =
n

∑
β=1

Aλkβ
∂ζβk
∂ζαj

,

which, with a coordinate change, yields

ϕλj (z, t) =
n

∑
α,β=1

∂ζαj

∂ζβk
Aλjα ∂ζ

β
k (z, t)

=
n

∑
β=1

Aλkβ ∂ζ
β
k (z, t) = ϕ

λ
k(z, t)

Therefore, we can define ϕλ = ϕλj (z, t), which is a (0,1)-form independent of the coordinates ζj ,
and ϕ has local expression ϕj in a neighborhood V ×B, with V an open set in M0 with coordinates
z. It remains to show that the expression of ϕ does not depend on the local coordinate z on M0.
Let V and W be two open sets in M0 and zV , zW their local coordinates. Under the coordinate
change zW = zW (zV ), it then turns out that

ϕ(t) =
n

∑
β=1

ϕβ(zW , t)⊗
∂

∂zβW
=

n

∑
β=1

ϕβ(zV , t)⊗
∂

∂zβV
,

hence ϕ(t) is a global (0,1)-vector form on M0. By its very definition, it holds that

iϕ(t) ζ
α
j (z, t) =

n

∑
λ=1

ϕλ
∂ζαj

∂zλ
= ∂ζαj (z, t)

or equivalently

(∂ −
n

∑
λ=1

ϕλ ⊗ ∂

∂zλ
) ζαj (z, t) = 0.

It can be proved (see [85, Chapter 4, Proposition 1.2]) that the (local) holomorphic functions on
each Mt are defined as the differentiable functions f defined on open sets of M0 which are solutions
to equation

(∂ −
n

∑
λ=1

ϕλ ⊗ ∂

∂zλ
) f(z, t) = 0, (1.7.4)

i.e., the complex structure on eachMt, for t small enough, is encoded in the (0,1)-vector form ϕ(t).
We remark that on the spaces of vector forms on M , i.e., A∗ ∶= A0,∗(T 1,0M0), ∗ ∈ {1, . . . , n}, a

bracket can be defined in the following way. Let Ψ = ∑ψα∂α and Ξ = ∑ ξα∂α be respectively (0, p)-
and a (0, q)-vector forms, where ∂α = ∂

∂zα . Then

[Ψ , Ξ ] ∶=
n

∑
α,β=1

(ψα ∧ ∂αξβ − (−1)pqξα ∧ ∂αψβ)∂β ∈ Ap+q. (1.7.5)

In particular [ , ] is bilinear and satisfies the following

1. [Ψ,Ξ] = −(−1)pq[Ξ,Ψ],

2. ∂[Ψ,Ξ] = [∂Ψ,Ξ] + (−1)p[Ψ, ∂Ξ],

3. (−1)pr[Ψ[Ξ,Φ]] + (−1)qp[Ξ, [Φ,Ψ]] + (−1)rq[Φ, [Ψ,Ξ]]=0,

if Ψ ∈ Ap, Ξ ∈ Aq and Φ ∈ Ar.
A classical result (see [85, Chapter 4, Theorem 1.1]) shows that the deformations of the complex

structure on a compact complex manifold can be characterized according to the following theorem.
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Theorem 1.7.4. If (M, π,B) is a differentiable family of compact complex manifolds, then the
complex structure on each Mt = π−1(t) is represented by the vector (0,1)-form ϕ(t) ∈ A1 just
constructed on M0, such that ϕ(0) = 0 and

∂ϕ(t) − 1

2
[ϕ(t), ϕ(t)] = 0 (Maurer-Cartan equation). (1.7.6)

As for the existence of deformations of compact complex manifolds, we refer to the general
theory known as Kuranishi theory.

Let M be a compact complex manifold. Fix an Hermitian metric h on M , extend it to Aq and
denote it by the same symbol h. Define and inner product on Aq by

⟪Ψ,Ξ⟫ = ∫
M
h(Ψ,Ξ) ∗ 1,

where Ψ,Ξ ∈ Aq, ∗ is the C-antilinear Hodge operator. We also define the Laplacian on Aq by

◻ = ∂∗∂ + ∂∂∗,

where ∂
∗
is the adjoint operator of ∂ with respect to the Hermitian metric h. The space of harmonic

forms is
Hq = {Ψ ∈ Aq ∶ ◻Ψ = 0}.

The Hodge theory induces a decomposition on the space Aq as a direct sum of orthogonal subspaces:

Aq =Hq ⊕◻Aq.

The operator G∶Aq → ◻Aq is well defined and acts on Aq as the projection onto ◻Aq, whereas the
operator H is the well-defined projection operator onto Hq.

Theorem 1.7.5 ([89]). Let M be a compact complex manifold, {ην} a base for H1. Let ϕ(t) be
the (0,1)-vector form which is a power series solution of the equation

ϕ(t) = η(t) + 1

2
∂
∗
G[ϕ(t), ϕ(t)], (1.7.7)

where η(t) = ∑mν=1 tνην , ∣t∣ < r, r > 0, and let S = {t ∈ Br(0) ∶ H[ϕ(t), ϕ(t)] = 0}. Then for each
t ∈ S, ϕ(t) determines a complex structure Mt on M .

The space S is called the space of Kuranishi. The proof of Theorem 1.7.5 shows that a (0,1)-
vector form ϕ(t) satisfying equation (1.7.7) can be constructed as a converging power series

ϕ(t) =
∞
∑
µ=1

ϕµ(t)

in which the forms
ϕµ(t) = ∑

ν1+⋅⋅⋅+νm=µ
ϕν1...νmt

ν1
1 ⋯tνmm , ϕν1...νm ∈ A1,

are determined via a recursive formula. In fact, if {ην}nν=1 is a basis for H1 and we set ψ1(t) =
∑mν=1 tνην , equation (1.7.7) assures that each term ϕµ can be computed as

ϕµ(t) =
1

2
∂
∗
G (

µ−1

∑
κ=1

[ϕκ(t), ϕµ−κ(t)] ). (1.7.8)
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In general S can have singularities and hence may not have a structure of smooth manifold.
Nonetheless, {Mt}t∈S can be proven to be a locally complete family of complex manifolds and
therefore can be still be interpreted as a complex analytic family, see [89].

Let then (M, π,B) be a differentiable family of compact complex manifolds. In order to study
the geometry of deformations, it is useful to understand the decompositions of the complexified
cotangent bundle (TCM)∗ and how its powers ⋀kC(M) vary along with Mt. For simplicity, we
suppose that B = I = (−ε, ε) ⊂ R, for ε > 0. In the following, we may refer to one-dimensional
differentiable families of complex manifolds {Mt}t∈I , I = (−ε, ε), ε > 0, by the terminology curves of
complex structures.

Let us denote the central fiber of the family M0 = π−1(0) by M and let us suppose ϕ(t) ∈ A1 is
the (0,1)-vector form describing (M, π,B). If we denote by

ikϕ(t) ∶= iϕ(t) ○ ⋅ ⋅ ⋅ ○ iϕ(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

and by ϕ(t) ∈ A1,0(T 0,1M) the conjugate of ϕ(t), in the following operators

eiϕ(t) =
∞
∑
k=0

1

k!
ikϕ(t) and e

i
ϕ(t) =

∞
∑
k=0

1

k!
ik
ϕ(t)

the summations are finite, since the dimension of M is finite. As in [122, Definition 2.8], we recall
the extension map

e
iϕ(t)∣iϕ(t) ∶Ap,q(M)→ Ap,q(Mt), (1.7.9)

where, if α = αi1...ipj1...jqdzi1∧⋅ ⋅ ⋅∧dzip∧dzj1∧⋅ ⋅ ⋅∧dzjq is the local expression of α a (p, q)-differential
form on M , we set

e
iϕ(t)∣iϕ(t)(α) = αi1...ipj1...jqe

iϕ(t)(dzi1 ∧ ⋅ ⋅ ⋅ ∧ dzip) ∧ eiϕ(t)(dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzjq). (1.7.10)

Note that the local definition of eiϕ(t)∣iϕ(t)(α) gives rise to a global (p, q)-form on Mt, since ϕ(t) is
a global (0,1)-vector form.

The following lemma relates (p, q)-forms on the central fiberM and (p, q)-forms on any alement
Mt of the familyM, see [122, Lemma 2.9, 2.10].

Lemma 1.7.6. For any p, q and for t small, the map eiϕ(t)∣iϕ(t) ∶Ap,q(M)→ Ap,q(Mt) is a real linear
isomorphism.

Moreover, the following decompositions hold

AkC(M) = ⊕p+q=kAp,q(Mt), k ∈ {1, . . . , n}. (1.7.11)

Remark 1.7.7. We observe that, for a (0,1)-vector form ϕ(t) ∈ A1 on M0 such that ϕ(0) = 0,
the Maurer-Cartan equation (1.7.6) is equivalent to the integrability of the complex structure Jt
on Mt, i.e.,

(dα)0,2 = 0 ∀α ∈ A1,0(Mt). (1.7.12)

Indeed, from Lemma 1.7.6 it immediately follows (I − ϕ)⌟ ∶ Γ(T 1,0M) → Γ(T 1,0Mt) is an isomor-
phism for t small, and for X,Y ∈ Γ(T 1,0M)

−d(α + eiϕ(t)∣iϕ(t)(α))(X − ϕ(t)(X), Y − ϕ(t)(Y )) = α((∂ϕ(t) − 1

2
[ϕ(t), ϕ(t)])(X,Y )) .

See also [75, Proposition 6.1.2]. Furthermore, for a (0,1)-vector form satisfying (1.7.7), the defining
property of S, i.e., H[ϕ(t), ϕ(t)] = 0, is equivalent to the integrability condition given by the
Maurer-Cartan equation (1.7.6) (see [85, Chapter 4, Proposition 2.5]).



Chapter 2

Deformations of special Hermitian
metrics

Small deformations of the complex structure do not always preserve special metric properties in
the Hermitian non-Kähler setting. In particular, the existence of SKT metrics, astheno-Kähler
metrics, and balanced metrics, on complex manifolds has been shown to be unstable under small
deformations, see [8, 54]) (note that sufficient stability conditions have been proved for balanced
metrics [20, 127, 121, 58, 111]. In this chapter, for each class of such special metrics, we prove
necessary conditions for the existence of smooth curves of SKT metrics {ωt}t (respectively astheno-
Kähler metrics, or balanced metrics) which start with a fixed SKT metric ω (respectively, astheno-
Kähler metric, or balanced metric) for t = 0, along a differentiable family of compact complex
manifolds {Mt}t, see Theorems 2.2.1, 2.3.1, and 2.4.1. From such theorems, as an immediate
consequence, we obtain the obstructions gathered in Corollaries 2.2.2, 2.3.2, and 2.4.2, thus relating
the stability under deformations of the property of admitting special metrics and the Dolbeault
an Bott-Chern cohomologies of the starting manifold. As an application, we provide examples
of obstructions on several concrete examples: for SKT and astheno-Kähler metrics, we focus on
families of nilmanifolds with invariant complex structure of complex dimension 4, whereas for
balanced metrics, we characterize the obstructions to the existence of curves of balanced metrics
on the complex parallelixable solvmanifolds.

2.1 Formulas for ∂t and ∂t operators on curves of deformations

Let (M, π, I) be a differentiable family of compact complex manifolds parametrized by ϕ(t), for
t ∈ I, I ∶= (−ε, ε), ε > 0, as seen in section 1.7. We need to recall formulas for the differential
operators ∂t and ∂t, defined as

∂t ∶= πp+1,q
t ○ d∶Ap,q(Mt)→ Ap+1,q(Mt),

∂t ∶= πp,q+1
t ○ d∶Ap,q(Mt)→ Ap,q+1(Mt),

for any p, q, with πp+1,q
t and πp,q+1

t the usual projections of d(Ap,q(Mt)) with respect to the decom-
positions in (p, q) forms on Mt (1.7.11).

We take as main reference [122]. Starting from (0,0)-differential forms, i.e., differentiable com-
plex functions, we have

∂tf = eiϕ((I − ϕϕ)−1 ⌟ (∂ − ϕ ⌟ ∂)f),

∂tf = eiϕ((I − ϕϕ)−1 ⌟ (∂ − ϕ ⌟ ∂)f),

27
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where ϕϕ = ϕ⌟ϕ, ϕϕ = ϕ⌟ϕ and we omit the dependence on t of ϕ, see [122, Equation (2.13)]. We
will denote by ` the simultaneous contraction on each component of a complex differential form,
i.e.

ϕ`α ∶= αi1...ipj1...jqϕ ⌟ dz
i1 ∧ ⋅ ⋅ ⋅ ∧ ϕ ⌟ dzip ∧ ϕ ⌟ zj1 ∧ ⋅ ⋅ ⋅ ∧ ϕ ⌟ dzjq ,

for any (p, q)-differential form locally written as α = αi1...ipj1...jqdzi1 ∧ ⋅ ⋅ ⋅ ∧ dzip ∧ dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzjq .
This contraction is well-defined and it can be used to describe the extension map, in fact

e
iϕ(t)∣iϕ(t) = (I + ϕ + ϕ)`. (2.1.1)

With these notations, from the proof of [122, Proposition 2.13], we can summarize the action of
the operators ∂t and ∂t on differential forms eiϕ(t)∣iϕ(t)α ∈ Ap,q(Mt), with α ∈ Ap,q(M), follows

∂t(eiϕ∣iϕα) = eiϕ∣iϕ((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`α), (2.1.2)

∂t(eiϕ∣iϕα) = eiϕ∣iϕ((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`α). (2.1.3)

2.2 Deformations of strong Kähler with torsion metrics

Let us fix (M,J, g,ω) a compact Hermitian manifold and suppose that g is SKT, i.e. ∂∂ω = 0. We
want to find necessary conditions under which the property of being SKT is stable for a smooth
family of Hermitian metrics {ωt}t∈I such that ω0 = ω, along a deformation of the complex structure
parametrized by a (0,1)-vector form ϕ(t). Suppose that each ωt is SKT for any t ∈ I, i.e. ∂t∂tωt = 0.
Using the Taylor series expansion and differentiating this expression with respect to t, we obtain
the following.

Theorem 2.2.1 ([118]). Let (M,J, g,ω) be a compact Hermitian manifold with g a SKT metric.
Let {Mt}t∈I be a differentiable family of compact complex manifolds parametrized by ϕ(t) ∈ A1, for
t ∈ I = (−ε, ε), ε > 0. Let {ωt}t∈I be a smooth family of Hermitian metrics on each Mt written as

ωt = e
iϕ(t)∣iϕ(t) (ω(t)),

where ω(t) has local expression ωij(t)dzi ∧ dzj ∈ A1,1(M). Denote by ω′(t) ∶= ∂
∂tωij(t)dz

i ∧ dzj ∈
A1,1(M). Then, if the metrics ωt are SKT for every t ∈ I, the following condition must hold

2iIm(∂ ○ iϕ′(0) ○ ∂)(ω) = ∂∂ω′(0). (2.2.1)

As a consequence, we have the following cohomological obstruction.

Corollary 2.2.2 ([118]). Let (M,J, g,ω) be a compact Hermitian manifold. A necessary condition
for the existence of a smooth family of SKT metrics which equals ω in t = 0 along the family of
deformations t↦ ϕ(t) is that the following equation must hold

[Im(∂ ○ iϕ′(0) ○ ∂)(ω)]H2,2
BC(M)

= 0.

Proof of Theorem 2.2.1. The metrics ωt are SKT for every t ∈ I, i.e., ∂t∂tωt = 0. This implies

∂

∂t
(∂t∂tωt)∣t=0 = 0. (2.2.2)

Let us compute equation (2.2.2) using the expressions (2.1.2) and (2.1.3) for ∂t and ∂t. First we
calculate ∂t(ωt)

∂t(ωt) = eiϕ∣iϕ((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`ω(t)),
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and then ∂t∂t(ωt),

∂t∂t(ωt) = eiϕ∣iϕ((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`(I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`ω(t)).

Now, to compute equation (2.2.2), we develop ∂t∂t(ωt) in Taylor series centered in t = 0 up to the
first order. Note that

ϕ(t) = tϕ′(0) + o(t)

implies
(I − ϕϕ) = (I − ϕϕ) = (I − ϕϕ)−1 = (I − ϕϕ)−1 = I + o(t). (2.2.3)

Therefore we get

∂t∂t(ωt) = (I + tϕ′(0) + tϕ′(0))`([∂, tϕ′(0)⌟] + ∂)([∂, tϕ′(0)⌟] + ∂)(ω(0) + tω′(0)) + o(t)

= (I + tϕ′(0) + tϕ′(0))`([∂, tϕ′(0)⌟] + ∂)([∂, tϕ′(0)⌟]ω(0) + ∂ω(0) + t∂ω′(0)) + o(t)

= (I + tϕ′(0) + tϕ′(0))`( − t∂(ϕ′(0) ⌟ ∂ω(0)) + t∂(ϕ′(0) ⌟ ∂ω(0)) + t∂∂ω′(0)) + o(t)

= −t∂(ϕ′(0) ⌟ ∂ω(0)) + t∂(ϕ′(0) ⌟ ∂ω(0)) + t∂∂ω′(0) + o(t),

implying

0 = ∂

∂t
(∂t∂tωt)∣t=0 = −∂(ϕ′(0) ⌟ ∂ω(0)) + ∂(ϕ′(0) ⌟ ∂ω(0)) + ∂∂ω′(0),

which is equivalent to equation (2.2.1).

We now apply Corollary 2.2.2 and Theorem 2.2.1 to study two 4-dimensional complex nilmani-
folds admitting invariant SKT metrics. In particular, we study obstructions along a specific family
of deformations on a family of nilmanifolds introduced in [55, Section 2.3] and on a quotient of the
product of two copies of the real Heisenberg group H(3;R) and R2 presented in [125, Example 8].

2.2.1 Example 1

Let us consider the Lie algebra g endowed with integrable almost complex structure J such that g∗

is spanned by {η1, . . . , η4}, a set of (1,0) complex differential forms with structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a1η

12 + a2η
13 + a3η

11 + a4η
12 + a5η

13

+a6η
23 + a7η

21 + a8η
22 + a9η

23

+a10η
31 + a11η

32 + a12η
33,

(2.2.4)

with ai ∈ C for i ∈ {1, . . . ,12}. In particular, g is a 2-step nilpotent Lie algebra depending on the
complex parameters a1, . . . , a12. If we denote by G the simply-connected nilpotent Lie group with
Lie algebra g, then for any a1, . . . , a12 ∈ Q[i], by Malcev’s theorem [98, Theorem 7], there exists a
uniform discrete subgroup Γ of G such that M = Γ/G is nilmanifold. As in [55, Theorem 2.7], the
left-invariant Hermitian metric on M

g = 1

2

4

∑
j=1

(ηj ⊗ ηj + ηj ⊗ ηj)

is Astheno Kähler, i.e., the fundamental form of g

ω = i

2

4

∑
j=1

ηj ∧ ηj (2.2.5)
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is such that ∂∂ω2 = 0, if and only if the following equation holds

∣a1∣2 + ∣a2∣2 + ∣a4∣2 + ∣a5∣2 + ∣a6∣2 + ∣a7∣2 + ∣a9∣2 + ∣a10∣2 + ∣a11∣2 = 2Re(a3a8 + a3a12 + a8a12). (2.2.6)

Moreover, if a8 = 0, the Astheno-Kähler metric g is SKT if and only if

a1 = a4 = a6 = a7 = a9 = a11 = 0.

Hence, if ai = 0 for i ∈ {1,4,6,7,8,9,11} and

∣a2∣2 + ∣a5∣2 + ∣a10∣2 = 2Re(a3a12), (2.2.7)

from equation (2.2.6), the metric g is SKT, i.e., ∂∂ω = 0. From now on, we will consider the
nilmanifold (M,J), with Hermitian SKT metric ω.

The structure equations (2.2.4) boil down to
⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a2η

13 + a3η
11 + a5η

13 + a10η
31 + a12η

33.
(2.2.8)

We consider now the following invariant (0,1)-vector form given by

ϕ(r, s) = rη1 ⊗Z1 + sη3 ⊗Z3, (r, s) ∈ C2, ∣r∣ < 1, ∣s∣ < 1,

where Zj is the dual of ηj in g, for j ∈ {1,2,3,4}. By Lemma 1.7.6 the invariant forms ηjr,s ∶=
ηj + iϕ(ηj), for j ∈ {1,2,3,4}

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η1
r,s = η1 + rη1,

η2
r,s = η2,

η3
r,s = η3 + sη3,

η4
r,s = η4,

form a coframe of (T 1,0Mt)∗. It is clear that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = 1
1−∣r∣2 (η

1
r,s − rη1

r,s),
η2 = η2

r,s,

η3 = 1
1−∣s∣2 (η

3
r,s − sη3

r,s),
η4 = η4

r,s.

Therefore, it can be easily seen that the structure equations for the coframe {η1
r,s, η

2
r,s, η

3
r,s, η

4
r,s} are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dηir,s = 0, i ∈ {1,2,3},

dη4
r,s = a2+ra10−sa5

(1−∣r∣2)(1−∣s∣2) η
13
r,s + a3

1−∣r∣2 η
11
r,s + a5−sa2−rsa10

(1−∣r∣2)(1−∣s∣2) η
13
r,s+

+ a10+ra2−rsa5
(1−∣r∣2)(1−∣s∣2) η

31
r,s + a12

1−∣s∣2 η
33
r,s + −ra5+sa10+rsa2

(1−∣r∣2)(1−∣s∣2) η
13
r,s.

For the integrability condition (dηir,s)0,2 = 0, which is equivalent to check the Maurer Cartan
equation for ϕ by Remark 1.7.7, we must have that

− ra5 + sa10 + rsa2 = 0. (2.2.9)

We begin studying this equation by noticing that, if we set F (r, s) = −ra5+sa10+rsa2, the gradient
∇F in (r, s) = (0,0) is

(Fr(0,0)
Fs(0,0)

) = (−a5

a10
) .

We distinguish two cases, depending on whether ∇F (0,0) = 0 or ∇F (0,0) ≠ 0. We observe that
in the first case, the solution set, which we will denote by B, might not be a smooth manifold,
whereas it happens in the latter case.
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Case (i)

∇F (0,0) = 0, i.e., a5 = a10 = 0. The solutions of (2.2.9) are

S = {(r, s) ∈ C2 ∶ rsa2 = 0, ∣r∣, ∣s∣ < δ},

for δ > 0 sufficiently small. The corresponding (0,1)-vector form which parametrizes the deforma-
tion is ϕ = rη1⊗Z1+sη3⊗Z3. If we consider the segment γ∶ (−ε, ε)→ S, γ(t) = (tu, tv) for (u, v) ∈ S,
we define the curve of deformations

t↦ ϕ(t) = tu η1 ⊗Z1 + tv η3 ⊗Z3.

In this case, ϕ′(0) = uη1 ⊗Z1 + v η3 ⊗Z3. With structure equation

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a2η

13 + a3η
11 + a12η

33,

we compute ∂ ○ iϕ′(0) ○ ∂(ω). It turns out that this term vanishes, therefore Corollary 2.2.2 gives
no obstructions to the existence of curve of SKT metrics along the curve of deformations t↦ ϕ(t).

Case (ii)

∇F (0,0) ≠ 0, i.e., (a5, a10) ≠ (0,0).
We begin by studying the case a5 ≠ 0. The set

S = {(r, s) ∈ C2 ∶ r = sa10

a5 − sa2
, ∣r∣ < δ, ∣s∣ < δ′} ,

for δ, δ′ > 0 sufficiently small, is the set of the solutions of equation (2.2.9)

−ra5 + sa10 + rsa2 = 0.

If we consider the smooth curve γ∶ (−ε, ε)→ S,

γ(t) = ( tua10

a5 − tua2
, tu) (2.2.10)

with u ∈ C, we have that

t↦ ϕ(t) = tua10

a5 − tua2
η1 ⊗Z1 + tuη3 ⊗Z3

is a smooth curve of deformations with ϕ′(0) = ua10
a5

η1⊗Z1 +uη3⊗Z3. By the usual computations
and structure equations

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a2η

13 + a3η
11 + a5η

13 + a10η
31 + a12η

33,

we obtain that

∂ ○ iϕ′(0) ○ ∂(ω) = iua2
∣a10∣2 − ∣a5∣2

a5
η1313.

We observe that the real form η1313 is closed with respect to ∂ and ∂. Moreover,

(∂∂∗)η1313 = (∣a2∣2 + ∣a3∣2 + ∣a10∣2 − 2R(a3a12))η123123 = 0,
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by equation (2.2.7). Therefore η1313 is harmonic with respect to the Bott-Chern Laplacian and, via
the canonical isomorphism, the class [η1313]BC is a non-vanishing class in H2,2

BC(M). Hence, if

Im(iua2
∣a10∣2 − ∣a5∣2

a5
) ≠ 0,

by Corollary (2.2.2) there exist no family of SKT metrics ωt along t↦ ϕ(t) such that ω0 = ω.
If instead we assume that a10 ≠ 0, we have that equation (2.2.9)

−ra5 + sa10 + rsa2 = 0

admits solutions
S = {(r, s) ∈ C2 ∶ s = ra5

a10 + ra2
, ∣r∣ < δ, ∣s∣ < δ′} ,

with δ, δ′ > 0 sufficiently small.
If γ∶ (−ε, ε) → S is the smooth curve γ(t) = (tv, tva5

a10+tva2 ) with v ∈ C, we define the curve of
deformations by

t↦ ϕ(t) = tv η1 ⊗Z1 +
tva5

a10 + tva2
η3 ⊗Z3. (2.2.11)

We notice that ϕ′(0) = v η1 ⊗Z1 + v a5
a10

η3 ⊗Z3. With the aid of structure equations (2.2.8), we can
check that

∂ ○ iϕ′(0) ○ ∂(ω) = iva2
∣a10∣2 − ∣a5∣2

a10
η1313.

Since η1313 ∈H2,2
BC(M,g) and [η1313]BC does not represent the class 0 ∈H2,2

BC , therefore, if

Im(iva2
∣a10∣2 − ∣a5∣2

a10
) ≠ 0,

by Corollary 2.2.2, there is no curve of SKT metrics ωt along the curve of deformations t ↦ ϕ(t)
such that ω0 = ω.

Summing up, we gather what we obtained.

Theorem 2.2.3 ([118]). Let (M,J) be an element of the family of nilmanifolds with structure
equations

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a2η

13 + a3η
11 + a5η

13 + a10η
31 + a12η

33,

a2, a3, a5, a10, a12 ∈ Q[i] such that ∣a2∣2 + ∣a5∣2 + ∣a10∣2 = 2Re(a3a12), endowed with the Hermitian
SKT metric ω = i

2 ∑
4
j=1 η

jj. Then

• if a5 ≠ 0 and u ∈ C, there exist no smooth curve of SKT metrics ωt such that ω0 = ω along the
curve of deformation t↦ ϕ(t) = tua10

a5−tua2 η
1 ⊗Z1 + tuη3 ⊗Z3 for t ∈ (−ε, ε), ε > 0, if

Im(iua2
∣a10∣2 − ∣a5∣2

a5
) ≠ 0;

• if a10 ≠ 0 and v ∈ C, there exist no smooth curve of SKT metrics ωt such that ω0 = ω along
the curve of deformation t↦ ϕ(t) = tv η1 ⊗Z1 + tva5

a10+tva2 η
3 ⊗Z3 for t ∈ (−ε, ε), ε > 0, if

Im(iva2
∣a10∣2 − ∣a5∣2

a10
) ≠ 0.
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2.2.2 Example 2

Let us consider the group G ∶= H(3;R) × H(3;R) × R2, where H(3;R) is the 3-dimensional real
Heisenberg group. We fix a basis {e1, . . . , e8} for g∗, the dual of the Lie algebra g of G such that

⎧⎪⎪⎨⎪⎪⎩

de1 = de2 = de3 = de4 = de5 = de7 = 0,

de6 = −1
2e

12, de8 = −1
2e

34.

Due to [98, Theorem 7], there exists a lattice Γ of G such that the quotient M = Γ/G is a compact
manifold. In particular, M is a real 8-dimensional nilmanifold.

If we make use of the standard real coordinates {x1, x2, x3} and {x4, x5, x6} on the two copies
of H(3;R) and {x7, x8} on R2, the coframe {e1, . . . , e8} can be written as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e1 = dx1, e2 = dx2, e6 = dx3 − x1dx2,

e3 = dx4, e4 = dx5, e8 = dx6 − x4dx5,

e5 = dx7, e7 = dx8.

Notice that it defines a global left-invariant coframe of differential 1-forms on G, and therefore on
M .

Let us define an almost complex structure J on g∗ by setting the following basis for (g1,0)∗

⎧⎪⎪⎨⎪⎪⎩

η1 ∶= e1 + ie2, η2 ∶= e3 + ie4,

η3 ∶= e5 + ie6, η4 ∶= e7 + ie8.

Let Zj be the dual of ηj in g, for j ∈ {1,2,3,4}. This position gives rise to a left-invariant integrable
almost complex structure on G, hence it descends to the quotient M . With an abuse of notation
we will denote the latter by J .

We find that the holomorphic coordinates on M which induce J are

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z1 = x1 + ix2,

z2 = x4 + ix5,

z3 = x7 + 1
2(x

2)2 + i(x3 − x1x2),
z4 = x8 + 1

2(x
5)2 + i(x6 − x4x5).

(2.2.12)

We point out that the structure equations for (M,J) are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = dη2 = 0,

dη3 = −1
2η

11,

dη3 = −1
2η

22.

(2.2.13)

Let us now consider a generic Hermitian invariant metric g with associated fundamental form

ω = i

2

4

∑
j=1

ajj η
jj + 1

2
∑
j<k

(αjk η
jk − αjk η

kj) ,

whose coefficients αij are such that the matrix representing g

⎛
⎜⎜⎜
⎝

α11 −iα12 −iα13 −iα14

iα12 α22 −iα23 −iα24

iα13 iα23 α33 −iα34

iα14 iα24 iα34 α44

⎞
⎟⎟⎟
⎠
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is positive definite.
It is straightforward to check with the aid of (2.2.13), that g is a SKT metric if and only if

Im(α34) = 0.

We construct a (0,1)-vector form

ϕ(t) = t11η
1 ⊗Z1 + t22η

2 ⊗Z2 + t32η
2 ⊗Z3 + t33η

3 ⊗Z3

+ t34η
4 ⊗Z3 + t41η

1 ⊗Z4 + t43η
3 ⊗Z4 + t44η

4 ⊗Z4,

for t = (t11, t22, t32, t33, t34, t41, t43, t44) in sufficiently small ball B centered in 0 ∈ C8. Using the
holomorphic coordinates (2.2.12), it is a computation to show that ϕ satisfies Maurer-Cartan equa-
tion. As a side note, thanks to [42, Theorem 1.1], we point out ϕ(t) parametrizes a locally complete
family of complex analytic deformations. We construct the segment γ∶ (−ε, ε)→ B, where

t↦ γ(t) = t(a11, a22, a32, a33, a34, a41, a43, a44),

with (a11, a22, a32, a33, a34, a41, a43, a44) ∈ C8. The corresponding curve of deformations is

t↦ ϕ(t) = t(a11η
1 ⊗Z1 + a22η

2 ⊗Z2 + a32η
2 ⊗Z3 + a33η

3 ⊗Z3

+ a34η
4 ⊗Z3 + a41η

1 ⊗Z4 + a43η
3 ⊗Z4 + a44η

4 ⊗Z4)

whose derivative in t = 0 is clearly

ϕ′(0) = a11η
1 ⊗Z1 + a22η

2 ⊗Z2 + a32η
2 ⊗Z3 + a33η

3 ⊗Z3

+ a34η
4 ⊗Z3 + a41η

1 ⊗Z4 + a43η
3 ⊗Z4 + a44η

4 ⊗Z4.

Via structure equations (2.2.13) and the expression of ϕ′(0), we obtain that

2iIm((∂ ○ iϕ′(0) ○ ∂)(ω)) = (2.2.14)
1

8
(iα33(a34 + a34) + iα44(a43 + a43) + α34(a33 + a44) − α34(a44 + a33)) η1212.

We observe that η1212 = 1
4∂∂(η

34), therefore the real (2,2)-form η1212 represents the vanishing class
in H2,2

BC(M). Hence, Corollary 2.2.2 gives no obstruction.
Nonetheless, if we take any smooth curve of SKT Hermitian invariant metrics {ωt} along ϕ(t)

such that ω0 = ω, written as ωt = e
iϕ(t)∣iϕ(t)(ω(t)) with

ω(t) = i

2

4

∑
j=1

ajj(t) η
jj + 1

2
∑
j<k

(αjk(t) η
jk − αjk(t) η

kj) ,

and we compute

∂∂ω′(0) = 1

8
Im(α′

34
(0))η1212,

by imposing equation (2.2.1) of Theorem 2.2.1 we obtain the following result.

Theorem 2.2.4 ([118]). Let (M,J, g,ω) be the nilmanifold obtained as the compact quotient Γ/G
of the Lie group G ∶= H(3;R) ×H(3;R) ×R2 by a lattice Γ of G, with complex structure J defined
through the invariant coframe of (1,0)-complex forms {η1, η2, η3, η4} with structure equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = 0, dη2 = 0,

dη3 = − i2η
11,

dη4 = − i2η
22.
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Let us consider the curve of deformations

t↦ ϕ(t) = t(a11η
1 ⊗Z1 + a22η

2 ⊗Z2 + a32η
2 ⊗Z3 + a33η

3 ⊗Z3+
+ a34η

4 ⊗Z3 + a41η
1 ⊗Z4 + a43η

3 ⊗Z4 + a44η
4 ⊗Z4), t ∈ (−ε, ε)

and any smooth curve of Hermitian invariant metrics {ωt}t∈(−ε,ε) along ϕ(t) such that ω0 = ω, with
ωt = e

iϕ(t)∣iϕ(t)(ω(t)), where

ω(t) = i

2

4

∑
j=1

ajj(t) η
jj + 1

2
∑
j<k

(αjk(t) η
jk − αjk(t) η

kj) .

Then a necessary condition for ωt to be SKT for any t ∈ (−ε, ε) is that

iα33(a34 + a34) + iα44(a43 + a43) + α34(a33 + a44) − α34(a44 + a33) = Im(α′
34
(0)).

2.3 Deformations of Astheno-Kähler metrics

Let (M,J, g,ω) be a compact complex manifold of complex dimension n endowed with an astheno-
Kähler metric g, i.e., ∂∂ωn−2 = 0 and let {Mt}t∈I be a differentiable family of deformations such
that M0 =M , with {Mt}t∈I parametrized by a (0,1)-vector form ϕ(t) on M . Let also {ωt}t∈I be a
family of Hermitian metrics on {Mt}t∈U , such that ω0 = ω and suppose that gt is balanced on Mt,
for every t ∈ I, i.e,

∂t∂tω
n−2
t = 0, ∀t ∈ I. (2.3.1)

By Lemma 1.7.6, we can write each ωt as eiϕ∣iϕω(t), with ω(t) = ωij(t)dzi ∧ dzj , locally, and also

ωn−2
t = eiϕ∣iϕ(ωn−2(t)) = eiϕ∣iϕ (fv(t)dzi1 ∧ dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzin−2 ∧ dzjn−2) ,

where fv(t) ∶= ωi1j1 . . . ωin−2jn−2 and v = (i1, j1, . . . , in−2, jn−2), and ik, jk ∈ {1, . . . , n}, k ∈ {1, . . . , n −
2}.

We can then apply formulas (2.1.2) and (2.1.3) to (2.3.1), and by expanding in Taylor series
and differentiating with respect to t in t = 0, we are able to prove the following theorem.

Theorem 2.3.1. Let (M,J) be a n-dimensional compact complex manifold endowed with an
astheno-Kähler metric g and associated fundamental form ω. Let {Mt}t∈I be a differentiable fam-
ily of compact complex manifolds with M0 = M and parametrized by ϕ(t) ∈ A0,1(T 1,0(M)), for
t ∈ I ∶= (−ε, ε), ε > 0. Let {ωt}t∈I be a smooth family of Hermitian metrics along {Mt}t∈I , written as

ωt = eiϕ∣iϕ (ω(t)),

where, locally, ω(t) = ωij(t)dzi ∧ dzj ∈ A1,1(M) and ω0 = ω.
If ωn−2

t has local expression eiϕ∣iϕ(ωn−2(t)) = eiϕ∣iϕ(fv(t)dzi1 ∧ dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzin−2 ∧ dzjn−2), set

(ωn−2(t))′ ∶= ∂

∂t
(fv(t))dzi1 ∧ dzj1 ∧ . . . dzin−2 ∧ dzjn−2 ∈ An−2,n−2(M).

Then, if every metric ωt is astheno-Kähler, for t ∈ I, it must hold that

2iIm(∂ ○ iϕ′(0) ○ ∂)(ωn−2) = ∂∂(ωn−2(0))′. (2.3.2)

As a direct consequence, we immediately have the following corollary.
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Corollary 2.3.2. Let (M,J) be a compact Hermitian manifold endowed with an asteno-Kähler
metric g and associated fundamental form ω. If there exists a smooth family of astheno-Kähler
metrics which coincides with ω in t = 0, along the family of deformations {Mt}t with M0 =M and
parametrized by the (0,1)-vector form ϕ(t) on M , then the following equation must hold

[(∂ ○ iϕ′(0) ○ ∂)(ωn−2)]
Hn−1,n−1
BC (M) = 0. (2.3.3)

Proof of Theorem 2.3.1. The metrics ωt are astheno-Kähler for every t ∈ I, i.e., ∂t∂tωn−2
t = 0. This

implies
∂

∂t
(∂t∂tωn−2

t ) = 0. (2.3.4)

Let us then compute the right hand side of (2.3.4) through formulas (2.1.2) and (2.1.3) for the
operators ∂t and ∂t. By the extension map we have that

∂t∂t(ωn−2
t ) = ∂t∂t(eiϕ∣iϕ(ωn−2(t))),

and then, by (2.1.2) and (2.1.3), we have

∂t∂t(eiϕ∣iϕ(ωn−2(t)) = ∂t(eiϕ∣iϕ ((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`ωn−2(t)))

= eiϕ∣iϕ
⎛
⎝
((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ))`((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`ωn−2(t))

⎞
⎠
.

Now, we expand in Taylor series centered in t = 0 the terms

ϕ(t) = tϕ′(0) + o(t), ωn−2(t) = ωn−2(0) + tωn−2(0)′ + o(t)

and recalling (2.1.1) and (2.2.3), we obtain that

∂t∂tω
n−2
t

= (I + tϕ′(0) + tϕ′(0))` ([∂, tϕ′(0)⌟] + ∂) ([∂, tϕ′(0)⌟] + ∂) (ωn−2(0) + t(ωn−2(0))′) + o(t)

= (I + tϕ′(0) + tϕ′(0))` ([∂, tϕ′(0)⌟] + ∂) ([∂, tϕ′(0)⌟]ωn−2(0) + ∂ωn−2(0) + t∂(ωn−2(0))′) + o(t)

= (I + tϕ′(0) + tϕ′(0))` (−t∂(ϕ′(0) ⌟ ωn−2(0)) + t∂(ϕ′(0) ⌟ ∂ωn−2(0)) + t∂∂(ωn−2(0))′) + o(t)

= −t∂(ϕ′(0) ⌟ ∂ωn−2(0)) + t∂(ϕ′(0) ⌟ ∂ωn−2(0)) + t∂∂(ωn−2(0))′ + o(t).

Now, since ∂t∂tωn−2
t = 0, for every t ∈ I, also, ∂

∂t ∣t=0
(∂t∂tωn−2

t ) = 0, hence

−∂(ϕ′(0) ⌟ ∂ωn−2(0)) + ∂(ϕ′(0) ⌟ ∂ωn−2(0)) + ∂∂(ωn−2(0))′ = 0,

which is equivalent to

−(∂ ○ iϕ′(0) ○ ∂)ωn−2 + (∂ ○ i
ϕ′(0) ○ ∂)ω

n−2 + ∂∂(ωn−2(0))′ = 0,

hence, concluding the proof.

As an application of Theorem 2.3.1 and Corollary 2.3.2, we provide examples of obstructions to
the existence of curve of astheno-Kähler metrics on two families of 4-dimensional nilmanifolds.
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2.3.1 Example 1

Let {η1, η2, η3, η4} be the coframe of invariant (1,0)-forms on the nilmanifold (M = Γ/G,J) of
Example 2.2.1, with complex structure J defined by the structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a1η

12 + a2η
13 + a3η

11 + a4η
12 + a5η

13

+a6η
23 + +a7η

21 + a8η
22 + a9η

23

+a10η
31 + a11η

32 + a12η
33,

(2.3.5)

with aj ∈ Q[i], for every j ∈ {1,2, . . . ,12}. If ω = i
2 ∑

4
j=1 η

jj is the fundamental form associated to
the diagonal metric g on M , then ω is astheno-Kähler i.e.,

∂∂ω2 = 0

if, and only if,

∣a1∣2 + ∣a2∣2 + ∣a4∣2 + ∣a5∣2 + ∣a6∣2 + ∣a7∣2 + ∣a9∣2 + ∣a10∣2 + ∣a11∣2 = 2Re(a3a8 + a3a12 + a8a12).

Remark 2.3.3. If the complex manifold (M,J) is holomorphically parallelizable, i.e.,

a3 = a4 = a5 = a7 = a8 = a9 = a9 = a10 = a11 = a12 = 0,

then metric g is astheno Kähler on (M,J) if, and only if, also a3 = a8 = a12 = 0, i.e., (M,J) is
a complex torus. This is in line with the more general argument that on a compact holomorphi-
cally parallelizable manifold there exists a global coframe of holomorphic (1,0)-form; however, if a
manifold admits an astheno-Kähler metric, every holomorphic 1-form is d-closed. Therefore, on a
holomorphically parallelizable manifold endowed with an astheno-Kähler metric, each form of the
global holomorphic coframe is d-closed, hence the manifold is a torus.

If {Z1, Z2, Z3, Z4} is the dual frame of {η1, η2, η3, η4} on M , we can define the smooth (0,1)-
vector form ϕ(t) on M by

ϕ(t) ∶= t1η1 ⊗Z1 + t2η2 ⊗Z2 + t3η3 ⊗Z3, t = (t1, t2, t3) ∈ B ∶= {t ∈ C3 ∶ ∣t∣ < 1} (2.3.6)

which parametrizes a family of (non necessarily integrable) deformations {(M,Jt)}t∈B of (M,J). By
Lemma 1.7.6, each (almost) complex structure Jt can be characterized by the coframe {η1

t , η
2
t , η

3
t , η

4
t}

given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1
t = η1 + t1η1

η2
t = η2 + t2η2

η3
t = η3 + t3η3

η4
t = η4,

(2.3.7)

which yields, by inverting the system,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = 1
1−∣t1∣2 (η

1
t − t1η1

t)

η2 = 1
1−∣t2∣2 (η

2
t − t2η2

t)

η3 = 1
1−∣t3∣2 (η

3
t − t3η3

t)

η4 = η4
t .

(2.3.8)
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Set Tj ∶= 1
1−∣tj ∣2 , for j ∈ {1,2,3}. By Remark 1.7.7, ϕ(t) parametrizes a family of compact complex

manifold, i.e., each Jt defines an integrable almost complex structure on M , if, and only if,

(dηjt)
0,2 = 0, j ∈ {1,2,3,4}.

By relations (2.3.7), (2.3.8) and structure equations (2.3.5), it turns out that such an integrability
condition holds if, and only if

(dη4
t)0,2 = T1T2(a1t1t2 − a4t1 + a7t2)η12

t

+ T1T2(a2t1t3 − a5t1 + a10t3)η13
t

+ T2T3(a6t2t3 − a9t2 + a11t3)η23
t = 0,

i.e.,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1t1t2 − a4t1 + a7t2 = 0

a2t1t3 − a5t1 + a10t3 = 0

a6t2t3 − a9t2 + a11t3 = 0.

(2.3.9)

Now let us fix a choice of aj ∈ Q[i] and let S ⊂ B be the set of solutions of system (2.3.9). Then,
for every t ∈ S, ϕ(t) parametrizes the family of deformations {(M,Jt)}t∈S . Moreover, we can
consider a curve γ∶ (−ε, ε) → S, with γ(t) = (γ1(t), γ2(t), γ3(t)) ∈ S, so that, for every t ∈ (−ε, ε),
the (0,1)-vector form

ϕ(γ(t)) = ϕ1(t)η1 ⊗Z1 + ϕ2(t)η2 ⊗Z2 + ϕ3(t)η3 ⊗Z3

parametrizes a curve of deformations. From now on, with an abuse of notation, we will write
ϕ(t) ∶= ϕ(γ(t)). We will have then

ϕ′(0) ∶= ϕ′1(0)η1 ⊗Z1 + ϕ′2(0)η2 ⊗Z2 + ϕ′2(0)η3 ⊗Z3.

In order to apply condition (2.3.3), we observe the following facts regarding the form (∂○iϕ′(0)○∂)ω2

and the Bott-Chern cohomology of bidegree (3,3) of M .

Lemma 2.3.4. (I) (∂ ○ iϕ′(0) ○ ∂)ω2 = CJ,ϕ′(0)η123123, with CJ,ϕ′(0) ∈ Q[i].

(II) If J is abelian, then (∂ ○ iϕ′(0) ○ ∂)ω2 = 0.

(III) The Bott-Chern cohomology class [η123123]BC ≠ 0 if, and only if, ω is SKT.

(IV) for every constant C ∈ C, it holds Im(Cη123123) = −iRe(C)η123123.

Proof. (I ) By simple computations, it holds that

(−2)ω2 = η1122 + η1133 + η1144 + η2233 + η2244 + η3344.

Let us rewrite structure equations (2.3.5) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dηj = 0, j ∈ {1,2,3},

dη4 = ∑1≤i<j≤3Aijη
ij +∑3

i,j=1Bijη
ij .
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For the sake of completeness, we write

∂η4 = ∑
1≤i<j≤3

Aijη
ij , ∂η4 =

3

∑
i,j=1

Bijη
ij

∂η4 = −
3

∑
i,j=1

Bijη
ji, ∂η4 = ∑

1≤i<j≤3

Aijη
ij .

Then, it is easy to see that

(−2)∂ω2 = (η11 + η22 + η33) ∧ ∂η44

= (η11 + η22 + η33) ∧ (Aijηij4 +Bijη
4ji)

= (η11 + η22 + η33) ∧ (Aijηij4)

+ (η11 + η22 + η33) ∧ (Bijη
4ji)

Now, since ϕ′(0) = ϕ′1(0)η1 ⊗Z1 + ϕ′2(0)η2 ⊗Z2 + ϕ′3(0)η3 ⊗Z3, we have that

(−2)(iϕ′(0) ○ ∂)ω2 = (η11 + η22 + η33) ∧ [Aij (
3

∑
k=1

ϕ′k(0)η
k ∧ iZk(η

ij))] ∧ η4

− (η11 + η22 + η33) ∧ η4 ∧ [Bij (
3

∑
k=1

ϕ′k(0)η
k ∧ iZk(η

ji))] .

Note that the (1,1)-forms

Ω1 ∶= Aij (
3

∑
k=1

ϕ′k(0)η
k ∧ iZk(η

ij))

and

Ω2 ∶= Bij (
3

∑
k=1

ϕ′k(0)η
k ∧ iZk(η

ji))

do not contain η4 nor η4. Then,

(−2)(∂ ○ iϕ′(0)) ○ ∂)(ω2) = (η11 + η22 + η33) ∧Ω1 ∧ ∂η4

+ (η11 + η22 + η33) ∧ ∂η4 ∧Ω2

= −(η11 + η22 + η33) ∧Ω1 ∧ (Bijη
ji)

+ (η11 + η22 + η33) ∧ (Aijηij) ∧Ω2,

i.e, a (3,3)-form on M which does not contain η4 nor η4. Hence, (∂ ○ iϕ′(0) ○ ∂)ω2 = CJ,ϕη123123.

(II) If J is abelian, then Aij = 0, for every i, j with 1 ≤ i < j ≤ 3. Then, by the previous point,
Ω1 = 0 and clearly (∂ ○ iϕ′(0) ○ ∂)ω2 = 0.

(III) Let us assume that the metric ω is SKT, i.e., ∂∂ω = 0. By structure equations (2.3.5) this
is equivalent to ∂∂η44 = 0. Since the form η123123 is d-closed, the Bott-Chern class [η123123] is well
defined. Moreover, since ∂∂ ∗g η123123 = ∂∂η44 = 0, the form η123123 is Bott-Chern harmonic, hence
[η123123]BC ≠ 0.
Viceversa, let us assume that ω is not SKT, i.e, ∂∂ω ≠ 0, which, by structure equations, is equivalent
to ∂∂η44 ≠ 0. Note that ∂∂η44 is (2,2)-form on M , hence ∂∂η44 = ∑i<j,k<lAijklη

ijkl, with i, j, k, ∈
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{1,2,3}. Then, one can choose an invariant (1,1)-form α on M such that it does contain η4 nor
η4 and ∂∂η44 ∧ α = Cη123123 ≠ 0, C ∈ C. In particular, ∂∂α = 0. But then,

∂∂ ( 1

C
η44 ∧ α) = 1

C
∂∂(η44) ∧ α = η123123,

which implies that the form η123123 is ∂∂-exact. Therefore [η123123]BC = 0.

(IV ) For every C ∈ C, one has that Im(Cη123123) = 1
2i (Cη

123123 −Cη123123) = 1
2i(C + C)η123123 =

−iRe(C)η123123.

As a consequence of Lemma 2.3.4 and Remark 2.3.3, it turns out that Corollary 2.3.2 can yield
obstructions on this family of 4-dimensional nilmanifolds and on the curve of deformations of a
fixed element (M,J) of the family parametrized by ϕ(γ(t)), only if the starting complex structure
J is not holomorphically parallelizable nor abelian and the starting diagonal metric on (M,J) is
both astheno-Kähler and SKT.

Remark 2.3.5. Notice that arguments similar to Lemma 2.3.4 and Remark 2.3.3 are still valid
on any n-dimensional nilmanifold (M,J) with left-invariant complex structure J characterized
by analogous structure equations, i.e., when (M,J) is a nilmanifold whose complex structure is
determined by a coframe of left-invariant (1,0)-forms {η1, . . . , ηn} such that

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1, . . . n − 1},
dηn ∈ SpanC{ηij , ηkl}, i, j, k, l ∈ {1, . . . , n − 1},

and whose coefficient structures are elements of Q[i]. More specifically, if ω = i
2 ∑

n
j=1 η

jj is the
fundamental form associated to the diagonal metric g and ϕ(t) = ∑n−1

k=1 ϕk(t)ηk ⊗Zk, for t ∈ (ε, ε) is
a curve of deformations of (M,J), then the following holds.

Lemma 2.3.6. (I) (∂ ○ iϕ′(0) ○ ∂)ωn−2 = CJ,ϕ η1...n−1 1...n−1.
(II) If J is abelian, then (∂○iϕ′(0)○∂)ωn−2 = 0. (III) The Bott-Chern cohomology class [η1...n−1 1...n−1] ≠
0 if and only if ω is SKT.
(IV ) if n is even, for every constant C ∈ C, Im(Cη1...n−1 1...n−1) = −iRe(C)η1...n−1 1...n−1.
(V ) if n is odd, for every constant c ∈ C, Im(Cη1...n−1 1...n−1) = Im(C)η1...n−1 1...n−1.

Therefore, as in the 4-dimensional case Corollary 3.2.4 could yield obstructions to the existence
of curves of astheno-Kähler metrics along the family of deformations parametrized by ϕ on such
families of nilmanifolds of complex dimension n only if the canonical diagonal metric g is also SKT
and the complex structure J is nor abelian nor holomorphically parallelizable.

Let us go back the 4-dimensional family and consider an element (M,J) of the family of 4-
dimensional nilmanifolds, with a2 = a5 = a6 = a9 = a10 = a11 = a12 = 0. In particular, we are
annihilating the coefficients of the second and third row of (2.3.9). By the symmetry of the system,
one obtains similar results by annihilating either the first and third rows, or the second and third
row. In this case, structure equations become

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dηi = 0, i ∈ {1,2,3},
dη4 = a1η

12 + a3η
11 + a4η

12

+a7η
21 + a8η

22.

(2.3.10)
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The diagonal metric g with fundamental form ω = i
2 ∑

4
j=1 η

jj is astheno-Kähler if, and only if, is
SKT if, and only if,

∣a1∣2 + ∣a4∣2 + ∣a7∣2 = 2Re(a3a8). (2.3.11)

On (M,J) we consider the (0,1)-vector form ϕ(t), t ∈ B, as in (2.3.6). Such a vector form
parametrizes a family of deformations (M,Jt) of (M,J) and each Jt is integrable if t = (t1, t2, t3)
satisfies

a1t1t2 − a4t1 + a7t2 = 0. (2.3.12)

Let us set F (t1, t2, t3) ∶= a1t1t2 − a4t1 + a7t2, (t1, t2,3 ) ∈ B. Then, the gradient of F in (0,0,0) is

∇F ∣(0,0,0) =
⎛
⎜
⎝

−a4

a7

0

⎞
⎟
⎠
.

By distinguishing the cases in which either ∇F ∣(0,0,0) = 0 or ∇F ∣(0,0,0) ≠ 0, we obtain the following.

Case (i): ∇F ∣(0,0,0) = 0.

In this case, it holds that a4 = a7 = 0. Hence the only non zero differential of (2.3.10) becomes

dη4 = a1η
12 + a3η

11 + a8η
22,

and let assume that ω is astheno-Kähler (and SKT), i.e., it holds

∣a1∣2 = 2Re(a3a8).

We will assume a1 ≠ 0.
The solution set of (2.3.12) is

S = {(t1, t2, t3) ∈ B ∶ t1t2 = 0}.

Therefore, the (0,1)-vector form ϕ(t) parametryzing the integrable deformations of M is

ϕ(t) = t1η1 ⊗Z1 + t2η2 ⊗Z2 + t3η3 ⊗Z3, (t1, t2, t3) ∈ S,

and we can then consider the curve

ϕ(t) = t ⋅ u1η
1 ⊗Z1 + t ⋅ u2η

2 ⊗Z2 + t ⋅ u3η
3 ⊗Z3, t ∈ (−ε, ε), ε > 0,

for a fixed (u1, u2, u3) ∈ C3. Hence,

ϕ′(0) = u1η
1 ⊗Z1 + u2η

2 ⊗Z2 + u3η
3 ⊗Z3.

We can then apply our condition and compute

∂ ○ iϕ′(0) ○ ∂ω2 = 0,

hence neither Corollary 2.3.2 nor Theorem 2.3.1 yield obstructions.
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Case (ii): ∇F ∣(0,0,0) ≠ 0.

In this case, it holds that either a4 ≠ 0 or a7 ≠ 0. Suppose that a4 ≠ 0.
Then, structure equations (2.3.10) and the astheno-Kähler (and SKT) condition for ω (2.3.11)

still holds. Then solution set of (2.3.12) is then

S = {(t1, t2, t3) ∈ C3 ∶ t1 =
a7t2

a4 − a1t2
, ∣t1∣ < δ, ∣t2∣ < δ′, ∣t3∣ < δ′′} ,

for δ, δ′, δ′′ > 0 sufficiently small.
Hence the (0,1)-vector form ϕ(t) parametrizing the integrable deformations of (M,J) is

ϕ(t) = a7t2
a4 − a1t2

η1 ⊗Z1 + t2η2 ⊗Z2 + t3η3 ⊗Z3, ( a7t2
a4 − a1t2

, t2, t3) ∈ S,

so that can consider the curve of deformations

ϕ(t) = ta7u2

a4 − ta1u2
η1 ⊗Z1 + tu2η

2 ⊗Z2 + tu3η
3 ⊗Z3, (u2, u3) ∈ C2, t ∈ (−ε, ε),

for ε > 0 sufficiently small, so that

ϕ′(0) = a7u2

a4
η1 ⊗Z1 + u2η

2 ⊗Z2 + u3 ⊗Z3.

By computations, we obtain that

∂ ○ iϕ′(0) ○ ∂ω2 = 2(∣a7∣2 − ∣a4∣2)
a1u2

a4
η123123.

Therefore, since the Bott-Chern cohomology class [η123123] ≠ 0 by Lemma 2.3.4, condition (2.3.3)
holds if and only if

(∣a4∣2 − ∣a7∣2)Re(a1u2

a4
) = 0.

If a7 ≠ 0, we have that

S = {(t1, t2, t3) ∈ B ∶ t2 =
a4t1

a7 + a1t1
, ∣t1∣ < δ, ∣t2∣ < δ′, ∣t3∣ < δ′′} ,

for δ, δ′, δ′′ > 0 sufficiently small.
The curve of deformations hence is

ϕ(t) = tu1η
1 ⊗Z1 +

ta4u1

a7 + ta1u1
η2 ⊗Z2 + tu3η

3 ⊗Z3, (u1, u3) ∈ C2, t ∈ (−ε, ε),

for ε > 0 sufficiently small, so that

ϕ′(0) = u1η
1 ⊗Z1 +

a4u1

a7
η2 ⊗Z2 + u3η

3 ⊗Z3.

Then, by computations similar to the previous case we obtain that

[Im(∂ ○ iϕ′(0) ○ ∂(ω2))]BC = 0 ⇐⇒ (∣a4∣2 − ∣a7∣2)Re(a1u1

a7
) = 0.

By applying Corollary 2.3.2 to each case, we obtain the following theorem.
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Theorem 2.3.7. Let (M = Γ/G,J) be an element of the family of 4-dimensional nilmanifolds with
complex structure J determined by the coframe of left-invariant forms on G {η1, η2, η3, η4} with
structure equations

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1,2,3}
dη4 = a1η

12 + a3η
11 + a4η

12 + a7η
21 + a8η

22,

with a1, a3, a4, a7, a8 ∈ Q[i]. Let ω = i
2 ∑

4
j=1 η

jj be the fundamental form associated to the diagonal
metric, which we assume to be astheno-Kähler, i.e.,

∣a1∣2 + ∣a4∣2 + ∣a7∣2 = 2Re(a3a8).

Then,

• if a4 ≠ 0 and (u2, u3) ∈ C2, there exists no curve of astheno-Kähler metrics ωt such that
ω0 = ω along the curve of deformations t ↦ ϕ(t) = ta7u2

a4−ta1u2 η
1 ⊗ Z1 + tu2η

2 ⊗ Z2 + tu3η
3 ⊗ Z3,

for t ∈ (−ε, ε) if

(∣a4∣2 − ∣a7∣2)Re(a1u2

a4
) ≠ 0.

• if a7 ≠ 0 and (u1, u3) ∈ C2, there exists no curve of astheno-Kähler metrics ωt such that
ω0 = ω along the curve of deformations t ↦ ϕ(t) = u1η

1 ⊗ Z1 + ta4u1
a7+ta1u1 η

2 ⊗ Z2 + tu3η
3 ⊗ Z3,

for t ∈ (−ε, ε), if
(∣a4∣2 − ∣a7∣2)Re(a1u1

a7
) ≠ 0.

2.3.2 Example 2

We now show an application of Corollary 2.3.2 to a 4-dimensional 2-step nilmanifold with invariant
complex structure. Let (M,J) be the nilmanifold with M = Γ/G is the quotient of a nilpotent Lie
group G by a discrete uniform subgroup Γ and the complex structure J determined by the coframe
{η1, η2, η3, η4} of left-invariant (1,0)-forms on G with structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0,

dη2 = 0,

dη3 = a1η
12 + a2η

11 + a3η
12 + a4η

21 + a5η
22

dη4 = b1η12 + b2η11 + b3η12 + b4η21 + b5η22

with aj , bj ∈ Q[i]. Let ω = ∑4
j=1 η

jj be the fundamental form associated to the diagonal metric g.
By computations, it turns out that g is astheno-Kähler if and only if

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2Re(b5b2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0

∣b1∣2 + ∣b3∣2 − ∣b4∣2 − b5a2 − b2a5 = 0

2Re(a5a2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0.

(2.3.13)

Since ∂∂ω = 0 if and only if

Re(a5a2) +Re(b5b2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0,

if the metric g is astheno-Kähler, it is also SKT.
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Let us consider the family of deformations (M,Jt)t∈B of (M,J) parametrized by the (0,1)-
vector form

ϕ(t) = t1η1 ⊗Z1 + t2η2 ⊗Z2,

with t = (t1, t2) ∈ B ∶= {t ∈ C2 ∶ ∣t∣ < ε}, ε > 0. The coframe {η1, η2, η3, η4} then changes under ϕ(t)
as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η1
t = η1 − t1η1

η2
t = η2 − t2η2

η3
t = η3

η4
t = η4

so that, by reversing the system, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = 1
1−∣t1∣2 (η

1
t − t1η1

t)

η2 = 1
1−∣t2∣2 (η

2
t − t2η2

t)

η3 = η3
t

η4 = η4
t .

Set Tj ∶= 1
1−∣tj ∣2 , for j ∈ {frm[o]−−,2}.

Since the form ϕ(t) defines an family of complex manifolds if and only if d(ηjt)
0,2 = 0, for every

j ∈ {1,2,3,4}, such a integrability condition is satisfied if and only if (dη3
t)0,2 = 0, which yields

T1T2(a1t1t2 − a3t1 + a4t2)η12
t = 0

and (dη4
t)0,2 = 0, which yields

T1T2(b1t1t2 − b3t1 + b4t2)η12
t = 0.

Under the assumption that a1 = b1, a3 = b3, and a4 = b4, we have that the condition of integrability
is valid for t ∈ S, where S is the solution set of the equation

b1t1t2 − b3t1 + b4t2 = 0, (t1, t2, t3) ∈ B. (2.3.14)

We now proceed as in the usual manner, by considering the map

F (t1, t2) = b1t1t2 − b3t1 + b4t2

and discussing the cases in which either ∇F ∣(0,0) = (−b3
b4

) vanishes or not.

Case (i): ∇F ∣(0,0) = 0

This is the situation in which b3 = b4 = 0. Then structure equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0,

dη2 = 0,

dη3 = b1η12 + a2η
11 + a5η

22

dη4 = b1η12 + b2η11 + b5η22
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and the diagonal metric g is astheno-Kähler if, and only if, the following condition holds

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2Re(b5b2) = ∣b1∣2

b2a5 + b5a2 = ∣b1∣2

2Re(a5a2) = ∣b1∣2

We assume that b1 ≠ 0. The solution set S for equation (2.3.14) is then

S = {(t1, t2) ∈ B ∶ t1t2 = 0}

Hence as a curve of deformation ϕ(t) with t ∈ S we can choose

ϕ(t) = tu1η
1 ⊗Z1 + tu2η

2 ⊗Z2, (u1, u2) ∈ S, t ∈ (−δ, δ)

for δ > 0 sufficiently small. Then,

ϕ′(0) = u1η
1 ⊗Z1 + u2η

2 ⊗Z2.

By computations, however, it turns out that

∂ ○ iϕ′(0) ○ ∂ω2 = 0,

hence Corollary 2.3.2 does not yield any obstruction.

Case (ii): ∇F ∣(0,0) ≠ 0.

In this situation, either b3 ≠ 0 or b4 ≠ 0. Let us assume b3 ≠ 0; the latter case is completely
analogous.

We have the following structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0

dη2 = 0

dη3 = b1η12 + a2η
11 + b3η12 + b4η21 + a5η

22

dη4 = b1η12 + b2η11 + b3η12 + b4η21 + b5η22

and the astheno-Kähler condition (2.3.13) on the diagonal metric g is still valid. The solution set
S for (2.3.14) is then

S = {(t1, t2) ∈ B ∶ t1 =
b4t2

b3 − b1t2
, ∣t1∣ < δ, ∣t2∣ < δ′}

for δ, δ′ > 0 sufficiently small. Once we fix u2 ∈ C, we can pick the curve of deformations

ϕ(t) = tb4u2

b3 − tb1u2
η1 ⊗Z1 + tu2η

2 ⊗Z2, t ∈ (−ε, ε),

for ε > 0 sufficiently small, so that

ϕ′(0) = b4u2

b3
η1 ⊗Z1 + u2η

2 ⊗Z2.

Then, we compute

(∂ ○ iϕ′(0) ○ ∂)ω2 = ((∣b3∣2 − ∣b4∣2)
b1
b4
u2)η123123 + ((∣b4∣2 − ∣b3∣2)

b1
b4
u2)η123124
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+((∣b4∣2 − ∣b3∣2)
b1
b4
u2)η124123 + ((∣b3∣2 − ∣b4∣2)

b1
b4
u2)η124124

Now, the forms η123123, η123124, η124123, η124124 are all d-closed by structure equations. Moreover,
by considering the C-antilinear ∗-operator with respect to g, we see that

∂∂ ∗ η123123 = 0 ⇐⇒ 2Re(b5b2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0

∂∂ ∗ η123124 = 0 ⇐⇒ ∣b1∣2 + ∣b3∣2 + ∣b4∣2 − b5a2 − b2a5 = 0

∂∂ ∗ η124123 = 0 ⇐⇒ ∣b1∣2 + ∣b3∣2 + ∣b4∣2 − a2b5 − a5b2 = 0

∂∂ ∗ η124124 = 0 ⇐⇒ 2Re(a5a2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0

Since ω is astheno-Kähler, i.e., conditions (2.3.13) hold, hence ∂∂ ∗ η123123 = ∂∂ ∗ η123124 = ∂∂ ∗
η124123 = ∂∂ ∗ η124124 = 0, i.e., the forms η123123, η123124, η124123, η124124. Therefore,

[Im(∂ ○ iϕ′(0) ○ ∂ω2)]BC = − i(∣b3∣2 − ∣b4∣2)Re(b1u2

b4
)[η123123] + i(∣b3∣2 − ∣b4∣2)Re(b1u2

b4
)[η123124]

+ i(∣b3∣2 − ∣b4∣2)Re(b1u2

b4
)[η124123] − i(∣b3∣2 − ∣b4∣2)Re(b1u2

b4
)[η124124]

which vanishes in H3,3
BC(M) if, and only if,

(∣b3∣2 − ∣b4∣2)Re(b1u2

b4
) = 0.

We summarise what we obtained in the following theorem.

Theorem 2.3.8. Let (M,J) be an element of the family of 4-dimensional manifolds determined
by the coframe of left-invariant (1,0)-forms {η1, η2, η3, η4} with structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0

dη2 = 0

dη3 = b1η12 + a2η
11 + b3η12 + b4η21 + a5η

22

dη4 = b1η12 + b2η11 + b3η12 + b4η21 + a5η
22,

with a2, a5, b1, b2, b3, b4, b5 ∈ Q[i]. Let ω = i
2 ∑

4
j=1 η

jj be the fundamental form associated to the
diagonal metric g and suppose that g is astheno-Kähler (and hence SKT), i.e.,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2Re(b5b2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0

∣b1∣2 + ∣b3∣2 − ∣b4∣2 − b5a2 − b2a5 = 0

2Re(a5a2) − ∣b1∣2 − ∣b3∣2 − ∣b4∣2 = 0.

Then,

• if b3 ≠ 0 and u2 ∈ C, there exists no curve of astheno-Kähler metrics ωt with ω0 = ω along the
curve of deformations ϕ(t) = tb4u2

b3−tb1u2 η
1 ⊗Z1 + tu2η

2 ⊗Z2, t ∈ (−ε, ε), if

(∣b3∣2 − ∣b4∣2)Re(b1u2

b4
) ≠ 0.

• if b4 ≠ 0 and u1 ∈ C, there exists no curve of astheno-Kähler metrics ωt with ω0 = ω along the
curve of deformations ϕ(t) = tu1η

1 ⊗Z1 + tu2
tb3u1

tb1u1+b4 η
2 ⊗Z2, t ∈ (−ε, ε), if

(∣b3∣2 − ∣b4∣2)Re(b1u1

b3
) ≠ 0.
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2.4 Deformations of balanced metrics

Let now (M,J, g,ω) be a compact Hermitian manifold of complex dimension n endowed with a
balanced metric g, i.e., ∂ωn−1 = 0 and let {Mt}t∈I be a differentiable family of deformations such
that M0 = M , with {Mt}t∈I parametrized by a (0,1)−vector form ϕ(t) on M , for t ∈ I = (−ε, ε),
ε > 0. Let also {ωt}t∈I be a family of Hermitian metrics on {Mt}t∈I , such that ω0 = ω and we
suppose the metrics gt to be balanced, i.e.,

∂tω
n−1
t = 0, ∀t ∈ I. (2.4.1)

We remark that, by Lemma 1.7.6, we can write each ωt as eiϕ∣iϕ(ω(t)), where locally ω(t) =
ωij(t)dzi ∧ dzj . In particular, by definition of eiϕ∣iϕ , it is easy to check that

ωn−1
t = (eiϕ∣iϕ(ω(t)))n−1 = eiϕ∣iϕ(ωn−1(t))

= eiϕ∣iϕ(fv(t)dzi1 ∧ dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzin−1 ∧ dzjn−1),

where we denote fv(t) ∶= ωi1j1(t) . . . ωin−1jn−1(t), with v = (i1, j1, . . . , in−1, jn−1) and
ik, jk ∈ {1, . . . , n}, k = {1, . . . , n − 1}.

We can then apply formula (2.1.3) to (2.4.1) and, by making use of Taylor series expansion and
differentiating with respect to t in t = 0, we are able to prove the main theorem.

Theorem 2.4.1 ([130]). Let (M,J) be a n-dimensional compact complex manifold endowed with
a balanced metric g and associated fundamental form ω. Let {Mt}t∈I be a differentiable family of
compact complex manifolds with M0 = M and parametrized by ϕ(t) ∈ A0,1(T 1,0(M)), for t ∈ I ∶=
(−ε, ε), ε > 0. Let {ωt}t∈I be a smooth family of Hermitian metrics along {Mt}t∈I , written as

ωt = eiϕ∣iϕ (ω(t)),

where, locally, ω(t) = ωij(t)dzi ∧ dzj ∈ A1,1(M) and ω0 = ω.
If ωn−1

t has local expression eiϕ∣iϕ(ωi1j1(t) . . . ωin−1jn−1(t)dzi1 ∧ dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzin−1 ∧ dzjn−1), set

(ωn−1(t))′ ∶= ∂

∂t
(ωi1j1(t) . . . ωin−1jn−1(t))dz

i1 ∧ dzj1 ∧ . . . dzin−1 ∧ dzjn−1 ∈ An−1,n−1(M).

Then, if every metric ωt is balanced, for t ∈ I, it must hold that

∂ ○ iϕ′(0)(ωn−1) = −∂(ωn−1(0))′.

Given Theorem 2.4.1, it is straightforward to see that the following cohomological obstruction
holds.

Corollary 2.4.2 ([130]). Let (M,J) be a compact Hermitian manifold endowed with a balanced
metric g and associated fundamental form ω. If there exists a smooth family of balanced met-
rics which coincides with ω in t = 0, along the family of deformations {Mt}t with M0 = M and
parametrized by the (0,1)-vector form ϕ(t) on M , then the following equation must hold

[∂ ○ iϕ′(0)(ωn−1)]
Hn−1,n

∂
(M) = 0.

Proof (of Theorem 2.4.1). The metrics ωt are balanced for every t ∈ I, i.e., ∂tωn−1
t = 0. By means

of the extension map, this equation can be written as

∂t (eiϕ∣iϕ(ωn−1(t))) = 0, ∀t ∈ I.
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Also, formula (2.1.3) implies that ∂tωn−1
t = 0 for every t ∈ I if and only if

eiϕ∣iϕ((I − ϕϕ)−1`([∂, iϕ] + ∂)(I − ϕϕ)`(ωn−1(t))) = 0, ∀t ∈ I.

We now use equation (2.1.1) and we expand in Taylor series centered in t = 0 the term ∂tω
n−1
t ,

noting that
ϕ = ϕ(t) = tϕ′(0) + o(t)

and, therefore,
(I − ϕϕ) = (I − ϕϕ) = (I − ϕϕ)−1 = (I − ϕϕ)−1 = I + o(t),

to obtain

∂tω
n−1
t = (I + tϕ′(0) ⌟ +tϕ′(0)⌟)` (([∂, tϕ′(0)⌟] + ∂)(ωn−1(0) + t(ωn−1(0))′)) + o(t)

= (I + tϕ′(0) ⌟ +tϕ′(0)⌟)` (t∂(ϕ′(0) ⌟ ωn−1(0)) + t∂(ωn−1(0))′)) + o(t)

= t∂(ϕ′(0) ⌟ ωn−1(0)) + t∂(ωn−1(0))′) + o(t)

Since ∂tωn−1
t = 0 holds true for every t ∈ I, if we differentiate it with respect to t in t = 0, we obtain

∂

∂t ∣t=0
(∂tωn−1

t ) = ∂

∂t ∣t=0
[t∂(ϕ′(0) ⌟ ωn−1(0)) + t∂(ωn−1(0))′) + o(t)] = 0.

Hence,
∂(ϕ′(0) ⌟ ωn−1) + ∂(ωn−1(0))′ = 0,

therefore concluding the proof.

We now apply Theorem 2.4.1 and Corollary 2.4.2 to find obstructions on each family of non-
Kähler complex parallelisable solvmanifolds as characterized in [105]. In particular, we will focus
on the complex parallelisable Nakamura manifold and the Iwasawa manifold.

2.4.1 Example 1

(Complex parallelisable Nakamura manifold). Let G ∶= C ⋉γ C2 be the complex Lie group given by
the action of C on C2, via

γ(z) = (e
z 0
0 e−z

) .

Let us consider the discrete subgroup Γ of G of the form Γ ∶= (Z(a + ib) +Z(c + id)) ⋉γ Γ′′, where

• the set Γ′′ is a lattice of C2;

• the complex numbers a + ib and c + id are such that Z(a + ib) +Z(c + id) is a lattice in C;

• the matrices γ(a + ib) and γ(c + id) are conjugates in SL(4;Z), where we regard SL(2;C) ⊂
SL(4;R).

Then Γ is a lattice of G and the compact quotient M ∶= Γ/G is called the complex parallelisable
Nakamura Manifold, see [105, Section 2] for details on its construction.

It is well known that G is a solvable non nilpotent Lie group, therefore the quotient M is a
3-dimensional solvmanifold, which is biholomorphic to C3.
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If {z1} and {z2, z3} are the standard coordinates on respectively C and C2, a left-invariant
frame of (1,0)-vector fields on G is given by {Z1, Z2, Z3}, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z1 = ∂
∂z1

Z2 = ez
1 ∂
∂z1

Z3 = e−z
1 ∂
∂z3

and the dual coframe of (1,0)-differential forms in A1,0(M) is given by {η1, η2, η3}, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η1 = dz1

η2 = e−z1dz2

η3 = ez1dz3.

Note that structure equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = 0

dη2 = −η1 ∧ η2

dη3 = η1 ∧ η3.

(2.4.2)

imply that the coframe of left-invariant (1,0)-forms {η1, η2, η3} induce an almost complex left-
invariant structure J on M , which is integrable.

From now on, we adopt the abbreviation for the wedge product of differential forms, i.e., for
example, ηijk ∶= ηi ∧ ηj ∧ ηk.

Let us consider a generic left-invariant Hermitian metric g on (M,J), with associated funda-
mental form ω given by

ω = i

2

3

∑
j=1

αjjη
jj + 1

2
∑
j<k

(αjk − αjk)η
jk,

with coefficients αjk ∈ C, for j, k ∈ {1,2,3}, such that the matrix representing g

⎛
⎜
⎝

α11 −iα12 −iα13

iα12 α22 −iα23

iα13 iα23 α33

⎞
⎟
⎠

is positive definite. From structure equations (2.4.2), it is easy to check that ∂ω2 = 0, hence any
left-invariant Hermitian metric on (M,J) is balanced.

We notice that the dimension of the space H0,1

∂
(M) depends on the choice of the lattice

Γ = (Z(a + ib) +Z(c + id)) ⋉γ Γ′′, in particular on the choice of the real numbers b and d. More
accurately, it can be proved that, if b, d ∈ 2πZ, then dimH0,1

∂
(M) = 3, whereas, if either b ∉ 2πZ or

d ∉ 2πZ, then dimH0,1

∂
(M) = 1, see [81]. Hence, we distinguish two cases.

Case (i): b, d ∈ 2πZ

We define the following C-base for A0,1(M), consisting of the left-invariant (0,1)-forms {η̃1, η̃2, η̃3},
defined as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η̃1 ∶= η1

η̃2 ∶= ez1−z1η2

η̃3 ∶= ez1−z1η3,
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where the functions ez
1−z1 and ez

1−z1 are well defined on M because of the choice of the lattice Γ.
Accordingly to [105, Section 3], small deformations of (M,J) can be characterized by means of

the (0,1)-vector form

ϕ(t) =
3

∑
i,j=1

tij η̃
j ⊗Zi,

with the coefficients of t = (t11, t12, t13, t21, t22, t23, t31, t32, t33) ∈ B(0, δ) ⊂ C9, δ > 0, belonging to
one of the following classes:

t11 ≠ 0, t12 = t13 = t23 = t32 = 0; (2.4.3)
t11 = t22 = t33 = 0; (2.4.4)

t12 ≠ 0, t11 = t13 = t21 = t23 = t31 = 0; (2.4.5)
t13 ≠ 0, t11 = t12 = t21 = t31 = t32 = 0. (2.4.6)

We can now make use of Theorem 2.4.1 and Corollary 2.4.2 to find obstruction for each class of
small deformations of (M,J).

Class (2.4.3). In this case, the (0,1)-vector form parametrizing the deformation is

ϕ(t) = t11η̃
1 ⊗Z1 + t21η̃

1 ⊗Z2 + t22η̃
2 ⊗Z2 + t31η̃

1 ⊗Z3 + t33η̃
3 ⊗Z3,

for t = (t11, t21, t22, t31, t33) ∈ B(0, δ) ⊂ C5, δ > 0. We then consider the smooth curve of deformations

t↦ ϕ(t) ∶= t (a11η̃
1 ⊗Z1 + a21η̃

1 ⊗Z2 + a22η̃
2 ⊗Z2 + a31η̃

1 ⊗Z3 + a33η̃
3 ⊗Z3) ∈ A0,1(T 1,0(M))

for t ∈ I = (−ε, ε), ε > 0, (a11, a21, a22, a31, a33) ∈ C5, whose derivative in t = 0 is

ϕ′(0) = a11η̃
1 ⊗Z1 + a21η̃

1 ⊗Z2 + a22η̃
2 ⊗Z2 + a31η̃

1 ⊗Z3 + a33η̃
3 ⊗Z3.

With the aid of (2.4.2), we compute

∂ ○ iϕ′(0)(ω2) = [a12(iα11α23 + α12α13) + a32(iα33α12 − α13α23)]e
z1−z1η12 ∧ η1̃2̃3̃

+ 1

2
[a11(iα22α13 − α12α23) + a31(∣α23∣

2 − α22α33)]η
12 ∧ η1̃2̃3̃

+ [a13(α12α13 − iα13α23) + a23(iα22α13 + α12α23)]e
z1−z1η13 ∧ η1̃2̃3̃

+ 1

2
[a11(iα11α12 + α13α23) + a21(∣α23∣

2 − α22α33)]η
13 ∧ η1̃2̃3̃.

We note that the forms ez
1−z1η12 ∧ η1̃2̃3̃ and ez

1−z1η13 ∧ η1̃2̃3̃ are ∂-exact. In fact,

ez
1−z1η12 ∧ η1̃2̃3̃ = ∂(ez

1−z1η12 ∧ η̃23)

ez
1−z1η13 ∧ η1̃2̃3̃ = ∂(−ez

1−z1η13 ∧ η̃23),

therefore they both represent a vanishing class in H2,3

∂
(M). On the other hand, it can be easily

shown that the forms η12∧η1̃2̃3̃ and η13∧η1̃2̃3̃ are harmonic with respect to the Dolbeault Laplacian
operator, i.e., they belong to H2,3

∂
(M,g). As a consequence, they correspond, respectively, to non-

vanishing cohomology classes [η12 ∧η1̃2̃3̃]∂ and [η13 ∧η1̃2̃3̃]∂ in H2,3

∂
(X). Hence, by Corollary 2.4.2,

if one of the following equations does not hold

⎧⎪⎪⎨⎪⎪⎩

a11(iα11α12 + α13α23) + a21(∣α23∣
2 − α22α33) = 0

a11(iα22α13 − α12α23) + a31(∣α23∣
2 − α22α33) = 0,
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there exists no curve of balanced metrics {ωt}t∈I such that ω0 = ω along the curve of deformations
t↦ ϕ(t).

Class (2.4.4). The deformation is parametrized by the (0,1)-vector form ϕ(t), with

ϕ(t) = t12η̃
2 ⊗Z1 + t13η̃

3 ⊗Z1 + t21η̃
1 ⊗Z2 + t23η̃

3 ⊗Z2 + t31η̃
1 ⊗Z3 + t32η̃

2 ⊗Z3,

with t = (t12, t13, t21, t23, t31, t32) ∈ B(0, δ) ⊂ C6, δ > 0.
We consider the smooth curve of deformations

t↦ ϕ(t) ∶=t(a12η̃
2 ⊗Z1 + a13η̃

3 ⊗Z1 + a21η̃
1 ⊗Z2

+ a23η̃
3 ⊗Z2 + a31η̃

1 ⊗Z3 + a32η̃
2 ⊗Z3),

for t ∈ I = (−ε, ε), ε > 0, whose derivative in t = 0 is

ϕ′(0) =a12η̃
2 ⊗Z1 + a13η̃

3 ⊗Z1 + a21η̃
1 ⊗Z2

+ a23η̃
3 ⊗Z2 + a31η̃

1 ⊗Z3 + a32η̃
2 ⊗Z3.

With the aid of (2.4.2), we compute

∂ ○ iϕ′(0)(ω2) = [a12(iα11α23 + α12α13) + a32(iα33α12 − α13α23)]e
z1−z1η12 ∧ η1̃2̃3̃

+ 1

2
[a31(∣α23∣

2 − α22α33)]η
12 ∧ η1̃2̃3̃

+ [a13(α12α13 − iα13α23) + a23(iα22α13 + α12α23)]e
z1−z1η13 ∧ η1̃2̃3̃

+ 1

2
[a21(∣α23∣

2 − α22α33)]η
13 ∧ η1̃2̃3̃.

We observe that, again, since the forms ez
1−z1η12 ∧ η1̃2̃3̃ and ez

1−z1η13 ∧ η1̃2̃3̃ are cohomologous to 0
in H2,3

∂
(M) and the forms η12 ∧ η1̃2̃3̃ and η13 ∧ η1̃2̃3̃ are ∂-harmonic, the obstruction from Corollary

2.4.2 boils down to

a21(∣α23∣
2 − α22α33) = 0

a31(∣α23∣
2 − α22α33) = 0.

We point out that, since the metric g is Hermitian and, hence, positive definite, the real number
∣α23∣

2 −α22α33 is strictly positive. Therefore, there exists no curve of balanced metrics {ωt}t∈I such
that ω0 = ω along the curve of deformations t↦ ϕ(t), if

(a21

a31
) ≠ (0

0
) .

Class (2.4.5). For this class, the (0,1)-vector deformation form is

ϕ(t) = t12η̃
2 ⊗Z1 + t22η̃

2 ⊗Z2 + t32η̃
2 ⊗Z3 + t33η̃

3 ⊗Z3,

for t = (t12, t22, t32, t33) ∈ B(0, δ) ⊂ C4, δ > 0. We consider the smooth curve of deformations

t↦ ϕ(t) ∶= t(a12η̃
2 ⊗Z1 + a22η̃

2 ⊗Z2 + a32η̃
2 ⊗Z3 + a33η̃

3 ⊗Z3),

for t ∈ I = (−ε, ε), ε > 0, whose derivative in t = 0 is

ϕ′(0) = a12η̃
2 ⊗Z1 + a22η̃

2 ⊗Z2 + a32η̃
2 ⊗Z3 + a33η̃

3 ⊗Z3.
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In this case, ∂ ○ iϕ′(0)(ω2) = 0, therefore Corollary 2.4.2 gives no obstruction to the existence
of smooth curves of balanced metrics {ωt}t∈I such that ω0 = ω along the curve of deformations
t ↦ ϕ(t). Moreover, if {ωt}t∈I is any smooth curve of left-invariant Hermitian metrics along ϕ(t)
such that ω0 = ω, we can see that ∂(ω2(0))′ = 0, where we have set ωt = e

iϕ(t)∣iϕ(t)ω(t), for
ω(t) = ωij(t)dzi ∧ dzj ∈ A1,1(M). Therefore, also Theorem 2.4.1 yields no obstruction.

Class (2.4.6). The (0,1)-vector form for this class is

ϕ(t) = t13η̃
3 ⊗Z1 + t22η̃

2 ⊗Z2 + t23η̃
3 ⊗Z2 + t33η̃

3 ⊗Z3,

for t = (t13, t22, t23, t33) ∈ B(0, δ) ⊂ C4, δ > 0.
Let us consider the smooth curve of deformations

t↦ ϕ(t) ∶= t(a13η̃
3 ⊗Z1 + a22η̃

2 ⊗Z2 + a23η̃
3 ⊗Z2 + a33η̃

3 ⊗Z3)

for t ∈ (−ε, ε) and its derivative in t = 0

ϕ′(0) = a13η̃
3 ⊗Z1 + a22η̃

2 ⊗Z2 + a23η̃
3 ⊗Z2 + a33η̃

3 ⊗Z3.

Also in this case, ∂ ○ iϕ′(0)(ω2) = 0, i.e., Corollary 2.4.2 yields no obstruction and analogously to
the previous class, also Theorem 2.4.1 yields no non-trivial conditions.

We can focus now on the other case.

Case (ii): c ∉ 2πZ or d ∉ 2πZ

In [105, Section 3], it is shown that H0,1

∂
(M) = C⟨η1⟩, and any small deformation of (M,J) can be

parametrized by the (0,1)-vector form

ϕ(t) ∶= t1η1 ⊗Z1 + t2η1 ⊗Z2 + t3η1 ⊗Z3,

with t = (t1, t2, t3) ∈ B(0, δ) ⊂ C3, δ > 0. We can then consider the smooth curve of deformations

t↦ ϕ(t) ∶= t(a1η
1 ⊗Z1 + a2η

1 ⊗Z2 + a3η
1 ⊗Z3),

for t ∈ (−ε, ε), ε > 0, (a1, a2, a3) ∈ C3, whose derivative in t = 0 is

ϕ′(0) = a1η
1 ⊗Z1 + a2η

1 ⊗Z2 + a3η
1 ⊗Z3.

By making use of (2.4.2), we compute

∂ ○ iϕ′(0)(ω2) = 1

2
(a2(∣α23∣

2 − α22α33) + a1(iα33α12 + α13α23))η
13123

+1

2
(a3(∣α23∣

2 − α22α33) + a1(iα22α13 − α12α23))η
12123.

We can easily verify that ∂η12123 = ∂∗η12123 = ∂η13123 = ∂∗η13123 = 0, i.e., the (2,3)-forms η12123

and η13123 are ∂−harmonic. Therefore, the Dolbeault cohomology classes [η12123]
H2,3

∂
(M) and

[η13123]
H2,3

∂
(M) are not vanishing. On this accounts, Corollary 2.4.2 implies that if there exists

a smooth curve of balanced metrics {ωt}t∈I along the smooth curve of deformations t↦ ϕ(t), then
we must have that

⎧⎪⎪⎨⎪⎪⎩

a2(∣α23∣
2 − α22α33) + a1(iα33α12 + α13α23) = 0

a3(∣α23∣
2 − α22α33) + a1(iα22α13 − α12α23) = 0.

(2.4.7)
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We notice that, if a1 = 0, i.e., ϕ′(0) = a2η
1 ⊗Z2 + a3η

1 ⊗Z3, condition (2.4.7) becomes

⎧⎪⎪⎨⎪⎪⎩

a2 = 0

a3 = 0

since ∣α23∣
2 − α22α33 ≠ 0, being g a Hermitian metric. Hence, by Corollary 2.4.2, we can conclude

that there exists no smooth curve of balanced metrics {ωt}t∈I such that ω0 = ω, along ϕ(t) with
ϕ′(0) = a2η

1 ⊗Z2 + a3η
1 ⊗Z3.

Viceversa, let us consider the case in which a1 ≠ 0 and at least one between a2 and a3 vanishes,
i.e., for example, a2 = 0. Then, condition (2.4.7) reduces to

⎧⎪⎪⎨⎪⎪⎩

a1 = 0

a3(∣α23∣
2 − α22α33) + a1(iα22α13 − α12α23) = 0,

since the term iα22α13 − α12α23 ≠ 0, being g a Hermitian metric. We assumed a1 ≠ 0, therefore by
Corollary 2.4.2, there exists no smooth curve of balanced metrics {ωt}t∈I such that ω0 = ω, along
the smooth curve of deformations ϕ(t) with ϕ′(0) = a1η

1 ⊗ Z1 + a3η
1 ⊗ Z3. We come to the same

conclusion if we consider a3 = 0.
We can then summarize what we obtained in the following theorems.

Theorem 2.4.3 ([130]). Let (M,J) be the complex parallelisable Nakamura manifold with
dimH0,1

∂
(M) = 3, where J is the integrable left-invariant almost complex structure induced by the

left-invariant coframe {η1, η2, η3} with structure equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = 0

dη2 = −η12

dη3 = η13.

Let g be any left-invariant Hermitian (balanced) metric with associated fundamental form

ω = i

2

3

∑
j=1

αjjη
jj + 1

2
∑
j<k

(αjk − αjk)η
jk.

Defining the left-invariant (0,1)-forms {η̃1, η̃2, η̃3} by

η̃1 ∶= η1

η̃2 ∶= ez
1−z1η2

η̃3 ∶= ez
1−z1η3,

let t↦ ϕ(t) ∶= t∑3
i,j=1 aij η̃

j ⊗Zi ∈ A0,1(T 1,0(M)) be a smooth curve of deformations of (M,J), for
{aij}3

i,j=1 ⊂ C, t ∈ I = (−ε, ε), ε > 0.
Then,

• if a11 ≠ 0, a12 = a13 = a23 = a32 = 0, there exists no smooth curve of balanced metrics {ωt}t∈I
such that ω0 = ω, along the curve of deformation t↦ ϕ(t), if

(a11(iα22α13 − α12α23) + a31(∣α23∣
2 − α22α33) = 0

a11(iα11α12 + α13α23) + a21(∣α23∣
2 − α22α33) = 0

) ≠ (0
0
) ;
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• if a11 = a22 = a33 = 0, there exists no smooth curve of balanced metrics {ωt}t∈I such that
ω0 = ω, along the curve of deformation t↦ ϕ(t), if

(a21

a31
) ≠ (0

0
) .

Theorem 2.4.4 ([130]). Let (M,J) be the complex parallelisable Nakamura manifold with
dimH0,1

∂ (M) = 1, where J is the integrable left-invariant almost complex structure induced by the
left-invariant coframe {η1, η2, η3} with structure equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = 0

dη2 = −η12

dη3 = η13.

Let g be any left-invariant Hermitian (balanced) metric with associated fundamental form

ω = i

2

3

∑
j=1

αjjη
jj + 1

2
∑
j<k

(αjk − αjk)η
jk.

Let t ↦ ϕ(t) ∶= t∑3
i aiη

1 ⊗ Zi ∈ A0,1(T 1,0(M)) be a smooth curve of deformations of (M,J), for
0 ≠ (a1, a2, a3) ∈ C3, t ∈ I = (−ε, ε), ε > 0.

Then, there exists no smooth curve of balanced metrics {ωt}t∈I such that ω0 = ω, along the curve
of deformation t↦ ϕ(t), if

(a2(∣α23∣
2 − α22α33) + a1(iα33α12 + α13α23)

a3(∣α23∣
2 − α22α33) + a1(iα22α13 − α12α23)

) ≠ (0
0
) .

In particular, if one the following holds:

• a1 = 0;

• a1 ≠ 0, (a2, a3) ∈ {(a2,0), (0, a3)},

there exists no smooth curve of balanced metrics {ωt}t∈I such that ω0 = ω, along the curve of
deformation t↦ ϕ(t).

2.4.2 Example 2

(Iwasawa manifold). Let G = H(3;C) be the 3-dimensional complex Heisenberg group. It well
known that G is a 2-step nilpotent Lie group. Let us consider the lattice Γ ∶=H(3,Z[i]) of G, i.e.,
Γ = H(3;C) ∩GL(3;Z[i]). The quotient M ∶= Γ/G is a compact manifold, known as the Iwasawa
manifold. In particular, M is a 3-dimensional 2-step complex nilmanifold with universal covering
C3.

If {z1, z2, z3} are the standard coordinates on C3, the forms {η1, η2, η3}, defined by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η1 = dz1

η2 = dz2

η3 = dz3 − z1dz2,
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are a left-invariant coframe of (1,0)-forms on G, therefore they descend to the quotient M . The
dual frame of (1,0)-vector fields {Z1, Z2, Z3} on G has local expression

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z1 = ∂
∂z1

+ z1 ∂
∂z3

Z2 = ∂
∂z2

Z3 = ∂
∂z3

.

We notice that, by looking at structure equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = 0

dη2 = 0

dη3 = −η12,

(2.4.8)

the coframe {η1, η2, η3} induces a left-invariant almost complex structure J on M , which is inte-
grable.

Let g be any left-invariant Hermitian metric on (M,J). Its associated fundamental form ω can
be written as

ω = i

2

3

∑
j=1

αjjη
jj + 1

2
∑
j<k

(αjk − αjk)η
jk,

with complex numbers {αjk}
3
j,k=1 such that the matrix respresenting g

⎛
⎜
⎝

α11 −iα12 −iα13

iα12 α22 −iα23

iα13 iα23 α33

⎞
⎟
⎠

is positive definite. By structure equations (2.4.8), it is easy to check that ∂ω2 = 0, i.e., the
left-invariant Hermitian metric g is balanced.

In [105], Nakamura gives a complete description of Kuranishi space of the Iwasawa manifold.
In particular, any small deformation of (M,J) can be parametrized by the (0,1)-vector form

ϕ(t) =
3

∑
i=1

2

∑
j=1

tijη
j ⊗Zi − (t11t22 − t12t21)η3 ⊗Z3,

with t = (t11, t12, t21, t22, t31, t32) ∈ B(0, δ) ⊂ C6, δ > 0.
Let us consider the smooth curve of deformations

t↦ ϕ(t) ∶=t(a11η
1 ⊗Z1 + a12η

2 ⊗Z1 + a21η
1 ⊗Z2 + a22η

2 ⊗Z2 + a31η
1 ⊗Z3

+ a32η
2 ⊗Z3) − t2(a11a22 − a12a21)η3 ⊗Z3 ∈ A0,1(T 1,0(M)),

with t ∈ I = (−ε, ε), ε > 0 and (a11, a12, a21, a22, a31, a32) ∈ C6. Its derivative in t = 0 is

ϕ′(0) = a11η
1 ⊗Z1 + a12η

2 ⊗Z1 + a21η
1 ⊗Z2 + a22η

2 ⊗Z2 + a31η
1 ⊗Z3a32η

2 ⊗Z3.

With the aid of structure equations (2.4.8), we compute

∂ ○ iϕ′(0)(ω2) =1

2
(a12(∣α13∣

2 − α11α33) + a21(α22α33 − ∣α23∣
2)

− a11(iα33α12 + α13α23) + a22(−iα33α13 + α13α23))η
12123.
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We notice that the (2,3)-form η12123 is both ∂-closed and ∂
∗
-closed, i.e., it is ∂-harmonic. Hence,

the corresponding Dolbeault class [η12123]∂ is non-vanishing in H2,3

∂
(M). Applying Corollary 2.4.2,

we see that there exists no smooth curve of balanced metrics {ωt}t∈I along the curve of deformations
t↦ ϕ(t), such that ω0 = ω, if the following equation holds

a12(∣α13∣
2 − α11α33) + a21(α22α33 − ∣α23∣

2) − a11(iα33α12 + α13α23) + a22(−iα33α13 + α13α23) ≠ 0.

We observe that, for aij = 0 for (i, j) ≠ (1,2), we find the same curve of deformations that Alessan-
drini and Bassanelli costructed in [8] to prove the non stability of the balanced condition under
small deformations of the complex structure.

We gather what we have obtained in the following theorem.

Theorem 2.4.5 ([130]). Let (M,J) be the Iwasawa manifold with integrable left-invariant complex
structure J , induced by the left-invariant coframe {η1, η2, η3} with structure equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dη1 = 0

dη2 = 0

dη3 = −η12.

Let g be a left-invariant Hermitian (balanced) metric on (M,J) with associated fundamental form

ω = i

2

3

∑
j=1

αjjη
jj + 1

2
∑
j<k

(αjk − αjk)η
jk.

Let t ↦ ϕ(t) = t(∑3
i=1∑2

j=1 aijη
j ⊗ Zj) − t2(a11a22 − a12a21)η3 ⊗ Z3 ∈ A0,1(T 1,0(M)) be a smooth

curve of deformations of (M,J), with {aij}3 2
i=1j=1 ⊂ C, t ∈ I = (−ε, ε), ε > 0.

Then, if the following condition holds

a12(∣α13∣
2 − α11α33) + a21(α22α33 − ∣α23∣

2) − a11(iα33α12 + α13α23) + a22(−iα33α13 + α13α23) ≠ 0,

there exists no smooth curve of balanced metrics {ωt}t∈I such that ω0 = ω along the curve of defor-
mations t↦ ϕ(t).



Chapter 3

p-Kähler and balanced structures on
nilmanifolds with nilpotent complex
structures

In this chapter, we will first determine obtructions to the existence of p-Kähler forms, as recalled in
section 1.5, on nilmanifolds endowed with a invariant nilpotent complex structure. In particular, we
will determine an optimal p such that there exist non p-Kähler structures on such complex manifolds.
Then, we will study in detail the existence of special structures on the Bigalke-Rollenske manifolds
M4n−2 (such a family of 4n − 2 dimensional complex non-Kähler manifolds, n ≥ 2, were introduced
in [25] to show that the degeneration step of the Frölicher spectral sequence can be arbitrarily high).
Using the mentioned obstructions, we will show that the Bigalke-Rollenske manifolds do not admit
any p-Kähler form, p ∈ {1, . . . ,4n−4}, except for p = 4n−3, i.e., they admit a balanced metric, thus
proving that, unlike the Kähler setting, on a balanced manifold the degeneracy step of the Frölicher
spectral sequence can be arbitrarily high, adding to the results in [119], where it was shown that the
existence of a balanced metric does not imply the degeneration at the first step. In fact, whereas
the degeneracy step of the Frölicher spectral sequence on a non-Kähler manifold might be higher
than one, as first shown in [84] (see also [43]), weaker metric conditions might impose restrictions
on the degeneration of the Frölicher spectral sequence. Note that, starting from Bigalke-Rollenske
manifolds, Kasuya and Stelzig in [82] have recently constructed compact complex manifolds which
provide counterexamples to Popovici’s conjecture [120, Conjecture 1.3] on the relation between the
existence of SKT metrics and degeneration of the Frölicher spectral sequence at the second page
on a compact non-Kähler manifold.

3.1 p-Kähler structures on nilmanifolds with nilpotent complex
structures

We begin this section by recalling the following lemma by Hind, Medori, and Tomassini, which
provides a geneal obstruction to existence of p-Kähler structures on complex mnaifold, see [71,
Proposition 3.4].

Lemma 3.1.1 ([71]). Let (M,J) be a compact complex manifold of complex dimension n. Suppose
that there exists a non-closed (2n − 2p − 1)-form η such that the (n − p,n − p)-component of dη
satisfies

(dη)n−p,n−p =∑
k

ckψk ∧ ψ̄k

57
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where the ψk are simple (n − p,0)-forms and the ck have the same sign. Then, (M,J) does not
admit a p-Kähler form.

We will use this lemma to prove the non-existence of a p-Kähler form (for suitable p) on
nilmanifolds with nilpotent complex structures.

Let M = Γ/G be a nilmanifold of complex dimension n and let J be an invariant complex
structure on M , i.e., J is induced by a left-invariant complex structure on G. We denote with g
the Lie algebra of G. Recall that J is a nilpotent complex structure if, and only if, there exists a
co-frame of invariant (1,0)-forms {ηi}n

i=1
satisfying

dηk ∈ SpanC⟨ηij , ηij⟩i,j=1,...,n−1, k = 1,⋯, n.

Then, we prove the following.

Theorem 3.1.2 ([131]). Let M = Γ/G be a nilmanifold of complex dimension n endowed with a
invariant nilpotent complex structure J . With the above notations, let k be the index such that

dηi = 0 for i = 1,⋯, k and dηi ≠ 0 for i = k + 1,⋯, n. (3.1.1)

Then, there are no (n − k)-Kähler forms on M .

Proof. In order to prove the result we will exhibit a (2k − 1)-form α satisfying the hypothesis of
Lemma 3.1.1.

Since dηk+1 ≠ 0 then at least one between ∂ηk+1 and ∂ηk+1 is different from 0. Suppose now
that ∂ηk+1 ≠ 0. We will deal later with the other case. Since J is nilpotent,

∂ηk+1 =
k

∑
l,m=1

Clm̄ η
lm̄ ≠ 0

for some constants Clm̄. Hence, we fix two indices i, j ≤ k such that Cij̄ ≠ 0.
We define the following (2k − 1)-form

α = η1⋯î⋯k+1 1̄⋯ˆ̄j⋯k̄,

where η̂i and η̂j mean that we are removing the forms ηi and ηj from α.
By the structure equations, since dηi = 0 for i = 1,⋯, k and J is nilpotent,

dα = ±Cij̄ η1⋯k 1̄⋯k̄

hence α satisfies the hypothesis of Lemma 3.1.1 and so there is no (n − k)-Kähler structure on M .
On the other side, suppose that ∂ηk+1 = 0 and ∂ηk+1 ≠ 0.
Since J is nilpotent,

∂ηk+1 =
k

∑
l,m=1,l<m

Alm η
lm ≠ 0

for some constants Alm. Hence, we fix two indices i < j ≤ k such that Ai j ≠ 0.
We define the following (2k − 1)-form

α = η1⋯î⋯ĵ⋯k+1 1̄⋯k̄.

By the structure equations, since dηi = 0 for i = 1,⋯, k and J is nilpotent,

dα = ±Ai jη1⋯k 1̄⋯k̄

hence α satisfies the hypothesis of Lemma 3.1.1 and so there is no (n − k)-Kähler structure on M .
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As a Corollary for k = 1 one gets immediately

Corollary 3.1.3 ([131]). Let M = Γ/G be a nilmanifold of complex dimension n endowed with
an invariant nilpotent complex structure J , with co-frame of (1,0)-forms {ηi}

i=1,⋯,n satisfying the
following structure equations,

dη1 = 0 and dηi ≠ 0 for i = 2,⋯, n.

Then, there are no balanced metrics on M .

We notice that there are large classes of complex nilmanifolds where Theorem 3.1.2 can be
applied. For instance, if J is abelian, namely [Jx, Jy] = [x, y] for every x, y ∈ g, or bi-invariant,
namely J[x, y] = [Jx, y] for every x, y ∈ g, then it is nilpotent (cf. [126]). Moreover, by [110] if
(M,J) is a 2-step nilmanifold with invariant complex structure and J-invariant center, then J is
nilpotent.

Remark 3.1.4. We notice that the nilpotency of the complex structure of the nilmanifold is crucial
in the previous results. Indeed, when the hypotesis of nilpotency on the complex structure of the
nilmanifold is dropped, Theorem 3.1.2 and Corollary 3.1.3 are not valid in general. More precisely,
in [40] the authors consider the real 6-dimensional nilmanifold, whose associated Lie algebra is
h−19 = (0,0,0,12,23,14−35) and they prove that it is endowed with invariant non nilpotent complex
structures (see [40, Theorem 2.1] ) which satisfy condition (3.1.1) for k = 1 ([40, Table 2] ), indeed
the complex structure equations are

dη1 = 0, dη2 = η13 + η13̄, dη3 = ±i (η12̄ − η21̄) .

As shown in [40, Remark 5.4] such nilmanifolds admit invariant balanced metrics, i.e., 2-Kähler
forms.

We now show that p = n−k in Theorem 3.1.2 is optimal. Indeed, we will show now two examples
of 2-step nilmanifolds with invariant abelian complex structures that admit a (n − k − 1)-Kähler
form and a (n − k + 1)-Kähler form.

Example 3.1.5. Let M be the 2-step nilmanifold of complex dimension 3 with abelian complex
structure defined by the following structure equations

dη1 = dη2 = 0, dη3 = η12̄

where {ηi}
i=1,2,3

is a co-frame of (1,0)-forms.
With the previous notations we have n = 3 and k = 2. So, by Theorem 3.1.2 there are no 1-Kähler
forms onM . Of course, this was already known since on non-toral nilmanifolds there are no Kähler
metrics.
Now, we show that there exists a 2-Kähler form on M , namely a (n − k + 1)-Kähler form.
Let

Ω ∶= −η11̄22̄ − η11̄33̄ − η22̄33̄ .

Then, Ω is a real transverse (2,2)-form and by the structure equations

dΩ = 0 .

Hence, Ω is a 2-Kähler form on M . In particular, there exists a balanced metric ω on M such that
ω2 = Ω. In fact, it is easy to see that

ω = iη11̄ + iη22̄ + iη33̄.
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Example 3.1.6. Let M be the 8-dimensional 2-step nilmanifold with abelian complex structure
defined by the following structure equations

dη1 = 0, dη2 = dη3 = dη4 = η11̄

where {ηi}
i=1,2,3,4

is a co-frame of (1,0)-forms.
With the previous notations we have n = 4 and k = 1. So, by Corollary 3.1.3 there are no balanced
metrics on M .
Now, we show that there exists a 2-Kähler form on M , namely a (n − k − 1)-Kähler form.
Let

Ω ∶= −η11̄22̄ − η11̄33̄ − η11̄44̄ − η22̄33̄ − η22̄44̄ − η33̄44̄+

+η22̄34̄ + η22̄43̄ + η24̄33̄ + η42̄33̄ + η23̄44̄ + η32̄44̄ .

Then, Ω is a real transverse (2,2)-form and by the structure equations one can see directly that

dΩ = 0 .

Hence, Ω is a 2-Kähler form on M .

3.2 Special Hermitian metrics on the Bigalke and Rollenske’s man-
ifolds

In this section, we discuss the existence of special Hermitian metrics and p-Kähler forms on the
2-step nilmanifolds with the nilpotent complex structure constructed by Bigalke and Rollenske in
[25]. In particular, for every n ≥ 2, these (4n− 2)-dimensional compact complex manifolds are such
that the Frölicher spectral sequence does not degenerate at the En term.

We start by recalling the construction. Fix n ≥ 2 and let Gn be the real nilpotent subgroup of
GL(2n + 2,C) consisting of the matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0 ȳ1 w1

1 0 ⋯ 0 z̄1 −x1 0 ⋯ 0 w2

⋱ ⋱ ⋮ ⋮
1 0 ⋯ 0 z̄n−1 −xn−1 0 wn

1 0 ⋯ 0 y1

⋱ ⋮ ⋮

⋱ ⋮ ⋮
1 0 yn

1 z1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

with x1, . . . , xn−1, y1, . . . , yn, z1, . . . , zn−1,w1, . . . ,wn ∈ C.
Let Γ be the subgroup of Gn consisting of the matrices of the same form and entries in Z[i].

Then, Γ is a discrete uniform subgroup of Gn and the quotientM4n−2 ∶= Γ/Gn is a compact (4n−2)-
dimensional 2-step nilmanifold with an invariant complex structure. A global co-frame of invariant
(1,0)-forms is given by

dx1, . . . , dxn−1, dy1, . . . , dyn, dz1, . . . , dzn−1, ω1, . . . , ωn

where
ω1 = dw1 − ȳ1dz1, ωk = dwk − z̄k−1dyk−1 + xk−1dyk (k = 2, . . . , n).
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The structure equations become

d(dxj) = d(dzj) = 0, (j = 1, . . . , n − 1)

d(dyj) = 0, (j = 1, . . . , n)

∂ω1 = 0, ∂ω1 = dz1 ∧ dȳ1

∂ωj = dxj−1 ∧ dyj , ∂ωj = dyj−1 ∧ dz̄j−1 (j = 2, . . . , n)

In [25] the authors show that that the Frölicher spectral sequence of M4n−2 has non-vanishing
differential dn, namely the Frölicher spectral sequence does not degenerate at the En term.

We now rename the forms dxj , dyj , dzj , and ωj by considering the basis of (1,0)-forms {ηj}4n−2
j=1 ,

defined as follows

ηj ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxj , 1 ≤ j < n
dyj , n ≤ j < 2n

dzj , 2n ≤ j < 3n − 1

ωj , 3n − 1 ≤ j ≤ 4n − 2.

As a result, the structure equations become

dηj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 1 ≤ j < 3n − 1

η2n ∧ ηn, j = 3n − 1

ηj−3n+1 ∧ ηj−2n+1 + ηj−2n ∧ ηj−n, 3n ≤ j ≤ 4n − 2,

(3.2.1)

or, more precisely,

∂ηj =
⎧⎪⎪⎨⎪⎪⎩

0, 1 ≤ j ≤ 3n − 1

ηj−3n+1 ∧ ηj−2n+1, 3n ≤ j ≤ 4n − 2,
(3.2.2)

and

∂ηj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 1 ≤ j < 3n − 1

η2n ∧ ηn, j = 3n − 1

ηj−2n ∧ ηj−n, 3n ≤ j ≤ 4n − 2.

(3.2.3)

Now we study the existence of special Hermitian metrics on Bigalke and Rollenske’s nilmanifolds.
In particular, one can apply Theorem 3.1.2 and get immediately the following proposition.

Proposition 3.2.1 ([131]). For every n ≥ 2 the Bigalke and Rollenske’s nilmanifold M4n−2 does
not admit any n-Kähler form.

In fact, we can show more, namely there are no p-Kähler forms except for balanced metrics.
More precisely, we prove the following theorem.

Theorem 3.2.2 ([131]). For every n ≥ 2 the Bigalke and Rollenske’s nilmanifold M4n−2 does not
admit any p-Kähler form for 1 ≤ p < 4n − 3.

Proof. We will show that on any Bigalke and Rollenske’s manifold M4n−2, for every fixed p, with
1 ≤ p < 4n−3, we can construct a non closed (8n−2p−5)-form α such that the (4n−2−p,4n−2−p)-
component of dαp satisfies

(dαp)(4n−2−p,4n−2−p) = εpψp ∧ ψp, (3.2.4)
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with ψp ∈ A4n−2−p,0(M4n−2) a simple form and εp ∈ {−1,1}. By Lemma 3.1.1, this will assure that
there exists no p-Kähler form on M4n−2.

Let us consider separately the cases
(i) 1 ≤ p < n;
(ii) n ≤ p ≤ 4n − 2.
Before doing so, we remark that, by structure equations (3.2.1), the index j such that every term
of the expression of dηj contains forms with the highest indices, is j = 4n − 2. Such expression is

dη4n−2 = ηn−1 ∧ η2n−1 + η2n−2 ∧ η3n−2,

whereas, in general, we have that dηj , dηj ≠ 0 if, and only if, 3n − 1 ≤ j ≤ 4n − 2.
(i) Even though it is well-known that on non-toral nilmanifolds there are no 1-Kahler forms,

since they coincide with Kähle metrics, we will consider the case p = 1 for the benefit of the
following constructions. We must construct a non closed (8n − 7)-form satisfying property (3.2.4).
In particular, if we start from the (8n − 4)-form

η1 ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η4n−2,

we must remove three 1-forms. For this purpose, we select η2n−2, η3n−2, and η4n−2, therefore
considering the (4n − 3,4n − 4)-form α1 given by

α1 = η1 ∧ ⋅ ⋅ ⋅ ∧ ˆη2n−2 ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ ˆη3n−2 ∧ ⋅ ⋅ ⋅ ∧ η4n−3.

We now compute the (4n − 3,4n − 3)-component of dα1. By the structure equations (3.2.3), we
remark that the only non trivial relevant differentials are

∂η3n−1 = η2n ∧ ηn,
∂ηj = ηj−2n ∧ ηj−n, 3n ≤ j ≤ 4n − 2.

In order to have a non vanishing term, we must ensure that ∂ηj = η2n−2 ∧ η3n−2. However, this can
happen if and only if j = 4n − 2, resulting in

dα
(4n−3,4n−3)
1 = d (η1 ∧ ⋅ ⋅ ⋅ ∧ ˆη2n−2 ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ ˆη3n−2 ∧ ⋅ ⋅ ⋅ ∧ η4n−3)

= η1 ∧ ⋅ ⋅ ⋅ ∧ η4n−3 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η4n−3.

Thus, considering ψ1 ∶= η1 ∧ ⋅ ⋅ ⋅ ∧ η4n−3 ∈ A4n−3,0(M4n−2), we can conclude by Lemma 3.1.1.
Therefore, for the case 1 < p < n, we can construct αp starting from the (8n − 7)-form α1 and

then remove the forms η3n−1, η3n, . . . η3n+p−3, η3n−1, η3n, . . . , η3n+p−3, (which accounts to removing
2p−2 forms), obtaining a non closed (8n−2p−5)-form. Then, the (4n−2−p,4n−2−p)-component
of dαp is of type

ψp ∧ ψp,

with ψp ∈ A4n−2−p,0(M4n−2) given by

ψp = η1 ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ η3n+p−2 ∧ ⋅ ⋅ ⋅ ∧ η4n−3.

Again, we can conclude by Lemma 3.1.1.
(ii) Let us now consider the case n ≤ p ≤ 4n − 2, starting from p = n for the benefit of the following
construction.
We must find a (6n−5)-form αn such that the (3n−2,3n−2)-component of dαn satisfies condition
(3.2.4). We construct the form αn as we have previously done, setting

αn = η1 ∧ ⋅ ⋅ ⋅ ∧ η ˆ2n−2 ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ η4n−2 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η3n−3,
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with αn ∈ A3n−2,3n−3(M4n−2). By structure equations, we see that we have removed all the forms
with non trivial differential but dη4n−2. Therefore, when computing the differential dαn, we obtain

dαn = −η1 ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η3n−2.

By setting ψn ∶= η1 ∧ ⋅ ⋅ ⋅ ∧ η3n−2, we conclude by Lemma 3.1.1.
Now, if n + 1 ≤ p < 4n − 3, we construct the (8n − 2p − 5)-form αp starting from the (6n − 5)-form
αn and then removing the forms η1, . . . , ηp−n, η1, . . . , ηp−n. We clarify that, for p − n ≥ 2n − 2, since
η2n−2 has already been removed, we keep removing the (1,0)-forms with higher index starting from
η2n−1, whereas we keep η2n−2 and remove η2n−1 and so forth, so to remove (1,0)-forms for a total
of p − n forms and (0,1)-forms for a total of p − n forms. This procedure accounts to building
αp ∈ A4n−p−2,4n−p−3 as

αp = ηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ η ˆ2n−2 ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ η4n−2 ∧ ηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ η3n−3

if n + 1 ≤ p < 3n − 3, and

αp = ηp−n+2 ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ η4n−2 ∧ η2n−2 ∧ ηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ η3n−3,

if 3n − 3 ≤ p ≤ 4n − 4. We then compute dαp. Since the only non trivial differential is dη4n−2, we
obtain

dαp = εpηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ ηp−n+2 ∧ ⋅ ⋅ ⋅ ∧ η3n−2

if n + 1 ≤ p < 3n − 3, and

dαp = εpη2n−2 ∧ ηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ η3n−2 ∧ η2n−2 ∧ ηp−n+2 ∧ ⋅ ⋅ ⋅ ∧ η3n−3,

if 3n − 3 ≤ p ≤ 4n − 4. The number εp ∈ {±1} is a sign term. Therefore, by setting

ψp = ηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ ⋅ ⋅ ⋅ ∧ η3n−2

for n + 1 ≤ p < 3n − 3 and
ψp = η2n−2 ∧ ηp−n+1 ∧ ⋅ ⋅ ⋅ ∧ η3n−2,

if 3n − 3 ≤ p ≤ 4n − 4, we can finally conclude by Lemma 3.1.1.

However, we show that there exist (4n−3)-Kähler forms. More precisely, we prove the following
theorem.

Theorem 3.2.3 ([131]). For every n ≥ 2 the Bigalke and Rollenske’s nilmanifold M4n−2 admits
balanced metrics.

Proof. We show that the diagonal Hermitian metric

ω ∶= i

2

4n−2

∑
j=1

ηj ∧ ηj

is balanced, i.e., dω4n−3 = 0. Notice that

ω4n−3 = ( i
2
)

4n−3 1

(4n − 3)!

4n−2

∑
k=1

η1 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η̂k ∧ η̂k ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η4n−2.

We denote by αk ∶= η1 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η̂k ∧ η̂k ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η4n−2. From the structure equations, when
we compute dω4n−3 we consider separately each term

dαk = d(η1 ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ η̂k ∧ η̂k ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η4n−2).
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By the structure equations we have that dαk = 0 for every k = 1, . . . ,4n − 2. Indeed, by Leibniz
rule, the only way to have dαk ≠ 0 would be that for some index j = 1, . . . , k̂, . . . ,4n − 2, dηj or dη̄j

contains exactly ηk ∧ η̄k. But this is not the case as showed by the structure equations. Hence,
dαk = 0 for every k = 1, . . . ,4n − 2 and so dω4n−3 = 0 and so ω is balanced.

As a consequence, combining this with [25, Theorem 1], we get that there is no relation between
the existence of balanced metrics and the degeneracy step of the Frölicher spectral sequence.

Corollary 3.2.4 ([131]). On balanced manifolds the degeneracy step of the Frölicher spectral se-
quence can be arbitrarily large.

In particular, this is in contrast with the situation in Kähler geometry where for compact
Kähler manifolds the Frölicher spectral sequence degenerates at the first step and with a conjecture
by Popovici stating that on compact SKT manifolds the Frölicher spectral sequence degenerates
at the second step (cf. [120, Conjecture 1.3]). In fact, in relation with this conjecture we show
explicitly the following.

Proposition 3.2.5 ([131]). For every n ≥ 2 the Bigalke and Rollenske’s nilmanifold M4n−2 does
not admit any SKT metric.

Proof. In order to show that M4n−2 does not admit any SKT metric we use the characterization of
[48] in terms of currents. More precisely, we will construct a non-zero positive (1,1)-current which
is ∂∂-exact. Indeed, by a direct computation using the structure equations

ψ ∶= η1 ∧ η̄1 ∧ ⋅ ⋅ ⋅ ∧ η4n−3 ∧ η̄4n−3 =

∂∂ (η1 ∧ η̄1 ∧ ⋅ ⋅ ⋅ ∧ η̂n−1 ∧ ˆ̄ηn−1 ∧ ⋅ ⋅ ⋅ ∧ η̂2n−1 ∧ ˆ̄η2n−1 ∧ ⋅ ⋅ ⋅ ∧ η4n−2 ∧ η̄4n−2) .

The (4n − 3,4n − 3)-form ψ gives rise to a ∂∂-exact non-zero positive (1,1)-current on M .

Notice that this follows also by [56] where the authors show that on non-tori nilmanifolds
balanced and SKT metrics cannot coexist. We recall that an Hermitian metric ω on a complex
manifold is called locally conformally Kähler if

dω = θ ∧ ω

where θ is a d-closed 1-form. We then have immediately the following proposition.

Proposition 3.2.6 ([131]). For every n ≥ 2 the Bigalke and Rollenske’s nilmanifold M4n−2 does
not admit any locally conformally Kähler metric.

Proof. This follows directly combining Theorem 3.2.3 and [110, Theorem 4.9] where it is proved that
on non-tori complex nilmanifolds endowed with an invariant complex structure, locally conformally
Kähler metrics and balanced metrics cannot coexist.



Chapter 4

Dolbeault and Bott-Chern formalities:
deformations and ∂∂-lemma

In this chapter we study the behaviour of the complex formalities for a complex manifold recalled
in section 1.4 under the action of deformations of the complex structure. In particular, complet-
ing the picture started with the non-openness theorems for Dolbeaul formality by Tomassini and
Torelli (see [150]), respectively, Tardini and Tomassini (see [147]), we prove that the properties of
being Dolbeault formal, admitting a Dolbeault formal metric, and the vanishing of every Dolbeault
Massey products are not closed properties under deformations, see Theorem 4.2.1. Analogously,
the property of admitting a geometrically Bott-Chern formal metric and the vanishing of every
Aeppli-Bott-Chern Massey product are not closed under deformations of the complex structure,
see Theorem 4.3.1. In particular, we prove Theorem 4.2.1 by constructing a holomorphic family
of compact complex manifolds {Mt}t∈D obtained as a deformation of the complex structure of the
holomorphically parallelizable Nakamura manifold, such that each Mt is geometrically Dolbeault
formal and Dolbeault formal for t ∈ D ∖ {0}, but M0 has a non vanishing Dolbeault-Massey triple
product. This will assure that on each Mt every triple Dolbeault-Massey product is vanishing,
for t ∈ D ∖ {0}, but M0 is neither Dolbeault formal, nor geometrically Dolbeault formal. To prove
Theorem 4.3.1, we use a different presentation of the holomorphically parallelizable Nakamura man-
ifold selecting a suitable family of lattices. Then, we consider a holomorphic deformation of the
complex structure such that each Mt is geometrically-Bott-Chern-formal, for t ≠ 0, but M0 has a
non vanishing ABC-Massey product, hence on each Mt every ABC-Massey product vanishes but
M0 is not geometrically-Bott-Chern-formal.

We then further investigate the notion of Aeppli-Bott-Chern Massey triple product and we
highlight an interesting behaviour, i.e., we are able to provide an example of a smooth non-Kähler
complex manifold which satisfies the ∂∂-lemma but admits a non vanishing Aeppli-Bott-Chern-
Massey product, see Theorem 4.4.1. This is in contrast with the Sullivan (respectively, Dolbeault)
formality setting, since a manifold satisying the ∂∂-lemma is both Sullivan formal and Dolbeault
formal, hence every Massey (respectively, Dolbeault Massey) product vanishes on such a manifold.
In order to prove Theorem 4.4.1, we start by constructing a complex orbifold obtained as a quotient
of the Iwasawa manifold and by showing that it satisfies the ∂∂-lemma and it admits a non vanishing
ABC-Massey product. Then, we explicitly construct a smooth resolution M̃ of such orbifold and
we conclude the proof by showing that M̃ still admits a non vanishing ABC-Massey product and
it still satisfies the ∂∂-lemma.

65
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4.1 Cohomologies of complex orbifolds

In this section, we briefly recall the main facts about complex orbifolds and their cohomologies as
proved classically in [22, 79, 128] and more recently in [9, 16, 135, 136], which will be needed later
in this chapter. In particular, we will focus on complex orbifolds of global-quotient-type, which we
will make use of in section 4.4.

The notion of orbifolds has been firstly introduced by Satake [128] under the name of V-
manifolds and later studied by many authors, among the others, by Baily [22]. For the sake of
completeness, we start by recalling the definition of a complex orbifold, following [22, Section 2].

Definition 4.1.1. Let M̂ be a Hausdorff space and let Ũ be an open subset of M̂ . A local
uniformizing system, shortly l.u.s., for Ũ is a triple {U,G,ψ} such that

• U ⊂ Cn is a connected open neighborhood of the origin of Cn,

• G is a finite group of biholomorphisms of U ,

• ψ∶U → Ũ is a continuous map such that ψ ○ σ = ψ, for every σ ∈ G, and the induced map of
U/G onto Ũ is a homeomorphism.

Let us now consider two l.u.s.’s {U,G,ψ} and {U ′,G′, ψ′} for, respectively Ũ and Ũ ′, open
subsets of M̂ such that Ũ ⊂ Ũ ′. A biholomorphisms λ∶U → U ′ is an injection of {U,G,ψ} into
{U ′,G′, ψ′} if, for any σ ∈ G, there exists σ′ ∈ G′ satisfying the relations

λ ○ σ = σ′ ○ λ,

ψ = ψ′ ○ λ.

We recall the definition of complex orbifold.

Definition 4.1.2. A complex orbifold is a connected Hausdorff space M̂ and a family F of l.u.s.’s
for open subsets of M̂ such that

• If {U,G,ψ},{U ′,G′, ψ′} ∈ F and Ũ = ψ(U) ⊂ Ũ ′ = ψ(U ′), then there exists an injection of
{U,G,ψ} into {U ′,G′, ψ′};

• The open sets Ũ for which there exists a l.u.s. {U,G,ψ} ∈ F form a basis of open sets in M̂ .

Let F be the family of l.u.s.’s for open subsets of a complex orbifold M̂ . Then a complex
differential form θ on M̂ is defined to be a collection of complex differential forms {θU} on U which
are G-invariant for {U,G,ψ} ∈ F and such that if λ∶{U ′,G′, ψ′} → {U,G,ψ} is an injection, we
have that

λ∗θU = θU ′ .

Tensors such as vector fields and metrics on a complex orbifold M̂ are similarly defined.
Let us then consider the graded complex of complex forms on the complex orbifold M̂ , namely,

(⋀●C M̂, d), and its associated bigraded complex (⋀●,● M̂, ∂, ∂). As recalled in Section 1.3 for the
usual cohomologies of manifolds, we can define de Rham, Dolbeault, Bott-Chern, and Aeppli orbifold
cohomologies as

Hp,q
dR(M̂) = Kerd

Imd ∩⋀
p,q(M̂), Hp,q

∂
(M̂) = Ker∂

Im∂
∩⋀p,q(M̂), (4.1.1)

Hp,q
BC(M̂) = Ker∂∩Ker∂

Im∂∂
∩⋀p,q(M̂), Hp,q

A (M̂) = Ker∂∂

Im∂ + Im∂
∩⋀p,q(M̂). (4.1.2)
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Starting from the complexes (⋀● M̂, d) and (⋀●,● M̂, ∂, ∂), a spectral sequence {(E●
r , dr)} can be

defined, so that E●
1 ≃H

●,●
∂

(M̂). From such sequence, known as Hodge and Frölicher spectral sequence
of M̂ , one can derive the Frölicher inequality

∑
p+q=k

dimCH
p,q

∂
(M̂) ≥ dimCH

k
dR(M̂ ;C). (4.1.3)

A complex orbifold is said to satisfy the ∂∂-lemma if the natural map Hp,q
BC(M̂)→Hp,q

∂
(M̂) is injec-

tive. Among many other characterizations, such property is equivalent, for a complex orbifold, to
equality holding in equation (4.1.3) and to have isomorphisms induced by conjugation in Dolbeault
cohomology, i.e.,

Hp,q

∂
(M̂) ≃Hq,p

∂
(M̂), (4.1.4)

see [46].
Once we fix an Hermitian metric g on a compact complex orbifold M̂ of complex dimension n,

one can define the C-antilinear Hodge ∗-operator

∗∶⋀p,q M̂ → ⋀n−p,n−q M̂,

the operators
d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗, ∂

∗ = − ∗ ∂∗,

the de Rham Laplacians ∆, Dolbeault Laplacian ∆∂ , Bott-Chern Laplacian ∆̂BC , and Aeppli
Laplacian ∆̂A and their kernels

Hk(M̂, g) = {α ∈ ⋀k M̂ ∶ ∆α = 0},
Hp,q♯ (M̂, g) = {α ∈ ⋀p,q M̂ ∶ ∆♯α = 0}, for ♯ ∈ {∂,BC,A}.

Harmonic forms on M̂ with respect to each Laplacian can be characterized as in section 1.3 in
equations (1.3.6), (1.3.7), and (1.3.8).

For a compact complex orbifold, the following theorem holds, see [128, Theorem 1],[22, Theorem
K].

Theorem 4.1.3. Let M̂ be a compact complex orbifold of complex dimension n and g a Hermitian
metric on M̂ . The following isomorphisms hold

Hk
dR(M̂ ;C)→HkdR(M̂, g)
Hp,q

∂
(M̂)→Hp,q

∂
(M̂, g).

Moreover, the Hodge ∗-operator yields, respectively, the isomorphisms

Hk
dR(M̂,C) ≃H2n−k

dR (M̂,C)
Hp,q

∂
(M̂) ≃Hn−p,n−q

∂
(M̂).

Let us now consider the following class of complex orbifolds.
Let M be a complex manifold and G a finite subgroup of the group of biholomorphisms of M .

If we consider the quotient
M̂ =M/G,

it turns out that, by the Bochner linearization theorem, see [28, Theorem 1], the space M̂ is an
orbifold as in the definition by Baily.

Definition 4.1.4. Orbifolds costructed in this way are said to be of global-quotient-type.
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For compact orbifolds of global-quotient-type, besides Theorem 4.1.3, also Bott-Chern and
Aeppli cohomologies can be computed in terms of harmonic representatives, as in the following
theorem.

Theorem 4.1.5. Let M̂ be a compact complex orbifold of global-quotient type and g a Hermitian
metric on M̂ . Then, the following isomorphisms hold

Hp,q
BC(M̂)→Hp,qBC(M̂, g)

Hp,q
A (M̂)→Hp,qA (M̂, g).

In particular, the Hodge ∗-operator induces the isomorphisms

Hp,q
BC(M̂) ≃Hn−p,n−q

A (M̂). (4.1.5)

We conclude this section by recalling the property of the pull-back map of a proper surjective
morphism of compact complex orbifolds, see [9].

Theorem 4.1.6. Let M̂ and N̂ be compact complex orbifolds of the same complex dimension, and
let π∶ M̂ → N̂ be a proper surjective morphism of complex orbifolds. Then the map π∶ M̂ → N̂
induces injective morphisms

π∗dR∶H
k
dR(N̂)→Hk

dR(M̂)
π∗
∂
∶Hp,q

∂
(N̂)→Hp,q

∂
(M̂)

π∗BC ∶H
p,q
BC(N̂)→Hp,q

BC(M̂).

4.2 Dolbeault formalities are not closed

In this section we state and prove the non closedness result for the Dolbeault formalities as defined
in section 1.4.

Throughout this section, we will denote by D the unit disc centered in the origin of C, i.e.,
D = {z ∈ C ∶ ∣z∣ < 1}.

We recall that, by definition of a property closed under holomorphic deformations, for our
purposes it will suffice to show the existence of a holomorphic family of compact complex manifolds
{Mt}t∈D such that each Mt is geometrically Dolbeault formal and Dolbeault formal for t ∈D∖ {0},
but M0 has a non vanishing Dolbeault-Massey triple product. Given the relations (1.4.2) and
(1.4.3) of section 1.4, this will assure that each Mt is also weakly-Dolbeault formal and every triple
Dolbeault-Massey product is vanishing, for t ∈D∖{0}, but M0 is neither weakly-Dolbeault formal,
Dolbeault formal, nor geometrically Dolbeault formal, yielding the following result.

Theorem 4.2.1 ([132]). The property of being geometrically Dolbeault formal, Dolbeault formal,
weakly Dolbeault formal, and the vanishing of Dolbeault-Massey triple products are not closed under
holomorphic deformations.

In order to prove Theorem 4.2.1, we will provide a family {Zt}t∈D of holomorphic deformations
of the holomorphically parallelizable Nakamura manifold such that Zt is geometrically Dolbeault
formal and Dolbeault formal, for t ≠ 0, but Z0 has a non-trivial Dolbeault-Massey triple product.

To this purpose, let us start by considering the 6-dimensional simply-connected solvable Lie
group G, with Lie algebra g defined by the following structure equations of the frame
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{e1, e2, e3, e4, e5, e6} of g∗
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = e16 − e25,

de2 = e15 + e26,

de3 = −e36 + e45,

de4 = −e35 − e46,

de5 = de6 = 0.

(4.2.1)

We then consider the holomorphically parallelizable complex structure on g∗. Define the almost
complex structure on g∗, which we will denote by J(0,0), by setting

J(0,0)e
1 = −e2, J(0,0)e

2 = e1, J(0,0)e
3 = −e4, J(0,0)e

4 = e3, J(0,0)e
5 = e6, J(0,0)e

6 = −e5.

Therefore, the following complex forms

η1
(0,0) = e

1 + i e2, η2
(0,0) = e

3 + i e4, η3
(0,0) =

1

2
(e5 − i e6),

form a basis of (1,0)-forms for (g∗)1,0 whose complex structure equations are

dη1
(0,0) = 2i η13

(0,0), dη2
(0,0) = −2i η23

(0,0), dη3
(0,0) = 0. (4.2.2)

According to Nakamura [105, p.90], G admits discrete uniform subgroups Γ, hence M = Γ/G is a
complex 3-dimensional holomorphically parallelizable solvmanifold. If we fix any discrete uniform
subgroup Γ of G, it turns out that {η1

(0,0), η
2
(0,0), η

3
(0,0)} is a global frame of left-invariant (1,0)-

complex forms on M .
We note that the relations between the choice of discrete uniform subgroups of the Nakamura

holomorphically parallelizable manifold and the dimensions of the Dolbeault and Bott-Chern co-
homologies have been studied, for example, in [105, 14]. In particular, for every discrete uniform
subgroup Γ, the left-invariant (0,1)-form η3̄

(0,0) defines a non-zero Dolbeault cohomology class on

the compact complex manifold M(0,0) = (Γ/G,J(0,0)), where we denote ηj̄(0,0) ∶= η
j
(0,0). Hence, we

can use the class [η3̄
(0,0)] ∈ H

0,1

∂̄
(M(0,0)) to construct an appropriate holomorphic family of defor-

mations.
Let B = C ×D ⊂ C2. For any t = (t1, t2) ∈ B, we set

η1
t ∶= η1

(0,0) + t1 η
3̄
(0,0), η2

t ∶= η2
(0,0), η3

t ∶= η3
(0,0) + t2 η

3̄
(0,0). (4.2.3)

Denote by Jt the left-invariant almost complex structure on g associated to the coframe {η1
t , η

2
t , η

3
t}.

It follows that Jt gives rise to an almost complex structure on Γ/G. A direct computation shows
that the structure equations of the (1,0)-forms {η1

t , η
2
t , η

3
t} are

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dη1
t = 2i

1−∣t2∣2 η
13
t − 2it2

1−∣t2∣2 η
13̄
t + 2it1

1−∣t2∣2 η
33̄
t ,

dη2
t = − 2i

1−∣t2∣2 η
23
t + 2it2

1−∣t2∣2 η
23̄
t ,

dη3
t = 0.

(4.2.4)

Let us set Mt ∶= (Γ/G,Jt). Then, for any fixed t ∈ B, equations (4.2.4) imply that, for any given
αt ∈ A1,0Mt,

dαt ∈ A2,0Mt ⊕A1,1Mt.

Hence, Jt is integrable for any t ∈ B.
Therefore, for any t = (t1, t2) ∈ B, we have a left-invariant complex structure Jt on Γ/G, and so

a compact complex manifold Mt of complex dimension 3.
Before proceeding, we need the following result.
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Lemma 4.2.2 ([132]). If t1 /= 0 and t2 = 0, then the compact complex manifold Mt=(t1,0) has a
non-vanishing Dolbeault-Massey triple product.

Proof (of Lemma 4.2.2). Let us consider the Dolbeault cohomology classes [η3
(t1,0)] ∈H

1,0

∂̄
(M(t1,0))

and [η3̄
(t1,0)] ∈H

0,1

∂̄
(M(t1,0)). From (4.2.4) for t2 = 0 and t1 /= 0, we have the following relations:

η3
(t1,0) ∧ η

3
(t1,0) = 0, η3

(t1,0) ∧ η
3̄
(t1,0) = ∂̄ ( −i

2t1
η1
(t1,0)) .

Hence, ⟨[η3
(t1,0)], [η

3
(t1,0)], [η

3̄
(t1,0)]⟩ is a Dolbeault-Massey triple product which is represented (up to

a constant) by the (2,0)-form η1
(t1,0)∧η

3
(t1,0). This (2,0)-form obviously defines a non-zero Dolbeault

cohomology class in H2,0

∂̄
(M(t1,0)). Now, for showing that the product is non-trivial, it remains to

prove that the class [η1
(t1,0) ∧ η

3
(t1,0)] does not belong to the ideal [η3

(t1,0)] ⋅H
1,0

∂̄
(M(t1,0)).

Suppose that [η1
(t1,0) ∧η

3
(t1,0)] ∈ [η3

(t1,0)] ⋅H
1,0

∂̄
(M(t1,0)). Then, there exists a (1,0)-form α on the

manifold M(t1,0) satisfying ∂̄α = 0 and η1
(t1,0)∧η

3
(t1,0) = α∧η

3
(t1,0). Now, since the complex structure

is left-invariant, we can apply the symmetrization process (it preserves the bidegree of the forms)
to get an invariant (1,0)-form α̃ which is ∂̄-closed and satisfies (η1

(t1,0) − α̃) ∧ η
3
(t1,0) = 0. But from

(4.2.4) for t2 = 0 and t1 /= 0, it follows that α̃ = λη2
(t1,0) + µη

3
(t1,0) for some constants λ,µ ∈ C in

order to be ∂̄-closed, so the condition (η1
(t1,0) − α̃) ∧ η

3
(t1,0) = 0 cannot be satisfied.

Proof of Theorem 4.2.1. Let us now fix any t01 ∈ C ∖ {0}. For any t2 ∈ D, we consider the left-
invariant complex structure Jt=(t01,t2) on G. By (4.2.4) the complex structure equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1
t = 2i

1−∣t2∣2 η
13
t − 2it2

1−∣t2∣2 η
13̄
t + 2it01

1−∣t2∣2 η
33̄
t ,

dη2
t = − 2i

1−∣t2∣2 η
23
t + 2it2

1−∣t2∣2 η
23̄
t ,

dη3
t = 0.

(4.2.5)

If we take any t2 ∈ D ∖ {0}, we consider the basis {τ1
t , τ

2
t , τ

3
t } of (1,0)-forms with respect to Jt

defined by

τ1
t ∶= 2i η3

t , τ2
t ∶= η1

t +
t01
t2
η3
t , τ3

t ∶= η2
t .

It is easy to check with respect to this basis, the complex structure equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dτ1
t = 0,

dτ2
t = − 1

1−∣t2∣2 τ
12
t + t2

1−∣t2∣2 τ
21̄
t ,

dτ3
t = 1

1−∣t2∣2 τ
13
t − t2

1−∣t2∣2 τ
31̄
t .

(4.2.6)

In [13] it is proved that there is a family of lattices {Γt2}t2∈D on the Lie group G such that the
compact manifold Γt2/G endowed with the complex structure {J(t01,t2)}t2∈D given by (4.2.6) satisfies
the ∂∂̄-lemma for any t2 ∈ D ∖ {0}, and, therefore, is Dolbeault formal. Indeed, notice that the
equations (4.2.6) are precisely the complex equations found in [13, Table 3] for the holomorphic
deformation (C1) in [13, Proposition 4.2].

Also, it is easy to check that the harmonic representatives of Dolbeault cohomology listed in
[13, Table 3] with respect to the canonical metric have a structure of algebra with respect to ∧,
therefore Mt is also geometrically Dolbeault formal.
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Hence, we consider the following holomorphic family of compact complex manifolds {Zt}t∈D.
Let us fix any t01 ∈ C ∖ {0} and consider t = t2 for t ∈ D. We take the previous lattices Γt ∶= Γt2 on
the Lie group G given in [13] and the (left-invariant) complex structure Jt = J(t01,t) on G, to obtain
the family of compact complex manifolds {Zt} = {(Γt/G,Jt)}.

As we pointed out above, each compact complex manifold Zt is Dolbeault formal and geo-
metrically Dolbeault formal for any t /= 0. However, the central fiber Z0 has a non-vanishing
Dolbeault-Massey triple product by Lemma 4.2.2, since this result holds for any lattice of maximal
rank in G, in particular for the given lattice Γ.

4.3 Bott-Chern formality is not closed

In this section, we prove the non closedness result for geometrically-Bott-Chern-formal manifolds
and the vanishing of Aeppli-Bott-Chern-Massey products.

As for Dolbeault formality in section 4.2, it suffices to show the existence of a holomorphic
family of compact complex manifolds {Mt}t∈D, D = {z ∈ C ∶ ∣z∣ < 1}, such that Mt is geometrically-
Bott-Chern formal for t ∈D∖{0}, butM0 admits a non-vanishing Aeppli-Bott-Chern-Massey triple
product. In fact, by Proposition 1.4.10, Mt is geometrically-Bott-Chern formal and also has no
non-vanishing Aeppli-Bott-Chern-Massey triple products, whereas M0 would be not geometrically-
Bott-Chern formal, thus proving the following result.

Theorem 4.3.1 ([132]). The property of being geometrically-Bott-Chern-formal and the vanishing
of Aeppli-Bott-Chern-Massey triple products are not closed under holomorphic deformations.

In order to prove Theorem 4.3.1, we will use a different representation of the Nakamura holo-
morphically parallelizable manifolds by choosing a suitable family of lattices.

Let (M = Γ/G,J) be the Nakamura holomorphically parallelizable manifold, where

• G ∶= C ⋉C2 is the solvable complex Lie group defined by γ(z1) ∗ (z2, z3) = (e−z1z2, e
z1z3);

• Γ ∶= (aZ + 2πiZ) ⋉ Γ′′ is a lattice of G of maximal rank, with Γ′′ a lattice of C2;

• J is the holomorphically parallelizable complex structure on M induced by the natural stan-
dard complex structure on C3 ≃ C ⋉C2.

In particular, we point out that with this choice of Γ, it holds that h0,1

∂
(M,J) = 3 (see [14]) and

a basis of invariant (1,0)-forms is given by {η1 ∶= dz1, η2 ∶= e−z1dz2, η3 ∶= ez1dz3} whose structure
equations are

dη1 = 0, dη2 = −η12, dη3 = η13. (4.3.1)

Since [η1] ∈H0,1

∂
(M) is a non-zero cohomology class, we can consider the deformation constructed

in [13] given by the (0,1)-vector form ϕ(t) as follows

ϕ(t) ∶= t ∂
∂z1

⊗ η1, t ∈D.

The resulting almost complex structure Jt is then characterized by the following coframe of (1,0)-
forms on (M,Jt)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η1
t ∶= η1 + tη1

η2
t ∶= η2

η3
t ∶= η3,
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whose structure equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1
t = 0,

dη2
t = − 1

1−∣t∣2 η
12
t + t

1−∣t∣2 η
21̄
t ,

dη3
t = 1

1−∣t∣2 η
13
t − t

1−∣t∣2 η
31̄
t .

(4.3.2)

It is clear that Jt is integrable, thus giving rise to the holomorphic family of compact complex
manifolds (M,Jt), for every t ∈D.

Let us fix onMt the Hermitian metric gt whose fundamental form is ωt = i
2(η

11
t +η22

t +η33
t ). Then,

as proved in [13], for every t ≠ 0, the manifold (M,Jt) satisfies the ∂∂-lemma and the harmonic
representatives of the Bott-Chern cohomology of (M,Jt) for t ≠ 0 are as in Table 4.4.16.

It is easy to check that H●,●
BC(M,gt) has a structure of algebra induced by the ∧ product of

forms. Therefore, the manifolds (M,Jt) are all geometrically Bott-Chern formal for t ≠ 0.

Proof (of Theorem 4.3.1). It will suffices to construct a non zero Aeppli-Bott-Chern Massey triple
product on (M,J0) = (M,J).

As proved in [14], the harmonic representatives of the Bott-Chern cohomology of (M,J) with
respect to the canonical diagonal metric g are as listed in Table 4.4.17.

As a first remark, we notice that H●,●
BC(M,g) does not have a structure of algebra induced by

the ∧ product of form. In fact, the product η12 ∧ (ez1−z1η31) is not harmonic with respect to the
Bott-Chern Laplacian, since

ez1−z1η1231 = ∂∂(−ez1−z1η23).

Therefore, take the following Bott-Chern cohomology classes

a ∶= [η12]BC , b = [ez1−z1η31]BC , c ∶= [η12]BC . (4.3.3)

Since a ∪ b = [ez1−z1η1231] = 0 ∈ H3,1
BC(M) and clearly b ∪ c = 0 ∈ H1,3

BC(M), by Definition 1.4.8 we
obtain that

[ez1−z1η2312]A ∈
H2,2
A (M)

[η12]BC ∪H0,2
A (M) + [η12]BC ∪H2,0

A (M)
(4.3.4)

is the Aeppli-Bott-Chern-Massey triple product ⟨a,b, c⟩ABC .
We proceed by showing that, as a cohomology class, [ez1−z1η2312]A ≠ 0. Indeed, it can be

easily seen from structure equations (4.3.1) that the form ez1−z1η2312 is ∂∂-closed and, since
∗ (ez1−z1η2312) = ez1−z1η13, it is a light matter of computations to show that

∂ ∗ (ez1−z1η2312) = 0, ∂ ∗ (ez1−z1η2312) = 0.

Therefore, conditions (1.3.11) assure that ez1−z1η2312 is ∆A-harmonic and therefore, as a Aeppli
cohomology class, [ez1−z1η2312]A ≠ 0. Actually, from Table 4.4.17, one can directly compute the
spaces H2,2

A (M), H2,0
A (M), and H0,2

A (M), by the relations Hp,q
A (M) = ∗ (Hn−p,n−q

BC (M)), obtaining

H2,0
A (M) =C⟨[ez1−z1η12], [ez1−z1η13], [η23]⟩,

H2,2
A (M) =C⟨[ez1−z1η1213], [ez1−z1η1223], [ez1−z1η1312],

[ez1−z1η1323], [ez1−z1η2312], [ez1−z1η2313], [η2323]⟩,

H0,2
A (M) =C⟨[ez1−z1η12], [ez1−z1η13], [e23]⟩,
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in which we displayed the ∆A-harmonic representatives with respect to the canonical diagonal
metric g on (M,J).

It remains to show that [ez1−z1η2312]A ∉ [η12]BC ∪H0,2
A (M) + [η12]BC ∪H2,0

A (M).
We point out that a generic element d ∈ [η12]BC ∪H0,2

A (M)+ [η12]BC ∪H2,0
A (M) can be written

as
d = [Aez1−z1η1212 +Bez1−z1η1213 +Cη1223A′ez1−z1η1313 +B′ez1−z1η1312 +C ′η2312]A,

for A,B,C,A′,B′,C ′ ∈ C.
By contradiction, let us suppose that

[ez1−z1η2312]A = [Aez1−z1η1212 +Bez1−z1η1213 +Cη1223A′ez1−z1η1313 +B′ez1−z1η1312 +C ′η2312]A,

for some A,B,C,A′,B′,C ′ ∈ C, or equivalently, by definition of Aeppli cohomology, that

ez1−z1η2312 = Aez1−z1η1212 +Bez1−z1η1213 +Cη1223A′ez1−z1η1313 +B′ez1−z1η1312 +C ′η2312 + ∂λ + ∂µ,
(4.3.5)

for some forms λ ∈ A1,2(M), µ ∈ A2,1(M).
However, we observe that the following forms are ∂ or ∂ exact, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η1223 = ∂(η223)
ez1−z1η1212 = ∂(−1

2e
z1−z1η212)

η2312 = ∂(−η232)
ez1−z1η1313 = ∂(−1

2e
z1−z1η133),

therefore equation (4.3.5) reduces to

ez1−z1η2312 = Bez1−z1η1213 +B′ez1−z1η1312 + ∂λ + ∂µ. (4.3.6)

In particular, since ez1−z1η2312, ez1−z1η1213, ez1−z1η1312 ∈H2,2
A (M,g), it must hold that

ez1−z1η2312 − (Bez1−z1η1213 +B′ez1−z1η1312) ∈H2,2
A (M,g)

therefore, equation (4.3.6) boils down to

ez1−z1η2312 −Bez1−z1η1213 −B′ez1−z1η1312 = 0,

for some B,B′ ∈ C, but this clearly cannot hold. Thus, we obtain a contradiction and hence

[ez1−z1η2312]A ∉ [η12]BC ∪H0,2
A (M) + [η12]BC ∪H2,0

A (M),

showing that ⟨a,b, c⟩ defines a non vanishing Aeppli-Bott-Chern-Massey triple product on (M,J).
By Proposition 1.4.10, we can conclude that (M,J) is also not geometrically-Bott-Chern formal.

4.4 Aeppli-Bott-Chern-Massey products and the ∂∂-lemma

In this section, we show that the Aeppli-Bott-Chern-Massey triple products are not an obstruction
for the ∂∂-lemma on a compact complex manifold, unlike Massey triple products and Dolbeault-
Massey triple products, see [106, Theorem 8]. In fact, we will costruct a global-quotient-type
complex orbifold by taking the quotient of the Iwasawa manifold with respect to the action of a
finite group of biholomorphisms and we will prove that it satisfies the ∂∂-lemma but it admits a
non-vanishing Aeppli-Bott-Chern-Massey triple product. As a final step, we will we will construct a
smooth non-Kähler resolution of such complex orbifold still satisfying the ∂∂-lemma and admitting
a non-vanishing Aeppli-Bott-Chern-Massey triple product.
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Theorem 4.4.1 ([132]). There exists a compact complex manifold satisfying the ∂∂-lemma and
admitting a non-vanishing ABC-Massey triple product.

We start by considering the complex 3-dimensional Heisenberg group G ∶= H(3,C), i.e., the
nilpotent group of matrices

G =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 z1 z3

0 1 z2

0 0 1

⎞
⎟
⎠
∶ z1, z2, z3 ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

As an open set of GL(n;C), G has standard holomorphic coordinates {z1, z2, z3}.
If we take the lattice Γ = G∩GL(3;Z[i]), the compact quotient M = Γ/G is a complex nilman-

ifold of complex dimension 3, the Iwasawa manifold.
The group G admits a left-invariant coframe of (1,0)-forms

ϕ1 = dz1, ϕ2 = dz2, ϕ3 = dz3 − z1dz2

which gives rise to a left-invariant integrable almost complex structure J on G.
We note that the coframe {ϕ1, ϕ2, ϕ3}, and therefore the complex structure J , descends on the

quotient M . Since the structure equations on (M,J) are

dϕ1 = 0, dϕ2 = 0, dϕ3 = −ϕ12, (4.4.1)

the complex structure J is holomorphically parallelizable on M . Therefore, by [11, Theorem 2.8],
we know that de Rham cohomology, Dolbeault cohomology, Bott-Chern cohomology and Aeppli
cohomology of (M,J) are isomorphic to the corresponding cohomologies of the Lie algebra g of G
endowed with the complex structure J .

We point out that the Iwasawa manifold does not satisfy the ∂∂-lemma. In fact, it is not formal
[69].

We now construct an orbifold of global-quotient-type starting from M . We first define the
following action σ∶C3 → C3 by

σ(z1, z2, z3) = (iz1, iz2,−z3), for (z1, z2, z3) ∈ C3. (4.4.2)

We observe that as a group of biholomorphisms ⟨σ⟩ has finite order, since σ4 = idC3 .
We need the following.

Lemma 4.4.2. The action σ is well defined on M .

Proof. We begin by noting that G can be identified with (C3,⋆), where the product ⋆ is given by

(z1, z2, z3) ⋆ (w1,w2,w3) = (z1 +w1, z2 +w2, z3 + z1w2 +w3) (4.4.3)

for every (z1, z2, z3), (w1,w2,w3) ∈ C3.
We then need to show that, for [z], [z′] ∈M , if [z] = [z′], then [σ(z)] = [σ(z′)], or, equivalently,

that if z = (z1, z2, z3) ∼ z′ = (z′1, z′2, z′3), then σ(z) ∼ σ(z′).
The equivalence is given by the action of multiplication on the left by elements of Γ, which,

through the identificationG ≃ (C3,⋆) reads z ∼ z′ if, and only if, there exists γ = (γ1, γ2, γ3) ∈ (Z[i])3

such that z′ = γ ⋆ z, which accounts to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z′1 = z1 + γ1

z′2 = z2 + γ2

z′3 = z3 + γ1z2 + γ3.

(4.4.4)
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Let us then assume that z ∼ z′. We point out that

σ(z′) = (iz′1, iz′2,−z′3)

and, by (4.4.4),

σ(z′) = (iz1 + iγ1, iz2 + iγ2,−z3 − γ1z2 − γ3). (4.4.5)

Now choose γ̃ = (γ̃1, γ̃2, γ̃3) ∶= (iγ1, iγ2,−γ3) ∈ (Z[i])3. By definition (4.4.3) of the product ⋆ and
equation (4.4.5), it is easy to check that

σ(z′) = γ̃ ⋆ σ(z).

As a consequence of Lemma 4.4.2, we can define an action of σ onM , given by σ([z]) ∶= [σ(z)],
for every [z] ∈M .

Let us now consider the quotient M/⟨σ⟩. It is not a smooth manifold, as follows from the
following lemma.

Lemma 4.4.3. The action σ on M has 16 fixed points.

Proof. We need to find all the solution to the following equation

σ[z] = [z], for z = (z1, z2, z3) ∈ C3, (4.4.6)

or, equivalently, to σ(z) ∼ z, i.e., finding all the distinct solutions (up to equivalence) to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iz1 = z1 + γ1

iz2 = z2 + γ2

−z3 = z3 + γ1z2 + z3,

(4.4.7)

for γ = (γ1, γ2, γ3) ∈ (Z[i])3. Now, by writing zj = xj + iyj and γj = mj + ikj , the system (4.4.7)
yields the following solutions

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z1 = 1
2(−m1 + k1 + i(−m1 − k1))

z2 = 1
2(−m2 + k2 + i(−m2 − k2))

z3 = 1
4(m1m2 − k1k2 −m1k2 − k1m2 − 2m3 + i(m1m2 − k1k2 +m1k2 + k1m2 − 2k3)).

(4.4.8)

We observe that two points in z = (z1, z2, z3), z′ = (z′1, z′2, z′3) ∈ C3 satisfying (4.4.8) are equivalent
in (Z[i])/C3 if, and only if, there exists λ = (λ1, λ2, λ3) ∈ (Z[i])3 such that z′ = λ ⋆ z, i.e.,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z′1 = z1 + λ1

z′2 = z2 + λ2

z′3 = z3 + λ1z2 + λ3.

(4.4.9)

We look at the first equation. By writing each λj = aj+ibj and using (4.4.8), we have that z′1−z1 = λ1

if, and only if,

1

2
(−m′

1 + k′1 − (−m1 + k1)) = a1

1

2
(−m′

1 − k′1 − (m1 − k1)) = b1.
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We notice that [−m1 − k1] = [−m1 + k1] ∈ Z
2Z . Therefore z′1 − z1 = λ1 if and only if [−m1 + k1] =

[−m′
1 + k′1] ∈ Z

2Z . By choosing as representatives for γ1 as either 0 or 1, we obtain that the distinct
values of z1, up to equivalence, are either 0 or 1

2 +
i
2 . Analogously, this can be done for z2, whose

distinct values, up to equivalence, are 0 or 1
2 +

i
2 . By plugging those values in the third equation of

(4.4.8), we get that, in the case where (z1, z2), (z′1, z′2) ≠ (1
2 +

i
2 ,

1
2 +

i
2), the third components of z

and z′ are, respectively, z3 = −1
2m3 − i

2k3 and z′3 = −1
2m

′
3 − i

2k
′
3. Then, equation z′3 − z3 = λ1z2 + λ3

is satisfied if and only if

1

2
(m3 −m′

3) = a3

1

2
(k3 − k′3) = b3.

Hence, by choosing γ3 ∈ {0,1, i,1 + i}, we get that the only solutions, up to equivalence, are
z3 ∈ {0, 1

2 ,
i
2 ,

1
2 +

i
2}.

Finally, when z1 = z′1 = z2 = z′2 = 1
2 +

i
2 , we have expression for z3 = 1

4(1 − 2m3 + i(1 − 2k3)) and
z′3 = 1

4(1 − 2m′
3 + i(1 − 2k′3)) Therefore, z′3 − z3 = λ1z2 + λ3 holds if, and only if,

1

2
(m3 −m′

3) = a1 + a3

1

2
(k3 − k′3) = b1 + b3.

Thus, if one chooses γ3 ∈ {0,1, i,1 + i}, one gets that the solutions, up to equivalence, are z3 ∈
{0, 1

2 ,
i
2 ,

1
2 +

i
2}. By counting all the distinct solutions up to equivalence z = (z1, z2, z3) satisfying

(4.4.6), i.e., the fixed point of σ on M , we find that they are 16 and, clearly, isolated.

As consequence of Lemma 4.4.3, we obtain that M̂ ∶= M/⟨σ⟩ is a singular orbifold of global-
quotient-type. Since

σ∗ϕ1 = iϕ1, σ∗ϕ2 = iϕ2, σ∗ϕ3 = −ϕ3,

the complex of σ-invariant differential forms on M is

⋀●,● M̂ = SpanC ⟨1, ϕ11, ϕ12, ϕ21, ϕ22, ϕ123, ϕ123, ϕ312, ϕ123, ϕ1212, ϕ1313, ϕ1323, ϕ2313, ϕ2323, ϕ123123⟩ .

Let us fix g the Hermitian metric on M̂ with fundamental associated form ω = i
2(ϕ

11 + ϕ22 + ϕ33).
We can now compute the cohomologies of M̂ by definitions (4.1.1) and (4.1.2) and via Theorems
4.1.3 and 4.1.5. In particular, we prove the following.

Lemma 4.4.4. M̂ satisfies the ∂∂-lemma.

Proof. It suffices to the show that Frölicher equality (4.1.3) holds and also Hp,q

∂
(M̂) ≃Hq,p

∂
(M̂) via

complex conjugation. By easy computations of the harmonic representatives with respect to g, we
see that the non-trivial de Rham cohomology spaces of M̂ are

H0
dR(M̂ ;C) = SpanC⟨1⟩

H2
dR(M̂ ;C) = SpanC⟨ϕ11, ϕ12, ϕ21, ϕ22⟩

H3
dR(M̂ ;C) = SpanC⟨ϕ123, ϕ123⟩

H4
dR(M̂ ;C) = SpanC⟨ϕ1313, ϕ1323, ϕ2313, ϕ2323⟩

H6
dR(M̂ ;C) = SpanC⟨ϕ123123⟩,
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whereas the non-trivial Dolbeault cohomology spaces of M̂ are

H0,0

∂
(M̂) = SpanC⟨1⟩

H1,1

∂
(M̂) = SpanC⟨ϕ11, ϕ12, ϕ21, ϕ22⟩

H3,0

∂
(M̂) = SpanC⟨ϕ123⟩

H0,3

∂
(M̂) = SpanC⟨ϕ123⟩

H2,2

∂
(M̂) = SpanC⟨ϕ1313, ϕ1323, ϕ2313, ϕ2323⟩

H3,3

∂
(M̂) = SpanC⟨ϕ123123⟩.

By comparing the former and the latter spaces, we easily conclude the proof.

As a consequence, Bott-Chern and Aeppli cohomologies of M̂ are immediately determined by
Hp,q
BC(M̂) =Hp,q

∂
(M̂) and Hp,q

A (M̂) ≃ ∗(H3−p,3−q
BC (M̂)), yielding

H0,0
BC(M̂) = SpanC⟨1⟩ H0,0

A (M̂) = SpanC⟨1⟩

H1,1
BC(M̂) = SpanC⟨ϕ11, ϕ12, ϕ21, ϕ22⟩ H1,1

A (M̂) = SpanC⟨ϕ11, ϕ12, ϕ21, ϕ22⟩
H3,0
BC(M̂) = SpanC⟨ϕ123⟩ H3,0

A (M̂) = SpanC⟨ϕ123⟩

H0,3
BC(M̂) = SpanC⟨ϕ123⟩ H0,3

A (M̂) = SpanC⟨ϕ123⟩

H2,2
BC(M̂) = SpanC⟨ϕ1313, ϕ1323, ϕ2313, ϕ2323⟩ H2,2

A (M̂) = SpanC⟨ϕ1313, ϕ1323, ϕ2313, ϕ2323⟩

H3,3
BC(M̂) = SpanC⟨ϕ123123⟩ H3,3

A (M̂) = SpanC⟨ϕ123123⟩.

We now define an ABC-Massey triple product on M̂ .

Lemma 4.4.5. M̂ admits a non vanishing ABC-Massey triple product.

Proof. Let us consider the following Bott-Chern cohomology classes

[α] ∶= [ϕ11] ∈H1,1
BC(M̂), [β] ∶= [ϕ22] ∈H1,1

BC(M̂), [γ] ∶= [ϕ22] ∈H1,1
BC(M̂).

We notice that, by structure equations (4.4.1), we have that ϕ11 ∧ ϕ22 = ∂∂ϕ33. Then, it is well-
defined

⟨[α], [β], [γ]⟩ABC ∈
H2,2
A (M̂)

[ϕ11]BC ∪H1,1
A (M̂) + [ϕ22]BC ∪H1,1

A (M̂)
,

which, by Definition 1.4.8, is represented by the non zero Aeppli cohomology class [ϕ2323] ∈
H2,2
A (M̂). By the previous description of Aeppli cohomology, we note that the ideal [ϕ11]BC ∪

H1,1
A (M̂) + [ϕ22]BC ∪H1,1

A (M̂) is actually trivial in H2,2
A (M̂).

Hence, ⟨[ϕ11], [ϕ22], [ϕ22]⟩ABC is a non-vanishing ABC-Massey triple product on M̂ .

Proof (of Theorem 4.4.1). (I) In view of Hironaka singularities resolutions theorem, see [72], it
turns out that M̂ admits a resolution.
We will construct an explicit smooth resolution M̂ , proceedings as follows, see [36]. Define ψ = σ2,
i.e.,

ψ(z1, z2, z3) = (−z1,−z2, z3)
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for every (z1, z2, z3) ∈ C3. Clearly, ψ descends to M and has order 2 on M , i.e., since ψ2 = idM .
The locus of fixed points by the action of ψ on M is the disjoint union of 8 curves on M given by

Ci = {[z0
1 , z

0
2 , z3] ∶ z3 ∈ C},

with (z0
1 , z

0
2) ∈ {(0, 1

2), (0,
i
2), (0,

1
2 +

i
2), (

1
2 ,0), (

i
2 ,0), (

1
2 +

i
2 ,0), (

1
2 +

i
2 ,

1
2 +

i
2)}.

Let us set C ∶= C1 = {[0,0, z3]}. In a neighborhood U of C and local coordinates (z1, z2, z3), we
write, locally, C = {(z1 = 0, z2 = 0, z3)}. We perform the blow-up of M along C by taking the set

Ũ = {((z1, z2, z3), [l1 ∶ l2]) ∶ z1l2 − z2l1 = 0} ⊂ U × P2.

Through the resulting the map p∶BlCM →M , if E ∶= p−1(C) ≃ P(NC/M) is the exceptional divisor,
Ũ ∖E projects biholomorphically onto U ∖ C.

On Ũ1 = {l1 ≠ 0}, we have that z2 = l2
l2
z1 and local coordinates on Ũ1 are given by

ζ
(1)
1 = z1, ζ

(1)
2 = l2

l1
, ζ

(1)
3 = z3,

whereas on Ũ2 = {l2 ≠ 0}, we have that z1 = l1
l2
z2 and the following

ζ
(2)
1 = l1

l2
, ζ

(2)
2 = z2, ζ

(2)
3 = z3

are local coordinates on Ũ2. In the following, we will show the procedure only on Ũ1 since on Ũ2

the approach is analogous.
Notice that ψ induces a morphism ψ̃ on BlCM . In particular, we have that, on Ũ1,

ψ̃(ζ(1)1 , ζ
(1)
2 , ζ

(1)
3 ) = (−ζ(1)1 , ζ

(1)
2 , ζ

(1)
3 ).

Let us then consider the quotient M ′ = BlCM/⟨ψ̃⟩. On the quotient Ũ1/⟨ψ̃⟩ ⊂ M ′, the action σ′

induced by σ acts as
σ′([ζ(1)1 , ζ

(1)
2 , ζ

(1)
3 ]ψ̃) = [iζ(1)1 , ζ

(1)
2 ,−ζ(1)3 ]ψ̃. (4.4.10)

Note that, through local coordinates, Ũ1/⟨ψ̃⟩ is identified with with C3/⟨ψ̃⟩. So we construct local
coordinates for the latter in the following way. The holomorphic map f ∶C3 → C3 defined by

f(w1,w2,w3) = (w2
1,w2,w3), for (w1,w2,w3) ∈ C3,

which on local coordinates on Ũ1 acts as

f(ζ(1)1 , ζ
(1)
2 , ζ

(1)
3 ) = ((ζ(1)1 )2, ζ

(1)
2 , ζ

(1)
3 ),

gives rise to the following diagram

C3

(ζ(1)1 ,ζ
(1)
2 ,ζ

(1)
3 )

C3
(w1,w2,w3)

C3/⟨ψ̃⟩

f

f̂

where f̂([ζ(1)]ψ̃) ∶= f(ζ
(1)) is well defined and, in fact, a biholomorphism.
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Therefore, we can identify Ũ1/⟨ψ̃⟩ with C3
(w1,w2,w3). We now look for fixed point of σ′ on M ′.

Locally, we must then consider the action of σ′, which on C3
(w1,w2,w3) acts as σ̃ ∶= f̂−1 ○ σ′ ○ f̂ .

Recalling equation (4.4.10), we see that

σ̃(w1,w2,w3) = (−w1,w2,−w3) (4.4.11)

for any (w1,w2,w3) ∈ C3, yielding that the locus of the fixed points of σ′ on Ũ1/⟨ψ̃⟩ is given, locally,
by the set

D = {(w1,w2,w3)} = {(0,w2,0)}.

We now perform the further blow-up p′∶BlDM ′ →M ′, by considering

˜̃U (1) = {((w1,w2,w3), [v1 ∶ v3]) ∶ w1v3 −w3v1 = 0}.

On ˜̃U
(1)
1 ∶= {v1 ≠ 0}, we have that w3 = v3

v1
w1 and local coordinates are given by

η
(1)
1 = w1, η

(1)
2 = w2, η

(1)
3 = v3

v1
, (4.4.12)

whereas on ˜̃U
(1)
3 ∶= {v3 ≠ 0}, we have that w1 = v1

v3
w3 and the following

η
(3)
1 = v1

v3
, η

(3)
2 = w2, η

(3)
3 = w3, (4.4.13)

are local coordinates on ˜̃U
(1)
3 .

We now study the quotient BlDM ′ by the induced action of ⟨σ̃′⟩. By recalling the local action
of σ̃ (4.4.11) and the expressions (4.4.12) and (4.4.13) for local coordinates, on ˜̃U

(1)
1 , we have that

σ̃′(η(1)1 , η
(1)
2 , η

(1)
3 ) = (−η(1)1 , η

(1)
2 , η

(1)
3 ),

whereas on ˜̃U
(1)
3 , we have that

σ̃′(η(3)1 , η
(3)
2 , η

(3)
3 ) = (η(3)1 , η

(3)
2 ,−η(3)3 ),

i.e.,
˜̃U
(1)
1 /⟨σ̃′⟩ ≃ C

± id
×C2

(η(1)2 ,η
(1)
3 )

and
˜̃U
(1)
3 /⟨σ̃′⟩ ≃ C

± id
×C2

(η(3)1 ,η
(3)
2 )

.

Hence, since ˜̃U
(1)
1 /⟨σ̃′⟩ and ˜̃U

(1)
3 /⟨σ̃′⟩ are smooth manifolds, the manifold BlDM

′/⟨σ̃′⟩ is smooth.
As mentioned before, the same procedure can be applied starting from Ũ2, which results in

finding smooth resolutions of the singular points in the chart Ũ2 ⊂ BlCM .
Therefore, if we denote by M̃1 the resulting complex manifold and the projection p′′∶ M̃1 →M/⟨σ⟩,
we obtain a smooth resolution of the fixed curve C = C1 on M/⟨σ⟩.

By repeating the analogous procedure for every fixed locus Ci, we obtain a smooth resolution

π∶ M̂ → M̃,
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as the diagram summarizes

M BlFixψM

M/⟨ψ⟩ M ′ ∶= BlFixψM/⟨ψ̃⟩ BlFixσ̃M
′

M̂ ∶=M/⟨σ⟩ M ′/⟨σ′⟩ BlFixσ̃M
′/⟨σ̃′⟩.

(II) We now show the following:

(i) M̃ admits a non-vanishing ABC-Massey triple product;
(ii) M̃ satisfies the ∂∂-lemma.

(i) We proceed by considering the pull-back through π of the Bott-Chern cohomology classes used
in Lemma 4.4.5, i.e., we consider the classes [π∗ϕ11] ∈ H1,1

BC(M̃) and [π∗ϕ22] ∈ H1,1
BC(M̃). They

are well-defined and non-vanishing, by Theorem 4.1.6. Since π∗(ϕ11) ∧ π∗(ϕ22) = ∂∂(π∗ϕ33), the
ABC-Massey product

⟨[π∗ϕ11)], [π∗ϕ22], [π∗ϕ22]⟩ABC ∈
H2,2
A (M̃)

[π∗ϕ11]BC ∪H1,1
A (M̃) + [π∗ϕ22]BC ∪H1,1

A (M̃)

is well-defined and represented by [π∗ϕ2323] ∈H2,2
A (M̃). Again, by Theorem 4.1.6, this class is not

vanishing.
It remains to show that

[π∗ϕ2323]A ∉ [π∗ϕ11]BC ∪H1,1
A (M̃) + [π∗ϕ22]BC ∪H1,1

A (M̃).

By contradiction, let us suppose the converse, i.e.,

[π∗ϕ2323]A = [π∗ϕ11]BC ∪ [F ]A + [π∗ϕ22]BC ∪ [G]A, (4.4.14)

for some [F ], [G] ∈H1,1
A (M̃). Let us now multiply by [π∗ϕ11]BC each side of (4.4.14), to obtain

[π∗ϕ123123]A = [π∗ϕ11 ∧ π∗ϕ22]BC ∪ [G]A
= [π∗(∂∂ϕ33)]BC ∪ [G]A
= [∂∂(π∗ϕ33)]BC ∪ [G]A
= [∂∂(π∗ϕ33 ∧G)]A = 0 ∈H2,2

A (M̃),

which leads to contradiction, since π∗ is injective by Theorem 4.1.6 and [ϕ123123]A ≠ 0.

(ii) We now observe that the fixed points loci along which we perform the blow-ups are complex
lines, which are naturally Kähler. Therefore, they satisfy the ∂∂-lemma. As proved in Lemma
4.4.4, also M̂ satisfies the ∂∂-lemma. We can then apply [16, Theorem 25], to conclude that the
resolution M̃ of M̂ satisfies the ∂∂-lemma.

Remark 4.4.6. Notice that the obtained manifold M̃ is not a Kähler manifold. Indeed, let us
assume by contradiction the opposite, i.e., let us suppose there exists a Kähler metric g̃ on M̃ with
fundamental form ω̃. Then, by Stokes theorem and structure equations (4.4.1), we obtain

0 = ∫
M̃
d(ω̃ ∧ π∗(ϕ123)) = ∫

M̃
ω̃ ∧ d(π∗ϕ123) = −∫

M̃
ω̃ ∧ π∗ϕ1212. (4.4.15)
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However, since the form ω is transverse, the above integral vanishes if and only ω̃ ∧ π∗ϕ123 is
identically 0, if and only, π∗ϕ123 is identically 0, which is a contradiction.

(p, q) Hp,q
BC(M,Jt), t ∈D ∖ {0}

(0,0) C⟨1⟩

(1,0) C⟨η1
t ⟩

(0,1) C⟨η1
t ⟩

(2,0) C⟨η23
t ⟩

(1,1) C⟨η11
t , e

z1−z1η23
t , e

z1−z1η32
t ⟩

(0,2) C⟨η23
t ⟩

(3,0) C⟨η123
t ⟩

(2,1) C⟨ez1−z1η123
t , ez1−z1η132

t , η231
t ⟩

(1,2) C⟨ez1−z1η312
t , ez1−z1η213

t , η123
t ⟩

(0,3) C⟨η123
t ⟩

(3,1) C⟨η1231
t ⟩

(2,2) C⟨ez1−z1η1212
t , ez1−z1η1312

t , η2323
t ⟩

(1,3) C⟨η1123
t ⟩

(3,2) C⟨η12323
t ⟩

(2,3) C⟨η23123
t ⟩

(3,3) C⟨η123123
t ⟩

(4.4.16)
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(p, q) Hp,q
BC(M,J)

(0,0) C⟨1⟩

(1,0) C⟨η1⟩
(0,1) C⟨η1⟩

(2,0) C⟨η12, η13, η23⟩
(1,1) C⟨η11, ez1−z1η12, ez1−z1η13, ez1−z1η21, ηz1−z1η23, ez1−z1η31, ez1−z1η32⟩
(0,2) C⟨η12, η13, η23⟩

(3,0) C⟨η123⟩
(2,1) C⟨η121, ez1−z1η121, ez1−z1η122, ez1−z1η123, η131, ez1−z1η131, ez1−z1η132, ez1−z1η133, η231⟩
(1,2) C⟨η112, ez1−z1η112, η113, ez1−z1η113, η123, ez1−z1η212, ez1−z1η213, ez1−z1η312, ez1−z1η313⟩
(0,3) C⟨η123⟩

(3,1) C⟨η1231, ez1−z1η1232, ez1−z1η1233⟩
(2,2) C⟨ez1−z1η1212, ez1−z1η1312, η2323⟩
(1,3) C⟨η1123, ez1−z1η2123, ez1−z1η3123⟩

(3,2) C⟨η12312, ez1−z1η12312, η12313, ez1−z1η12313, η12323⟩
(2,3) C⟨η12123, ez1−z1η12123, η13123, ez1−z1η13123, η23123⟩

(3,3) C⟨η123123⟩
(4.4.17)



Chapter 5

Geometric formalities along the
Chern-Ricci flow

In this chapter, we focus on geometric formalities of complex manifolds and their dependence on the
Hermitian metric. In [150, 147], the authors study the behaviour of Dolbeault formality, respectively
geometric-Bott-Chern formality, under small deformations of the complex structure. Here, we keep
the complex structure fixed, and we study geometric formalities with respect to Hermitian metrics
evolving along a geometric flow. More precisely, we consider the Chern-Ricci flow [63, 151] that
evolves the fundamental form ω(t) of a Hermitian form by the Chern-Ricci form,

∂

∂t
ω = −RicCh(ω),

and we study the possible algebra structure on the space of (de Rham, Dolbeault, Bott-Chern,
Aeppli) harmonic forms with respect to ω(t) varying t.

We study in details geometric formality according to Kotschick for a whole class of surfaces
evolving by the Chern-Ricci flow, i.e. compact complex non-Kähler surfaces with Kodaira dimension
Kod(X) = −∞ and first Betti number b1(X) = 1, known as class VII of the Enriques-Kodaira
classification. In particular, we first rule out class VII surfaces with second Betti number b2 > 0
by applying arguments as in [87]. Then, we exploit the structure of quotients of Lie groups with
invariant complex and Hermitian structure on the only class VII surfaces with b2 = 0, that is Hopf
and Inoue surfaces see [30, 83, 95, 148], in order to reduce the description of harmonic forms and
the equation of the Chern-Ricci flow of such surfaces at the level of invariant forms and thus make
explicit computations. We obtain Theorem 5.3.1. We also study the evolution of geometric formality
according to Kotschick on other compact complex non-Kähler surfaces that are diffeomorphic to
solvmanifolds, e.g. Kodaira surfaces. Since any complex structures on such surfaces is left-invariant,
see [68, Theorem 1], we focus on invariant forms also in this case; we obtain Proposition 5.3.2. We
note that, also in this case, it is possible to rule out primary Kodaira surfaces by the obstructions
in [87] or [69], and therefore we focus on secondary Kodaira surfaces with initial invariant metrics.

Regarding Dolbeault and Bott-Chern geometric formalities evolving by the Chern-Ricci flow,
by applying the analogous procedure on Hopf, Inoue, and Kodaira surfaces, we have reached results
as follows. We also checked how the algebraic structures of Aeppli cohomology and its harmonic
representatives are modified along the Chern-Ricci flow, obtaining Proposition 5.4.1.

Throughout this chapter, we give a complete description of harmonic forms on such compact
complex surfaces depending on the invariant Hermitian metrics. We made computations with the
aid of SageMath [117].

We ask whether for Dolbeault and Bott-Chern geometric formalities there exist obstructions
(such as the ones found in [87]) which would help complete the picture for geometric formalities for

83
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class VII surfaces. We also ask whether the behaviour we observed is more general or there exist
counterexamples.

5.1 Chern-Ricci flow on Hermitian manifolds

The Chern-Ricci flow (introduced in [63] and studied in [151]) is a parabolic geometric flow that
preserves the Hermitian condition of the initial given metric. The equations that describe such flow
on a Hermitian manifold (Xn, J, g0) are

∂

∂t
ω(t) = −RicCh(ω(t)), ω(0) = ω0,

where ω0, ω(t) are the foundamental forms associated, respectively, to the Hermitian initial metric
g0 and the evolution metric g(t) by the usual relation ω(⋅, ⋅) = g(J(⋅), ⋅). For an arbitrary real
(1,1)-form ω, RicCh(ω) is the Chern-Ricci form of ω. The first Chern-Ricci curvature RicCh is
defined starting from ∇Ch, the Chern connection on (X,J, g), i.e. the unique connection ∇ on the
holomorphic tangent bundle T 1,0X such that ∇ is compatible with both g and J and ∇0,1 = ∂.
In a holomorphic chart, the curvature tensor RCh of such connection has components RCh

ijkl
, for

i, j, k, l ∈ {1, . . . , n}. The Chern-Ricci tensor is obtained by contracting the last two indices via the
metric

RicciCh
ij

∶= gklRCh
ijkl

,

where (gkl) is the inverse of the matrix (gkl) representing in local coordinates the metric g. The
Chern-Ricci form is defined by

RicCh ∶= RicciCh(J( ⋅ ), ⋅ ).
Such form has important properties, among which a very simple form in local coordinates:

RicCh(ω) = −
√
−1∂∂ log det(g),

from which we can deduce that RicCh(ω) is a ∂-, ∂-closed form, hence it defines a cohomology class
in H1,1

BC(X). Such class is a holomorphic invariant, denoted by cBC1 (X), which plays a fundamental
role in the classification of complex manifolds.

5.2 Cohomology and Chern-Ricci flow on compact complex sur-
faces and quotients of Lie groups

In this section, we analyze in details complex structures, cohomologies, and Chern-Ricci flow on
non-Kähler compact complex surfaces that can be described as quotients M = H/G of Lie groups
G by a subgroup H, withM endowed with invariant complex structure J [68], namely Hopf, Inoue,
and Kodaira surfaces.

Complex structure

As recalled in section 1.6, we can describe the complex structure J by a coframe of left-invariant
(1,0)-forms {ϕ1, ϕ2} on G and their conjugates, and by their structure equations

dϕI = −cIHKϕH ∧ ϕK ,

equivalently, by the dual frame {ϕ1, ϕ2} of (1,0)-vector fields and their conjugates, with structure
equations [ϕH , ϕK] = cIHKϕI . Note that here capital letters here vary in the ordered set (1,2, 1̄, 2̄)
and refer to the corresponding component. Moreover, the Einstein summation is assumed, for
increasing indices in case of forms.



5.2. COHOMOLOGY AND CHERN-RICCI FLOW ON QUOTIENTS OF LIE GROUPS 85

Hermitian structure

The arbitrary invariant Hermitian metric g ∶= ω( ⋅ , J(⋅)) on (M,J) has associated (1,1)-form

2ω =
√
−1

2

∑
I, J =1

gIJ ϕ
I ∧ ϕJ =

√
−1r2ϕ11̄ +

√
−1s2ϕ22̄ + uϕ12̄ − ū ϕ21̄ (5.2.1)

where the coefficients satisfy

r2 > 0, s2 > 0, r2s2 > ∣u∣2.

That is to say, the Hermitian matrix

(gKL)K,L = 1

2
⋅ ( r2 −

√
−1u√

−1ū s2 ) ∈ GL(g)

is positive-definite. Its inverse is

(gKL)K,L ∶= (gKL)−1
K,L = 2

r2s2 − ∣u∣2
⋅ ( s2

√
−1u

−
√
−1ū r2 ) .

The Christoffel symbols of the Chern connection can be computed as follows, see e.g. [112]:

(ΓCh)KIH = 1

2
cKIH − 1

2
gKAgBIc

B
HA −

1

2
gKAgBHc

B
IA +

1

2
gKLCIHL,

where
CIHL = dω(JϕI , ϕH , ϕL).

We can then express the (4,0)-Riemannian curvature of the Chern connection as

(RCh)IHKL = gAL(ΓCh)BHK(ΓCh)AIB − gAL(ΓCh)BIK(ΓCh)AHB − gALcBIH(ΓCh)ABK ,

and the Chern-Ricci tensor as

(RicciCh)IH = gKL(RCh)IHKL.

Then the Chern-Ricci form is

RicCh = RicciCh(J( ⋅ ), ⋅ ) ∈ cBC1 (X) ∈H1,1
BC(X;R).

Finally, we collect here some explicit description of the Hodge-star-operator on forms for the
arbitrary Hermitian metric associated to the form (5.2.1), in order to describe harmonicity, see also
[116, Lemma 2]. It is straightforward to check that:

∗gϕ1 =
√
−1

2
uϕ121̄ + 1

2
s2ϕ122̄, ∗gϕ2 = −1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄, (5.2.2)

∗gϕ̄1 = −
√
−1

2
uϕ11̄2̄ + 1

2
s2ϕ21̄2̄, ∗gϕ̄2 = −1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄; (5.2.3)

∗gϕ12 = ϕ12, ∗gϕ1̄2̄ = ϕ1̄2̄ (5.2.4)

V ∗g ϕ11 = ∣u∣2ϕ11 −
√
−1us2ϕ12 +

√
−1us2ϕ21 + s4ϕ22, (5.2.5)

V ∗g ϕ12 = −
√
−1ur2ϕ11 − r2s2ϕ12 + u2ϕ21 −

√
−1us2ϕ22

V ∗g ϕ21 =
√
−1ur2ϕ11 + u2ϕ12 − r2s2ϕ21 +

√
−1us2ϕ22

V ∗g ϕ22 = r4ϕ11 −
√
−1ur2ϕ12 +

√
−1ur2ϕ21 + ∣u∣2ϕ22,

V ∗g ϕ121̄ = −2
√
−1uϕ1 + 2 s2ϕ2, V ∗g ϕ122̄ = −2 r2ϕ1 − 2

√
−1uϕ2, (5.2.6)

V ∗g ϕ11̄2̄ = 2
√
−1uϕ̄1 + 2 s2ϕ̄2, V ∗g ϕ21̄2̄ = −2 r2ϕ̄1 + 2

√
−1uϕ̄2;

where we set V = g11g22 − g12g21 = r2s2 − ∣u∣2.
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Cohomologies

Consider the inclusion of invariant forms into the double complex of forms,

ι∶ (∧●,●g∨, ∂, ∂)↪ (∧●,●M,∂, ∂).

By choosing an invariant Hermitian metric, (the easier finite-dimensional version of) elliptic Hodge
theory also applies at the level of invariant forms; in particular, any cohomology class of invariant
forms admits a unique invariant harmonic representative. It follows that the above inclusion induces
injective maps in de Rham ιdR, Dolbeault ι∂ , Bott-Chern ιBC , Aeppli ιA cohomology, see [41,
Lemma 9]. We claim that they are in fact isomorphisms.

The de Rham cohomology of Hopf, Inoue, Kodaira surfaces is well known, and it happens that
the above maps ιdR are actually isomorphisms, that is, any de Rham class admits an invariant
representative. In fact, the Hopf surface is diffeomorphic to the product S1 × S3 of two compact
Lie groups, so one can use the Künneth formula and e.g. [50, Theorem 1.28]; the primary Kodaira
surface is a nilmanifold, so one can use the Nomizu theorem [108]; the secondary Kodaira surfaces are
quotients of primary Kodaira surfaces by finite groups; the Inoue surface of type S± is a completely-
solvable solvmanifold, so one can use the Hattori theorem [70]; and the de Rham cohomology of
the Inoue surface of type SM can be computed by exploiting their number-theoretic construction
as [109] does in a more general setting.

As for the Dolbeault cohomology, for compact complex surfaces, we know that the Frölicher
spectral sequence degenerates at the first page, see e.g. [23], that is,

dimCH
k
dR(X;C) = ∑

p+q=k
dimCH

p,q

∂
(X)

for any k. By explicitly computing the Dolbeault cohomology of invariant forms [12], one then
notice that the above maps ι∂ are actually isomorphisms.

Finally, Bott-Chern cohomology of compact complex surfaces is well-undestood since [149]. By
[14, Theorem 1.3, Proposition 2.2], (that fits in the general theory later developed by [135],) also
ιBC are isomorphisms. Explicit computations can be found in [12]. Finally, ιA are isomorphisms
thanks to the Schweitzer duality between Bott-Chern and Aeppli cohomologies, where one can use
the Hodge-star-operator with respect to an invariant Hermitian metric.

Finally, by uniqueness of the harmonic representative in a cohomology class, we also deduce
that harmonic representatives with respect to invariant metrics are invariant.

Chern-Ricci flow

Recall that the Chern-Ricci form represents the first Bott-Chern class cBC1 (X) ∈H1,1
BC(X). Since a

class in H1,1
BC(X) contains only one invariant representative, the Chern-Ricci form RicCh(ω) does

not depend on the invariant Hermitian metric ω. In particular, the Chern-Ricci flow starting at ω0

reduces to
∂

∂t
ω(t) = −RicCh(ω0), ω(0) = ω0. (CRF)

We notice that the solution of the Chern-Ricci flow starting at an invariant metric remains
invariant for any existence time. Indeed, by short existence and uniqueness assured by parabolicity,
the symmetry group is preserved along the flow (and possibly increases in the limit, see e.g. [93]).

Denote by ρr, ρs, ρu the coefficients of the Chern-Ricci form,

2RicCh =
√
−1ρrϕ

11̄ +
√
−1ρsϕ

22̄ + ρuϕ12̄ − ρ̄uϕ21̄,

and let the initial metric ω0 be of the form

2ω0 =
√
−1r2

0 ϕ
11̄ +

√
−1s2

0ϕ
22̄ + u0ϕ

12̄ − ū0ϕ
21̄, (5.2.7)
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where r0, s0 ∈ R ∖ {0} and u0 ∈ C such that r2
0s

2
0 − ∣u0∣2 > 0. The solution ω(t) of the Chern-Ricci

flow starting at ω0 is then

2ω(t) =
√
−1(r2

0 − tρr)ϕ11̄ +
√
−1(s2

0 − tρs)ϕ22̄ + (u0 − tρu)ϕ12̄ − (ū0 − tρ̄u)ϕ21̄,

defined for times t such that r(t)2 = r2
0 − tρr > 0, s(t) = s2

0 − tρs > 0, u(t) = u0 − tρu ∈ C such that
r(t)2s(t)2 − ∣u(t)∣2 > 0.

5.3 Geometric formality according to Kotshick

In this section we state the main theorem of this note, regarding class VII surfaces of the Enriques-
Kodaira classification of compact complex surfaces.

Theorem 5.3.1 ([15]). On class VII surfaces of the Enriques-Kodaira classification, geometric
formality according to Kotshick is preserved by the Chern-Ricci flow starting at initial invariant
Hermitian metrics.

Proof. Let X be a class VII surface, that is, Kod(X) = −∞ and b1(X) = 1. By [87, Theorem
6], for a compact oriented Kotschick-geometrically formal 4-manifold X, the first Betti number
satisfies b1(X) ∈ {0,1,2,4}. Since all class VII surfaces are non-Kähler, they must have odd first
Betti number by [33, 90], that is, b1(X) = 1. By [87, Theorem 9], the Euler characteristic of such
manifolds vanishes, implying that b2(X) = 0. Since the characterization result by [30, 83, 95, 148],
class VII surfaces with b2(X) = 0 are necessarily Hopf or Inoue surfaces, then we see that the
only Kotschick-geometrically formal class VII surfaces can be Hopf and Inoue surfaces. Therefore,
Chern-Ricci flow starting at any metric cannot produce geometrically formal metrics on class VII
surfaces other than Hopf and Inoue surfaces: we will then check the statement for those surfaces.

Case 1: Hopf surfaces

Hopf surfaces X are compact complex surfaces in class VII defined as a quotient of C2 ∖ {0} by a
free action of a discrete group generated by a holomorphic contraction γ(z,w) = (αz + λwp, βw)
where α,β, λ ∈ C and p ∈ N are such that 0 < ∣α∣ ≤ ∣β∣ < 1 and (α − βp)λ = 0, see [91], [137, page
820], see [155, Remark 1].

The diffeomorphism type is S1×SU(2), and the complex structure is a special case of the Calabi-
Eckmann complex structure on product of spheres [35]. See also [115, Theorem 4.1]. In terms of a
coframe (ϕ1, ϕ2) of (1,0)-forms, they are described as

dϕ1 =
√
−1ϕ1 ∧ ϕ2 +

√
−1ϕ1 ∧ ϕ̄2, dϕ2 = −

√
−1ϕ1 ∧ ϕ̄1.

The de Rham cohomology of Hopf surfaces is

H●
dR(X;C) = C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩⊕C⟨ϕ121̄ − ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

We look at how harmonic representatives of de Rham cohomology change with respect to the
invariant Hermitian metric, and in particular whether their product is still harmonic.

We notice that, varying the invariant Hermitian metric, the harmonic representatives are

H●
dR(X;R) = C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩.
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Indeed, it suffices to check that the harmonic representative of the class [ϕ2 − ϕ̄2] does not depend
on the invariant metric. This is because harmonic representatives are invariant, and the class
[ϕ2 − ϕ̄2] = {ϕ2 − ϕ̄2 + dc ∶ c ∈ R} contains only one invariant representantive, which is then
harmonic with respect to any metric. Then we compute the harmonic representative of the dual
class in H3

dR(X;R) by applying the Hodge-star-operator to ϕ2 − ϕ̄2 with respect to the arbitrary
Hermitian metric. In any case, the product of an invariant 1-form and an invariant 3-form is either
zero or a scalar multiple of the volume form. It follows that any invariant metric on the Hopf
surface is geometrically formal in the sense of Kotschick.

Clearly, on the Hopf surface with invariant Hermitian metrics, the properties of geometric
formality in the sense of Kotschick is preserved along the Chern-Ricci flow. Nonetheless, for com-
pleteness and for later use, we compute the Chern-Ricci form and the Chern-Ricci flow on X.

We start by computing the Chern-Riemann curvature of an invariant Hermitian metric. We
follow notation as in [112, Section 2] (see also [96, Section 6] for another argument). With respect
to the frame (ϕ1, ϕ2, ϕ̄1, ϕ̄2) and to the dual coframe (ϕ1, ϕ2, ϕ̄1, ϕ̄2), we set the structure constants

[ϕI , ϕH] =∶ cKIHϕK .

Here, capital letters vary in {1,2, 1̄, 2̄}, and the Einstein summation is assumed. In our case, the
non-trivial structure constants are

c1
12 = −

√
−1, c2

11̄
=
√
−1, c2̄

11̄
=
√
−1, c1

12̄
= −

√
−1,

c1
21 =

√
−1, c1̄

21̄
= −

√
−1, c2

1̄1
= −

√
−1, c2̄

1̄1
= −

√
−1,

c1̄
1̄2
=
√
−1, c1̄

1̄2̄
=
√
−1, c1

2̄1
=
√
−1, c1̄

2̄1̄
= −

√
−1.

Recall that the Christoffel symbols of the Levi-Civita connections (with respect to the above non-
commutative frame) can be computed as

(ΓLC)KIH = 1

2
gKL (g([ϕI , ϕH], ϕL) − g([ϕH , ϕL], ϕI) − g([ϕI , ϕL], ϕH))

= 1

2
cKIH − 1

2
gKAgBIc

B
HA −

1

2
gKAgBHc

B
IA.

Set V = r2s2 − ∣u∣2 for simplicity. In our case, up to conjugation, the non-trivial ones are

(ΓLC)1
11 = −s2uV −1, (ΓLC)2

11 = −
√
−1u2V −1,

(ΓLC)1
12 = 1

2(−
√
−1s4 +

√
−1∣u∣2)V −1, (ΓLC)2

12 = −1
2(r

2 − s2)uV −1,

(ΓLC)1
11̄
= 1

2s
2ūV −1, (ΓLC)2

11̄
= 1

2

√
−1r2s2V −1,

(ΓLC)1̄
11̄
= 1

2s
2uV −1, (ΓLC)2̄

11̄
= 1

2(
√
−1r2s2 − 2

√
−1∣u∣2)V −1,

(ΓLC)1
12̄
= −1

2

√
−1s4V −1, (ΓLC)2

12̄
= 1

2s
2uV −1,

(ΓLC)1̄
12̄
= 1

2

√
−1u2V −1, (ΓLC)2̄

12̄
= 1

2r
2uV −1,

(ΓLC)1
21 = 1

2(2
√
−1r2s2 −

√
−1s4 −

√
−1∣u∣2)V −1, (ΓLC)2

21 = −1
2(r

2 − s2)uV −1,

(ΓLC)1
22 = −s2ūV −1, (ΓLC)2

22 = −
√
−1∣u∣2V −1,

(ΓLC)1
21̄
= −1

2

√
−1ū2V −1, (ΓLC)2

21̄
= 1

2r
2ūV −1,

(ΓLC)1̄
21̄
= 1

2(−2 ∗
√
−1r2s2 +

√
−1s4 + 2

√
−1∣u∣2)V −1, (ΓLC)2̄

21̄
= 1

2s
2ūV −1,

(ΓLC)1
22̄
= −1

2s
2ūV −1, (ΓLC)2

22̄
= −1

2

√
−1∣u∣2V −1,

(ΓLC)1̄
22̄
= −1

2s
2uV −1, (ΓLC)2̄

22̄
= 1

2

√
−1∣u∣2V −1.

We can now compute the Christoffel symbols (ΓCh)KIH of the Chern connection by the formula [112,
Equation (7)]:

(Γε,ρ)KIH = (ΓLC)KIH + εgKLTIHL + ρgKLCIHL,
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by setting (ε, ρ) = (0, 1
2
), where

TIHL = −dω(JϕI , JϕH , JϕL), CIHL = dω(JϕI , ϕH , ϕL).

We get
(ΓCh)2

21 = −r2uV −1, (ΓCh)1
21 =

√
−1r2s2V −1,

(ΓCh)2̄
11̄
=
√
−1, (ΓCh)1̄

21̄
= −

√
−1,

(ΓCh)1
12 = −

√
−1s4V −1, (ΓCh)2

12 = s2uV −1,

the others being equal to the corresponding Levi-Civita symbols or deduced by conjugation. We
can compute the (4,0)-Riemannian curvature of ∇ε,ρ as

(Rε,ρ)IHKL = gAL(Γε,ρ)BHK(Γε,ρ)AIB − gAL(Γε,ρ)BIK(Γε,ρ)AHB

−gALcBIH(Γε,ρ)ABK .

By using the symmetries for the Chern curvature (RCh)IHKL = −(RCh)HIKL = −(RCh)IHLK and
the conjugation, we get that the only non-zero components are

(RCh)11̄11̄ = 1
2(2r

4s2 − r2s4 − 2(r2 − s2)∣u∣2)V −1,

(RCh)11̄12̄ = 1
2(

√
−1∣u∣2u + (−

√
−1r2s2 −

√
−1s4)u)V −1,

(RCh)11̄21̄ = 1
2(−

√
−1∣u∣2ū − (−

√
−1r2s2 −

√
−1s4)ū)V −1,

(RCh)11̄22̄ = 1
2s

6V −1,

(RCh)12̄11̄ = 1
2(−

√
−1r2s2u + 2

√
−1∣u∣2u)V −1,

(RCh)12̄12̄ = 1
2s

2u2V −1,

(RCh)11̄21̄ = −1
2s

2∣u∣2V −1,

(RCh)(12̄22̄ = 1
2

√
−1s4uV −1,

(RCh)21̄11̄ = 1
2(

√
−1r2s2ū − 2

√
−1∣u∣2ū)V −1,

(RCh)21̄12̄ = −1
2s

2∣u∣2V −1,

(RCh)21̄21̄ = 1
2s

2ū2V −1,

(RCh)21̄22̄ = −1
2

√
−1s4ūV −1,

(RCh)22̄11̄ = 1
2r

2∣u∣2V −1,

(RCh)22̄12̄ = −1
2

√
−1r2s2uV −1,

(RCh)22̄21̄ = 1
2

√
−1r2s2ūV −1,

(RCh)22̄22̄ = 1
2s

2∣u∣2V −1.

Finally, we can compute the (first) Chern-Ricci curvature by tracing on the third and fourth indices:

(RicCh)IH = gKL(RCh)IHKL;

then the Cher-Ricci form can be defined as

RicCh = (RicCh)ih
√
−1dzi ∧ dz̄h.

In our case, the only non-trivial coefficients are

(RicCh)11̄ = 2

and the corresponding (RicCh)1̄1 = −(RicCh)11̄. Therefore the Chern-Ricci form of any invariant
Hermitian metric is

RicCh(ω) = 2
√
−1ϕ1 ∧ ϕ̄1.

Therefore the solution of the Chern-Ricci flow starting at ω0 of the form (5.2.7) is

2ω(t) =
√
−1(r2

0 − t)ϕ11̄ +
√
−1s2

0ϕ
22̄ + u0ϕ

12̄ − ū0ϕ
21̄, (5.3.1)

defined as long as t < r20s
2
0−∣u0∣2
s20

< r2
0.
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Case 2: Inoue surfaces

Inoue-Bombieri surfaces [76, 31] X are compact complex surfaces in class VII with second Betti
number equal to zero and with no holomorphic curves [29, 30, 94, 95, 148]. Their universal cover is
C ×H, where H denotes the upper half-plane. They are divided into three families, SM , S+N,p,q,r;t,
and S−N,p,q,r, depending on parameters.

Case 2.1: Inoue-Bombieri surface of type SM

We focus now on the case SM : it has a structure of fibre bundle over S1, where the fibre is a
3-dimensional torus.

Inoue-Bombieri surfaces of type SM admit a description as quotients of solvable Lie groups wih
invariant complex structure [68], that we now describe. We can fix a coframe (ϕ1, ϕ2) of (1,0)-forms
with structure equations

dϕ1 = α −
√
−1β

2
√
−1

ϕ1 ∧ ϕ2 − α −
√
−1β

2
√
−1

ϕ1 ∧ ϕ̄2,

dϕ2 = −
√
−1αϕ2 ∧ ϕ̄2,

where α ∈ R ∖ {0} and β ∈ R. The de Rham cohomology of X can be explicitly described [149], see
[12, Theorem 4.1]:

H●
dR(X;R) = C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩⊕C⟨ϕ121̄ − ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

H●
dR(X;R) = (5.3.2)

C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩

We conclude that: any invariant Hermitian metric on an Inoue surface of type SM is geomet-
rically formal in the sense of Kotschick.

The Chern-Ricci form of any invariant Hermitian metric is

2RicCh(ω) = −
√
−1α2ϕ2 ∧ ϕ̄2,

whence the solution of the Chern-Ricci flow (CRF) is given by

2ω(t) =
√
−1r2

0ϕ
11̄ +

√
−1 (s2

0 + α2t)ϕ22̄ + u0ϕ
12̄ − ū0ϕ

21̄, (5.3.3)

defined for any non-negative time t ≥ 0.
Clearly, on an Inoue surface of type SM with invariant Hermitian metrics, the properties of

geometric formality in the sense of Kotschick is preserved along the Chern-Ricci flow.

Case 2.2: Inoue surfaces of class S±

In this subsection, we focus on the case of Inoue surfaces of type S±. Inoue-Bombieri surfaces
of type S− have an unramified double cover of type S+: we can then restrict to Inoue-Bombieri
surfaces of type S+, which have a structure of fibre bundle over S1, where the fibre is a compact
quotient of the 3-dimensional Heisenberg group.
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Also Inoue-Bombieri surfaces of type S+ admit a description as quotients of solvable Lie groups
[68], that we now describe. We can fix a coframe (ϕ1, ϕ2) of (1,0)-forms with structure equations

dϕ1 = 1

2
√
−1
ϕ1 ∧ ϕ2 + 1

2
√
−1
ϕ2 ∧ ϕ̄1 + q

√
−1

2
ϕ2 ∧ ϕ̄2,

dϕ2 = 1

2
√
−1
ϕ2 ∧ ϕ̄2,

where q ∈ R. The de Rham cohomology of X can be explicitly described [149], see [12, Theorem
4.1]:

H●
dR(X;C) = C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩⊕C⟨ϕ121̄ − ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

The situation is exactly as in (5.3.2). We conclude that: any invariant Hermitian metric on an
Inoue surface of type S± is geometrically formal in the sense of Kotschick.

The Chern-Ricci form of any invariant Hermitian metric is

2RicCh(ω) = −
√
−1ϕ22̄,

whence the solution of the Chern-Ricci flow (CRF) is given by

2ω(t) =
√
−1r2

0ϕ
11̄ +

√
−1 (s2

0 + t)ϕ22̄ + u0ϕ
12̄ − ū0ϕ

21̄, (5.3.4)

defined for any non-negative time t ≥ 0.
Clearly, on an Inoue surface of type S± with invariant Hermitian metrics, the properties of

geometric formality in the sense of Kotschick is preserved along the Chern-Ricci flow.

We also analyze in details primary and secondary Kodaira surfaces resulting in the following
proposition, for which we give explicit computations.

Proposition 5.3.2 ([15]). On any Kodaira surface, the properties of geometric formality in the
sense of Kotschick is preserved along the Chern-Ricci flow starting at initial invariant Hermitian
metrics.

Proof. We will look at each case separatedly.

Case 1: Primary Kodaira surface

Kodaira surfaces X are compact complex surfaces of Kodaira dimension Kod(X) = 0 and first Betti
number b1(X) = 3. Primary Kodaira surfaces have trivial canonical bundle.

We note that, by [87, Theorem 6], primary Kodaira surfaces are never Kotschick-geometrically
formal, not even with regards to non-invariant metrics, by having b1 = 3: hence Chern-Ricci flow
preserves geometric formality according to Kotschick. The same conclusion follows by [69, Theorem
1] stating that non-tori nilmanifolds are never formal, therefore never geometrically formal in the
sense of Kotschick. Nevertheless we give explicit computations for this fact.

We recall the description of primary Kodaira surfaces as quotients of solvable Lie groups [68].
There exists a coframe (ϕ1, ϕ2) of (1,0)-forms with structure equations

dϕ1 = 0, dϕ2 =
√
−1

2
ϕ1 ∧ ϕ̄1.
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The de Rham cohomology of X can be explicitly described:

H●
dR(X;R) = C⟨1⟩⊕C⟨ϕ1, ϕ1̄, ϕ2 − ϕ2̄⟩⊕C⟨ϕ12, ϕ12̄, ϕ21̄, ϕ1̄2̄⟩

⊕C⟨ϕ122̄, ϕ21̄2̄, ϕ121̄ − ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

H●
dR(X;R) = C⟨1⟩⊕C⟨ϕ1, ϕ1̄, ϕ2 − ϕ2̄⟩⊕C ⟨ϕ12, ϕ12̄ +

√
−1u

s2
ϕ11̄, ϕ21̄ −

√
−1u

s2
ϕ11̄, ϕ1̄2̄⟩

⊕C ⟨1

2
s2ϕ122̄ +

√
−1

2
uϕ121̄,

1

2
s2ϕ21̄2̄ −

√
−1

2
uϕ11̄2̄,

−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

We explicitly notice that, on primary Kodaira surfaces, an invariant Hermitian metric is never
geometrically formal in the sense of Kotschick: indeed, ϕ1 ∧ ϕ1̄2̄ is never harmonic.

As for Chern-Ricci flow, the primary Kodaira surface has trivial canonical bundle, therefore
RicCh(ω) = 0. Then, clearly, the Chern-Ricci flow does not evolve invariant Hermitian metrics.

Case 2: Secondary Kodaira surface

Secondary Kodaira surfaces X are quotients of primary Kodaira surfaces by finite groups; they have
torsion non-trivial canonical bundle.

We recall the description of secondary Kodaira surfaces as quotients of solvable Lie groups [68].
There exists a coframe (ϕ1, ϕ2) of (1,0)-forms with structure equations

dϕ1 = −1

2
ϕ1 ∧ ϕ2 + 1

2
ϕ1 ∧ ϕ̄2, dϕ2 =

√
−1

2
ϕ1 ∧ ϕ̄1.

The cohomologies of X can be explicitly described:

H●
dR(X;R) = C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩⊕C⟨ϕ121̄ − ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

As for the harmonic representatives for de Rham cohomology, the situation is very similar to
the Inoue case. We list the harmonic representatives with respect to the arbitrary Hermitian metric
as in (5.2.1):

H●
dR(X;R) = C⟨1⟩⊕C⟨ϕ2 − ϕ2̄⟩

⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩.

We conclude that any invariant Hermitian metric on an secondary Kodaira is geometrically formal
in the sense of Kotschick.

As for the Chern-Ricci flow, the secondary Kodaira surface has torsion canonical bundle, there-
fore RicCh(ω) = 0. Therefore, the Chern-Ricci flow does not evolve invariant Hermitian metrics.
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5.4 Dolbeault and Bott-Chern geometric formalities

As for Dolbeault or Bott-Chern geometric formality, the situation is clear for Hopf, Inoue and
Kodaira surfaces, as we now describe. We also make computations regarding Aeppli cohomology
and harmonic representatives with respect to the Aeppli Laplacian.

Proposition 5.4.1 ([15]). On Hopf, Inoue, and Kodaira surfaces, the property of Dolbeault ge-
ometric formality and of Bott-Chern geometric formality is preserved along the Chern-Ricci flow
starting at invariant metrics. In the same situation, the properties of having a structure of algebra
or a structure of HBC-module for harmonic-Aeppli forms are all preserved by the Chern Ricci flow.

Proof. We refer to the complex structures used in Theorem 5.3.1 and Proposition 5.3.2, for the
computation of Dolbeault, Bott-Chern, and Aeppli cohomologies.

Hopf surfaces

The Dolbeault cohomology of Hopf surfaces is explicitly described in [73, Appendix II, Theorem
9.5], and see [12, Section 3.1] for the Bott-Chern cohomology:

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ11̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ22̄⟩⊕C⟨ϕ121̄2̄⟩,

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

We look at how the harmonic representatives of such cohomologies change with respect to the
invariant Hermitian metric, and in particular when their product is still harmonic.

We summarize them as follows:

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C⟨−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ11̄⟩⊕C⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄⟩⊕C⟨−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩⊕C⟨s4ϕ22̄ + ∣u∣2ϕ11 −

√
−1s2 uϕ12 +

√
−1s2uϕ21⟩⊕C⟨ϕ121̄2̄⟩,

Let us focus first on the Dolbeault cohomology. Here, the only Dolbeault-harmonic represen-
tative that changes is for the generator in H1,2

∂
(X). We conclude that any invariant Hermitian

metric on the Hopf surface is geometrically-Dolbeault formal.
As regards the Bott-Chern cohomology, to our aim, that is, studying harmonicity of products

of Bott-Chern-harmonic forms, the only case of interest is the product [ϕ11̄] ⌣ [ϕ11̄], the products
with the class [1] being trivial and the other products being zero because of degree reasons. Since
the harmonic representatives with respect to invariant metrics are invariant, the Bott-Chern class
[ϕ11] = {ϕ11 + ∂∂c ∶ c ∈ R} contains only one invariant representantive, that is also harmonic with
respect to any invariant Hermitian metric. Again, we have that any invariant Hermitian metric on
the Hopf surface is geometrically-Bott-Chern formal.

We consider the Aeppli cohomology. On the one side, we can consider the products between
Aeppli-harmonic forms: the only possibly non-trivial products concern the classes [ϕ2] and [ϕ̄2],
[ϕ2] and [ϕ2 ∧ ϕ̄2], [ϕ̄2] and [ϕ2 ∧ ϕ̄2]. Since the classes [ϕ2] and [ϕ̄2] contain only one invariant
representative, we are reduced to study how the harmonic representative of the Aeppli cohomology
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class [ϕ2 ∧ ϕ̄2] depends on the invariant Hermitian metric. The arbitrary representative in the
Aeppli cohomology class [ϕ22̄] is

h ∶= ϕ2 ∧ ϕ̄2 + ∂ (λ1ϕ̄
1 + λ2ϕ̄

2) + ∂ (λ3ϕ
1 + λ4ϕ

2)

= ϕ22̄ −
√
−1 (λ2 + λ4)ϕ11̄ +

√
−1λ1ϕ

21̄ +
√
−1λ3ϕ

12̄,

where λ1, λ2, λ3, λ4 ∈ C. By (5.2.5), we compute

V ⋅ ∗gh = V ⋅ (∗g ϕ22 +
√
−1λ1 ∗g ϕ21 −

√
−1 (λ2 + λ4) ∗g ϕ11 +

√
−1λ3 ∗g ϕ12)

= (r4 − λ1ur
2 −

√
−1(λ2 + λ4)∣u∣2 + λ3ur

2)ϕ11

+ (−
√
−1ur2 +

√
−1λ1u

2 − (λ2 + λ4)us2 −
√
−1λ3r

2s2)ϕ12

+ (
√
−1ur2 −

√
−1λ1r

2s2 + (λ2 + λ4)us2 +
√
−1λ3u

2)ϕ21

+ (∣u∣2 − λ1us
2 −

√
−1(λ2 + λ4)s4 + λ3us

2)ϕ22.

By using the structure equations, we now compute

∂(∗gh) =
√
−1

−
√
−1ur2 +

√
−1λ1u

2 − (λ2 + λ4)us2 −
√
−1λ3r

2s2

r2s2 − ∣u∣2
ϕ122

−
√
−1

∣u∣2 − λ1us
2 −

√
−1(λ2 + λ4)s4 + λ3us

2

r2s2 − ∣u∣2
ϕ121,

∂(∗gh) =
√
−1

√
−1ur2 −

√
−1λ1r

2s2 + (λ2 + λ4)us2 +
√
−1λ3u

2

r2s2 − ∣u∣2
ϕ212

−
√
−1

∣u∣2 − λ1us
2 −

√
−1(λ2 + λ4)s4 + λ3us

2

r2s2 − ∣u∣2
ϕ112.

Therefore the Aeppli-harmonicity conditions ∂∂h = ∂ ∗g h = ∂ ∗g h = 0 yield

⎛
⎜⎜⎜⎜
⎝

√
−1u2 −us2 −

√
−1r2s2 −us2

−us2 −
√
−1s4 us2 −

√
−1s4

−
√
−1r2s2 us2

√
−1u2 us2

−us2 −
√
−1s4 us2 −

√
−1s4

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

λ1

λ2

λ3

λ4

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜
⎝

√
−1ur2

−∣u∣2
−
√
−1ur2

−∣u∣2

⎞
⎟⎟⎟⎟
⎠

,

where the rank of the first matrix is 3 thanks to the condition r2s2− ∣u∣2 > 0. By solving the system,
we get

λ1 = u

s2
,

λ2 =
√
−1∣u∣2

s4
− λ,

λ3 = − u
s2
,

λ4 = λ,

varying λ ∈ C. We finally get that the harmonic representative of [ϕ22̄] with respect to g is

h = ∣u∣2

s4
ϕ11 −

√
−1u

s2
ϕ12 +

√
−1u

s2
ϕ21 + ϕ22.
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At the end of the day, we get that: Aeppli-hamornic forms have a structure of algebra if and only
if the metric (5.2.1) is diagonal, namely, u = 0.

Finally, we consider the Aeppli cohomology as a Bott-Chern-cohomology-module. By the Stokes
theorem, there is no invariant exact 4-form other than the zero form; in particular, any invariant
(2,2)-form is harmonic with respect to any Hermitian invariant metric. This reduces to consider
only the products [ϕ11̄]BC ⌣ [ϕ2]A and [ϕ11̄]BC ⌣ [ϕ̄2]A. By the argument above, both [ϕ11̄]BC and
[ϕ2]A, respectively [ϕ̄2]A, contain only one invariant representative that is harmonic with respect
to any Hermitian metric. Therefore: for any invariant Hermitian metric on the Hopf surface,
Aeppli-harmonic forms have a structure of module over Bott-Chern-harmonic forms.

As regards the Chern-Ricci flow, we already have an expression for it computed in (5.3.1).
Clearly, then, on the Hopf surface with invariant Hermitian metrics, the properties of geometric-
Dolbeault formality, of geometric-Bott-Chern formality, of the Aeppli-harmonic forms having a
structure of algebra, of the Aeppli-hamornic forms having a structure of module over Bott-Chern-
harmonic forms, are all preserved along the Chern-Ricci flow.

Inoue-Bombieri surfaces of type SM

The cohomologies of Inoue-Bombieri surfaces of type SM can be explicitly described [149], see [12,
Theorem 4.1]:

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ22̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ11̄⟩⊕C⟨ϕ121̄2̄⟩,

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form 2ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C ⟨−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ22̄⟩⊕C ⟨−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩

⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄⟩⊕C⟨ϕ121̄2̄⟩, (5.4.1)

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩

⊕C ⟨ϕ11̄ −
√
−1u

r2
ϕ12̄ +

√
−1u

r2
ϕ21̄ + ∣u∣2

r4
ϕ22̄⟩⊕C⟨ϕ121̄2̄⟩,

We conclude that: any invariant Hermitian metric on an Inoue surface of type SM is
geometrically-Dolbeault formal, is geometrically-Bott-Chern formal, and the Aeppli-harmonic forms
have a structure of module over Bott-Chern-harmonic forms. On the other hand, Aeppli-harmonic
forms have a structure of algebra if and only if the metric is diagonal.

The Chern-Ricci flow has expression as in (5.3.3). Clearly, we can state that on an Inoue surface
of type SM with invariant Hermitian metrics, the properties of Dolbeault-geometric formality, of
Bott-Chern-geometric formality, of the Aeppli-harmonic forms having a structure of algebra, of
the Aeppli-hamornic forms having a structure of module over Bott-Chern-harmonic forms, are all
preserved along the Chern-Ricci flow.
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Inoue surfaces of type S±

The cohomologies of Inoue surfaces of type S± can be explicitly described [149], see [12, Theorem
4.1]:

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ22̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ11̄⟩⊕C⟨ϕ121̄2̄⟩,

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

As for the harmonic representatives of Dolbeault, Bott-Chern and Aeppli cohomologies, the
situation is exactly as (5.4.1).

We conclude that: any invariant Hermitian metric on an Inoue surface of type S± is
geometrically-Dolbeault formal, is geometrically-Bott-Chern formal, and the Aeppli-harmonic forms
have a structure of module over Bott-Chern-harmonic forms. On the other hand, Aeppli-harmonic
forms have a structure of algebra if and only if the metric is diagonal.

The Chern-Ricci flow has expression as in (5.3.4). Hence, we have that on an Inoue surface
of type S± with invariant Hermitian metrics, the properties of geometric-Dolbeault formality, of
geometric-Bott-Chern formality, of the Aeppli-harmonic forms having a structure of algebra, of
the Aeppli-hamornic forms having a structure of module over Bott-Chern-harmonic forms, are all
preserved along the Chern-Ricci flow.

Primary Kodaira surfaces

The cohomologies of primary Kodaira surfaces can be explicitly described [149], see [12, Theorem
4.1]:

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ1⟩⊕C⟨ϕ1̄, ϕ2̄⟩⊕C⟨ϕ12⟩⊕C⟨ϕ12̄, ϕ21̄⟩⊕C⟨ϕ1̄2̄⟩

⊕C⟨ϕ121̄, ϕ122̄⟩⊕C⟨ϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,
H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ1⟩⊕C⟨ϕ1̄⟩⊕C⟨ϕ12⟩⊕C⟨ϕ11̄, ϕ12̄, ϕ21̄⟩⊕C⟨ϕ1̄2̄⟩

⊕C⟨ϕ121̄, ϕ122̄⟩⊕C⟨ϕ11̄2̄, ϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,
H●,●
A (X) = C⟨1⟩⊕C⟨ϕ1, ϕ2⟩⊕C⟨ϕ1̄, ϕ2̄⟩⊕C⟨ϕ12⟩⊕C⟨ϕ12̄, ϕ21̄, ϕ22̄⟩⊕C⟨ϕ1̄2̄⟩

⊕C⟨ϕ122̄⟩⊕C⟨ϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ1⟩⊕C⟨ϕ1̄, ϕ2̄⟩⊕C⟨ϕ12⟩⊕C⟨ϕ12̄ −
√
−1 sϕ11̄, ϕ21̄ +

√
−1 sϕ11̄⟩⊕C⟨ϕ1̄2̄⟩

⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄,

1

2
s2ϕ122̄ +

√
−1

2
uϕ121̄⟩

⊕C ⟨1

2
s2ϕ21̄2̄ −

√
−1

2
uϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕ C⟨ϕ1⟩⊕C⟨ϕ1̄⟩⊕C⟨ϕ12⟩⊕C⟨ϕ11̄, ϕ12̄, ϕ21̄⟩⊕C⟨ϕ1̄2̄⟩

⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄,

√
−1

2
uϕ121̄ + 1

2
s2ϕ122̄⟩
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⊕C ⟨1

2
s2ϕ21̄2̄ −

√
−1

2
uϕ11̄2̄,−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ1, ϕ2⟩⊕C⟨ϕ1̄, ϕ2̄⟩⊕C⟨ϕ12⟩⊕C⟨ϕ1̄2̄⟩

⊕C ⟨s2ϕ12̄ +
√
−1uϕ11̄, s2ϕ21̄ −

√
−1uϕ11̄, s4ϕ22̄ − ∣u∣2ϕ11̄⟩

⊕C ⟨1

2
s2ϕ122̄ +

√
−1

2
uϕ121̄⟩⊕C⟨1

2
s2ϕ21̄2̄ −

√
−1

2
uϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

We notice that for primary Kodaira surfaces an invariant Hermitian metric is never
geometrically-Dolbeault formal, e.g. ϕ1 ∧ ϕ̄1 is never Dolbeault-harmonic. In fact, Cattaneo and
Tomassini noticed in [37, Example 4.3] that primary Kodaira surfaces have a non-vanishing
Dolbeault-Massey triple product, whence they are not Dolbeault formal in the sense of [106]. Also,
it is never geometrically-Bott-Chern formal, e.g. ϕ1 ∧ϕ1̄2̄ is never Bott-Chern-harmonic. The space
of Aeppli-harmonic forms is never an algebra, e.g. ϕ1 ∧ ϕ̄1 is never Aeppli-harmonic, neither a
module over the space of Bott-Chern harmonic forms, e.g. ϕ1 ∧ ϕ̄1 is never Aeppli-harmonic.

The primary Kodaira surface has trivial canonical bundle, therefore RicCh(ω) = 0. Then the
Chern-Ricci flow does not evolve invariant Hermitian metrics.

Then clearly on a primary Kodaira surface with invariant Hermitian metrics, the properties
of geometric-Dolbeault formality, of geometric-Bott-Chern formality, of the Aeppli-harmonic forms
having a structure of algebra, of the Aeppli-hamornic forms having a structure of module over
Bott-Chern-harmonic forms, are all preserved along the Chern-Ricci flow.

Secondary Kodaira surfaces

The cohomologies of secondary Kodaira surfaces can be explicitly described [149], see [12, Theorem
4.1]:

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ11̄⟩⊕C⟨ϕ121̄⟩⊕C⟨ϕ11̄2̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩⊕C⟨ϕ22̄⟩⊕C⟨ϕ121̄2̄⟩,

where we have listed the harmonic representatives with respect to the Hermitian metric with fun-
damental form ω =

√
−1ϕ11̄ +

√
−1ϕ22̄ instead of their classes.

As for the harmonic representatives for Dolbeault, Bott-Chern and Aeppli cohomologies, the
situation is very similar to the Inoue case, only the computations for the class [ϕ22̄] ∈ H1,1

A (X)
being slightly different.

We list the harmonic representatives with respect to the arbitrary Hermitian metric as in (5.2.1):

H●,●
∂

(X) = C⟨1⟩⊕C⟨ϕ2̄⟩⊕C ⟨−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩⊕C⟨ϕ121̄2̄⟩

H●,●
BC(X) = C⟨1⟩⊕C⟨ϕ11̄⟩⊕C ⟨−1

2
r2ϕ11̄2̄ −

√
−1

2
uϕ21̄2̄⟩

⊕C ⟨−1

2
r2ϕ121̄ +

√
−1

2
uϕ122̄⟩⊕C⟨ϕ121̄2̄⟩,

H●,●
A (X) = C⟨1⟩⊕C⟨ϕ2⟩⊕C⟨ϕ2̄⟩

⊕C ⟨∣u∣2ϕ11̄ −
√
−1 s2uϕ12̄ +

√
−1 s2uϕ21̄ + s4ϕ22̄⟩⊕C⟨ϕ121̄2̄⟩.

We conclude that: any invariant Hermitian metric on a secondary Kodaira surface is
geometrically-Dolbeault formal, is geometrically-Bott-Chern formal, and the Aeppli-harmonic forms
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have a structure of module over Bott-Chern-harmonic forms. On the other hand, Aeppli-harmonic
forms have a structure of algebra if and only if the metric is diagonal.

The secondary Kodaira surface has torsion canonical bundle, therefore RicCh(ω) = 0. Then the
Chern-Ricci flow does not evolve invariant Hermitian metrics.

Then clearly on a secondary Kodaira surface with invariant Hermitian metrics, the properties
of geometric-Dolbeault formality, of geometric-Bott-Chern formality, of the Aeppli-harmonic forms
having a structure of algebra, of the Aeppli-hamornic forms having a structure of module over
Bott-Chern-harmonic forms, are all preserved along the Chern-Ricci flow.

We summarize the results in the last two Sections in Table 5.1.

surface Kotschick Dolbeault Bott-Chern Aeppli harm. f. Aeppli harm. f.
geom. form. geom. form. geom. form. as algebra as BC-module

class VIIb2>0 never ? ? ? ?
Hopf always always always diagonal always

(invariant metrics)
Inoue-Bombieri SM always always always diagonal always

(invariant metrics)
Inoue S± always always always diagonal always

(invariant metrics)
primary Kodaira never never never never never

secondary Kodaira always always always diagonal always
(invariant metrics)

Table 5.1: Summary of Theorem 5.3.1 and Propositions 5.3.2 and 5.4.1 concerning geometric
formalities (for Kotschick, Dolbeault, Bott-Chern) and the structure of Aeppli-harmonic forms
with respect to Hermitian metrics, respectively invariant Hermitian metrics on Hopf, Inoue, Kodaira
surfaces.

In view of further study, we notice that:

• in any mentioned cases, the Chern-Ricci flow starting at an invariant metric clearly preserves
each one of the above properties, since it preserves diagonal metrics. (Compare also [88,
Proposition 3], showing that, for certain G-homogeneous spaces, every G-invariant metrics is
geometrically formal.) We ask whether this behaviour is more general, or whether there exists
a counterexample for which the Chern-Ricci flow does not preserve the geometric formality in
the sense of Kotschick, or any other of the geometric Hermitian formalities discussed above.
We notice that the above invariant metrics are Gauduchon, that is pluriclosed (also known as
SKT) being defined on four-dimensional manifolds. Therefore, as the Referee kindly suggested
to us, it may be interesting to further investigate the 6-dimensional nilmanifolds admitting
invariant SKT metrics as classified in [53].

• Clearly, holomorphically-parallelizable manifolds do not provide such counterexamples when
restricting to invariant metrics, since they have holomorphically-trivial canonical bundle,
whence invariant Hermitian metrics are Chern-Ricci-flat. Our attempts on four-dimensional
Lie groups (possibly not admitting compact quotients), as in [113] and references therein, or
small deformations of the Iwasawa manifold [105, 11] still have not provided further examples.

• The same question may be addressed for other geometric flows other than the Chern-Ricci
flow, for example the Hermitian curvature flows in [140] or in particular the one studied in
[153].
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• It could be interesting to further investigate Massey triple products and Dolbeault Massey
products, see [150, 37], or other Massey products, in particular on class VII surfaces with
b2 > 0 and on primary Kodaira surfaces.
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Chapter 6

Cohomological and formal properties of
Strong Kähler with torsion and
astheno-Kähler metrics

In this chapter, we first construct a family of simply-connected 2-step nilpotent Lie groups G,
admitting discrete uniform subgroups Γ and endowed with a left-invariant complex structure J ,
such that (Γ/G,J) carries an astheno-Kähler metric (see Theorem 6.2.1 for the precise statement).
Such a construction will be applied in the study of the behaviour of blow-ups. In fact, in [54]
respectively [55, Proposition 2.4] it is proved that the existence of an SKT metric respectively a
Hermitian metric g with fundamental form F on an n-dimensional compact complex manifold M ,
satisfying ∂∂F = 0, ∂∂F 2 = 0, is stable under blow-ups of M .

In contrast, in Theorem 6.3.3 we prove that the existence of a Hermitian metric g with funda-
mental form F satisfying ∂∂Fn−2 = 0, ∂∂Fn−3 = 0 but ∂∂F ≠ 0, is not preserved by blow-ups.

Then, we investigate the relation between SKT metrics and geometrically-Bott-Chern-formal
metrics. More precisely, we study the 6-dimensional nilmanifolds with a left-invariant complex
structure admitting a left-invariant SKT metric, which have been characterized by Fino, Parton
and Salamon in [53, Theorem 1.2]. If we denote by FPS-nilmanifold any such a manifold, we prove
the following result.

Theorem (see Theorem 6.4.2). Let (M,J) be a FPS-nilmanifold. Then, any left-invariant (SKT)
metric is geometrically-Bott-Chern-formal.

Moreover, we extend this result to a class of nilmanifolds which are a generalization of FPS-
manifolds in a arbitrary higher dimension (see Theorem 6.4.4).

Contrarily to the mentioned positive results, on a compact complex manifold the existence
of a SKT metric does not imply the existence of geometrically-Bott-Chern-formal metrics. More
precisely, we prove this for the product of a pair of certain compact complex surfaces by providing
a non vanishing Aeppli-Bott-Chern-Massey product on each manifold.

Theorem (see Theorem 6.4.5). Let (M,J) be the product of either two Kodaira surfaces, two Inoue
surfaces, or a Kodaira surface and a Inoue surface. Then (M,J) admits SKT metrics but does not
admit geometrically-Bott-Chern-formal metrics.

Furthermore, a similar result holds also for manifolds which are not a product of manifolds, as
it is shown for a family of nilmanifolds of complex dimension 4 in Theorem 6.4.6.
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6.1 p-pluriclosed forms

In order to recall the characterization theorem of compact complex manifolds admitting a p-
pluriclosed structure (see Section 1.5), we review some known facts on positive currents.

Let M be an n-dimensional complex manifold and let Ap,q(Ω) respectively Dp,q(Ω)) be the
space of (p, q)-forms respectively (p, q)-forms with compact support on M . Consider the C∞-
topology on Dp,q(M). The space of currents of bi-dimension (p, q) or of bi-degree (n − p,n − q) is
the topological dual D′p,q(M) of Dp,q(M). A current of bi-dimension (p, q) on M can be identified
with a (n − p,n − q)-form on M with coefficients distributions. A current T of bi-dimension (p, p)
is said to be real if T (η) = T (η), for any η ∈ Dp,q(M). A real current T ∈ D′p,p(M) is said to be
strongly positive if,

T (Ω) ≥ 0,

for every weakly positive (p, p)-form Ω. We have the following (see [4, Theorem 2.4,(4)])

Theorem 6.1.1. A compact n-dimensional complex manifold N has a strictly weakly positive (p, p)-
form Ω with ∂∂Ω = 0 if and only if N has no strongly positive currents T ≠ 0 of bidimension (p, p),
such that T = i∂∂A for some current A of bidimension (p + 1, p + 1).

The following simple yet useful lemma yields an obstruction to the existence of p-pluriclosed
forms on a closed almost complex manifold.

Lemma 6.1.2 ([133]). Let (M,J) be a closed almost complex manifold of real dimension 2n. Let
α be a (2n − 2p − 2)-form which is not ddc-closed and such that

(ddcα)n−p,n−p =∑ ckψ
k ∧ ψk,

with ψk simple (n − p,0)-covectors and ck ≠ 0 constants having the same sign. Then (M,J) does
not admit a p−pluriclosed form.

In particular,

• for p = 1, (M,J) does not admit SKT metrics;

• for p = n − 2, (M,J) does not admit astheno-Kähler metrics.

Proof. We prove this lemma by contradiction. Suppose there exists a p-pluriclosed form Ω on
(M,J), i.e., Ω is a (p, p)-real form which is ddc-closed and, for every x ∈ M , Ωx ∈ ⋀p,p(TxM∗) is
transverse. Then, let α be a (2n− 2p− 2)-form on (M,J) as above and let us assume, for example,
that each ck > 0. Since M is closed, by Stokes theorem we have that

0 = ∫
M
d(dc(σnΩ ∧ α)) = ∫

M
σnΩ ∧ ddcα =∑

k

ck ∫
M
σnΩ ∧ ψk ∧ ψk > 0,

which is a contradiction. To end the proof, notice that if F is an astheno-Kähler metric on (M,J),
the (n − 2, n − 2)-form Fn−2 is a (n − 2)-pluriclosed form on (M,J). Analogously, if F is a SKT
metric on (M,J), F is 1-pluriclosed form on (M,J).

Remark 6.1.3. In Lemma 6.1.2 the thesis on the non existence of Hermitian metrics satisfying
ddcF = 0, for p = 1, respectively ddcFn−2 = 0, for p = n − 2, is still valid, without assuming the
integrability of J .
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6.2 Astheno-Kähler metrics on 5-dimensional nilmanifolds

We now proceed to construct a family of nilmanifolds of complex dimension 5 endowed with a
left-invariant complex structure admitting an astheno-Kähler metric.

Let {η1, . . . , η5} be the set of complex forms of type (1,0), such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dηj = 0, j = 1, . . . ,4,

dη5 = a1 η
12 + a2 η

13 + a3 η
13 + a4 η

11̄ + a5 η
12̄ + a6 η

13̄ + a7 η
14̄

+b1 η23 + b2 η24 + b3 η21̄ + b4 η22̄ + b5 η23̄ + b6 η24̄

+c1 η
34 + c2 η

31̄ + c3 η
32̄ + c4 η

33̄ + c5 η
34̄

+d1 η
41̄ + d2 η

42̄ + d3 η
43̄ + d4 η

44̄

(6.2.1)

where ah, bk, cr, ds ∈ C, h = 1, . . . ,7, k = 1, . . . ,6, r = 1, . . . ,5, s = 1, . . . ,4 and we set as usual
ηAB = ηA ∧ ηB. Then, setting g1,0 = Span⟨η1, . . . , η5⟩, we obtain that g∗C = g1,0 ⊕ g1,0 gives rise
to an integrable almost complex structure J on the real 2-step nilpotent Lie algebra g. Let G be
the simply-connected and connected Lie group with Lie algebra g. Then, for any given choice of
parameters ah, bk, cr, ds ∈ Q[i] as a consequence of Malcev’s theorem [98], there exist lattices Γ ⊂ G,
so that (M = Γ/G,J) is a nilmanifold endowed with a complex structure J with dimCM = 5. We
have the following

Theorem 6.2.1 ([133]). Let M = Γ/G and J be the complex structure on M defined by (6.2.1).
Then

I) The diagonal metric g on (M,J) whose fundamental form is

F = i

2

5

∑
h=1

ηhh̄

is astheno-Kähler if and only if the following condition holds

2Re (d4ā4 + d4b̄4 + d4c̄4 + c4ā4 + c4b̄4 + b4ā4) = ∣a1∣2 + ∣a2∣2 + ∣a3∣2 + ∣a5∣2 + ∣a6∣2 + ∣a7∣2+

+ ∣b1∣2 + ∣b2∣2 + ∣b3∣2 + ∣b5∣2 + ∣b6∣2+

+ ∣c1∣2 + ∣c2∣2 + ∣c3∣2 + ∣d1∣2 + ∣d2∣2.
(6.2.2)

II) Let
a2 = a3 = a5 = a6 = a7 = b1 = b2 = b3 = b5 = b6 = c2 = c3 = c5 = d1 = d2 = d3 = 0.

Then the metric g satisfies ddcF 3 = 0 and ddcF 2 = 0 if and only if the following conditions
hold

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Re (d4ā4 + d4b̄4 + d4c̄4 + c4ā4 + c4b̄4 + b4ā4) = ∣a1∣2 + ∣c1∣2

2Re (c4ā4 + c4b̄4 + b4ā4) = ∣a1∣2

Re (c4b̄4 − d4ā4) = 0

Re (b4d̄4 − c4ā4) = 0.

(6.2.3)
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Proof. As for I), with the aid of Sagemath and structure equations (6.2.1), it is easy to the see that

2
3dd

cF 3 = (2Re (d4ā4 + d4b̄4 + d4c̄4 + c4ā4 + c4b̄4 + b4ā4)

−∣a1∣2 − ∣a2∣2 − ∣a3∣2 − ∣a5∣2 − ∣a6∣2 − ∣a7∣2

−∣b1∣2 − ∣b2∣2 − ∣b3∣2 − ∣b5∣2 − ∣b6∣2

−∣c1∣2 − ∣c2∣2 − ∣c3∣2 − ∣d1∣2 − ∣d2∣2 ) η12341234,

(6.2.4)

i.e., the metric F is astheno-Kähler on (M,J) if and only if (6.2.2) holds.
II) Under the assumption

a2 = a3 = a5 = a6 = a7 = b1 = b2 = b3 = b5 = b6 = c1 = c2 = c3 = c5 = d1 = d2 = d3 = 0,

taking into account (6.2.4) and by a straightforward computation, we obtain that

ddcF 3 = 0, ddcF 2 = 0

if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Re (d4ā4 + d4b̄4 + d4c̄4 + c4ā4 + c4b̄4 + b4ā4) − ∣a1∣2 − ∣c1∣2 = 0

2Re (c4ā4 + c4b̄4 + b4ā4) − ∣a1∣2 = 0

2Re (d4ā4 + d4b̄4 + b4ā4) − ∣a1∣2 = 0

2Re (d4ā4 + d4c̄4 + c4ā4) − ∣c1∣2 = 0

2Re (d4b̄4 + d4c̄4 + c4b̄4) − ∣c1∣2 = 0.

The last system is equivalent to (6.2.3).

Remark 6.2.2. Recall that an Hermitian metric g on a n-dimensional complex manifold (M,J)
is said to be balanced if its fundamental form ω satisfies dωn−1 = 0. In [146, p. 185] the authors
asked for an example of a non-Kähler compact complex manifold which admits both balanced
and astheno-Kähler metrics. In [52], and independently in [92], the authors constructed explicit
examples of such manifolds in any dimension. As a direct application of Theorem 6.2.1, we obtain
families of 5-dimensional complex nilmanifolds carrying both astheno-Kähler and balanced metrics.
We apply a similar construction as in [92, Remark 2.6]. Let

F̂ = i

2
(Aη11̄ + η22̄ + η33̄ + η44̄ + η55̄)

where A is a positive real number. Then dF̂ 4 = 0 if and only if

a4 +Ab4 +Ac4 +Ad4 = 0, (6.2.5)

where a4, b4, c4, d4 are the parameters as in (6.2.1) Let g be the diagonal metric whose fundamental
form is

F = i

2
(η11̄ + η22̄ + η33̄ + η44̄ + η55̄).

Then, according to I) of Theorem 6.2.1, g is astheno-Kähler if and only if condition (6.2.2) holds.
Take

a4 = −
1

10
(1 + 2i), b4 = i, c4 = i, d4 = 1, A = 1

10
.
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Then, with this choice of parameters, we obtain

a4 +Ab4 +Ac4 +Ad4 = −
1

10
− 1

5
i + 1

10
i + 1

10
i + 1

10
= 0,

that is (6.2.5) is satified and so, for such a choice of parameters, F̂ gives rise to a balanced metric
on M = Γ/G. A straightforward calculation yields

2Re (d4ā4 + d4b̄4 + d4c̄4 + c4ā4 + c4b̄4 + b4ā4) = 1.

Therefore, the Hermitian metric g is astheno-Kähler if and only if condition (6.2.2) reads as

1 = ∣a1∣2 + ∣a2∣2 + ∣a3∣2 + ∣a5∣2 + ∣a6∣2 + ∣a7∣2+

+ ∣b1∣2 + ∣b2∣2 + ∣b3∣2 + ∣b5∣2 + ∣b6∣2+

+ ∣c1∣2 + ∣c2∣2 + ∣c3∣2 + ∣d1∣2 + ∣d2∣2 .

(6.2.6)

One can check that there exist solutions in Q[i] of equation (6.2.6), so that, for any given solution,
the associated complex nilmanifold defined as in (6.2.1) admits both a balanced metric and an
astheno-Kähler metric.

As an application of Lemma 6.1.2, we provide a family of compact almost complex nilmanifolds
without 2-pluriclosed forms.

Proposition 6.2.3 ([133]). Let {ψ1, . . . , ψ4} be the set of complex forms of type (1,0), such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dψj = 0, j = 1, . . . ,3,

dψ4 = a1ψ
12 + a2ψ

23 + a3ψ
11̄ + a4ψ

22̄ + a5ψ
33̄ + a6ψ

1̄2̄ + a7ψ
2̄3̄,

(6.2.7)

where a1, . . . , a7 ∈ Q[i]. Let G be the corresponding simply-connected and connected nilpotent Lie
group and Γ ⊂ G be a lattice such that N = Γ/G is a compact nilmanifold. Assume that

a1a2 + a6a7 = 0 (6.2.8)

and set a = (a1, . . . , a7). Then (N,Ja) does not admit any 2-pluriclosed form.

Proof. A straightforward calculation using (6.2.7) yields to

i
2dd

cψ44̄ = (∣a1∣2 + ∣a6∣2)ψ121̄2̄ + (∣a2∣2 + ∣a7∣2)ψ232̄3̄ + (a1a2 + a6a7)ψ122̄3̄

+(a2a1 + a7a6)ψ231̄2̄

= (∣a1∣2 + ∣a6∣2)ψ121̄2̄ + (∣a2∣2 + ∣a7∣2)ψ232̄3̄

The thesis follows immediately from Lemma 6.1.2.

Remark 6.2.4. For any given a such that (a6, a7) ≠ (0,0), Ja is a non integrable almost complex
structure on N . Consequently, for such an a, (N,Ja) is an almost complex manifold with no
2-pluriclosed forms.
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6.3 Blow-ups of astheno-Kähler metrics

By classical results and more recent ones, (see [27, 154, 4, 54]), we know that, for compact complex
manifolds, the property of admitting, respectively, Kähler, balanced, or SKT metrics, is stable
under blow-ups either in a point or along a compact complex submanifold. Regarding astheno-
Kähler metrics, in [55], it is proved the following result.

Proposition 6.3.1. ([55, Proposition 2.4]) Let (M,J, g) be an astheno-Kähler manifold of complex
dimension n such that its fundamental 2-form F satisfies

ddcF = 0, ddcF 2 = 0. (6.3.1)

Then both the blow-up M̃p of M at a point p ∈ M and the blow-up M̃Y of M along a compact
complex submanifold Y admit an astheno-Kähler metric satisfying (6.3.1), too.

In this section, we will show that blow-ups of astheno-Kähler metrics do not preserve additional
differential properties of the metric, namely we construct an example of a 5-dimensional manifold
M admitting a metric F satisfying

ddcF 2 = 0, ddcF 3 = 0, (6.3.2)

and we will consider the blow-up of such manifold along a submanifold. We will prove that such
blow-up does not admit any Hermitian metric F̃ which satisfies ddcF̃ 2 = 0 and ddcF̃ 3 = 0.

We note that if ddcF = 0, conditions (6.3.1) of [55] would be verified, thus yielding stability.
Therefore, when we consider a Hermitian metric F which satisfies weaker conditions than (6.3.1),
e.g., the astheno-Kähler condition and the differential condition ddcFn−3 = 0, in general such
conditions are not stable under blow-ups

Now, we construct a family of 5-dimensional compact complex nilmanifolds endowed with a
Hermitian metric whose fundamental form F satisfies (6.3.2) and such that the blow-up of M
along a suitable 3-dimensional complex submanifold Y has no Hermitian metrics satisfying (6.3.2).
To this purpose, we start by considering the following nilpotent Lie group G ∶= (C5,∗), where the
operation ∗ is defined for every w = (w1,w2,w3,w4,w5), z = (z1, z2, z3, z4, z5) ∈ C5 by

w ∗ z ∶=
(w1 + z1,w2 + z2,w3 + z3,w4 + z4, z5 + a1w1z2 + a4w1z1 + b4w2z2 + c1w3z4 + c4w3z3 + d4w4z4 +w5),

with a1, a4, b4, c1, c4, d4 ∈ Q[i]. We can then consider the following forms on G

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηi = dzi, i ∈ {1,2,3,4}

η5 = dz5 − a1z1dz2 − a4z1dz1 − b4z2dz2 − c1z3dz4 − c4z3dz3 − d4z4dz4.

It can be easily seen that {η1, . . . , η5} are left-invariant global forms on G with structure equations

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1,2,3,4}
dη5 = −a1η

12 + a4η
11 + b4η22 − c1η

34 + c4η
33 + d4η

44.
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The dual left-invariant complex vectors fields {Z1, Z2, Z3, Z4, Z5} on G are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 = ∂
∂z1

+ a4z1
∂
∂z5

Z2 = ∂
∂z2

+ (a1z1 + b4z2) ∂
∂z5

Z3 = ∂
∂z3

+ c4z3
∂
∂z5

Z4 = ∂
∂z4

+ (c1z3 + d4z4) ∂
∂z5

Z5 = ∂
∂z5

.

We note that TCG = ⟨Z1, . . . , Z5, Z1, . . . , Z5⟩ and the distribution D = ⟨Z1, . . . , Z5⟩ is integrable.
Therefore, if we denote by J the almost complex structure on G for which {Z1, . . . , Z5} is a frame of
(1,0)-vector fields and {η1, . . . , η5} is a coframe of (1,0)-forms, then J is an integrable left-invariant
almost complex structure on G.

Since the constant structures a1, a4, b4, c1, c4, d4 are numbers in Q[i], Malcev theorem assures
the existence of a discrete uniform subgroup Γ such that M ∶= Γ/G is a compact nilmanifold. In
particular, since J is left-invariant on G, it descends to M , i.e., (M,J) is a complex 5-dimensional
nilmanifold. In particular {Z1, . . . , Z5} and {η1, . . . , η5} are a global left-invariant frame of (1,0)-
vector fields, respectively (1,0)-forms on M .

In particular, we point out that M is the nilmanifold associated to the Lie algebra g of Section
4, with structure constants

a2 = a3 = a5 = a6 = a7 = b1 = b2 = b3 = b5 = b6 = c2 = c3 = c5 = d1 = d2 = d3 = 0.

If we denote by
p∶G→M

the natural quotient projection from G to Γ/G and we set

Y0 ∶= {(z1, z2, z3, z4, z5) ∶ z2 = z4 = 0} ⊂ G,

then p(Y0) =∶ Y ⊂ M is a compact complex 3-dimensional submanifold of M whose complexified
tangent bundle TCY is spanned by {Z1, Z3, Z5, Z1, Z3, Z5}.

It is immediate to check that Y is a 3-dimensional nilmanifold and {η1, η3, η5} is a global coframe
of (1,0)-forms on Y with complex structure equations given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dη1 = 0,

dη3 = 0

dη5 = a4η
11 + c4η

33.

(6.3.3)

For the convenience of the reader, we set α1 ∶= η1, α2 ∶= η3, and α3 ∶= η5, so that we can rewrite
(6.3.3) as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dα1 = 0,

dα2 = 0

dα3 = a4α
11 + c4α

22.

(6.3.4)

Now fix the following constant structures

a1 = −1 − 3i, a4 = 1, b4 = 1, c1 = −4, c4 = 2, d4 = 2,
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and consider the metric

F = i

2

5

∑
j=1

ηj ∧ ηj .

For such choice of coefficients, by Theorem 6.2.1, we have that

ddcF 2 = 0, ddcF 3 = 0, ddcF ≠ 0.

Now, let us consider the blow-up π∶ M̃Y →M ofM along the compact complex submanifold Y , with
E the exceptional divisor. We note that E has complex dimension 4, since each fiber π−1(y) ⊂ M̃Y

over a point y ∈ Y has dimension 1 and dimC Y = 3.
By contradiction, now let us assume that the astheno-Kähler condition ddcF 3 = 0 and the

condition ddcF 2 = 0 are stable, i.e., there exists a Hermitian metric on M̃Y such that ddcF̃ 3 = 0
and ddcF̃ 2 = 0.

Then, the restriction of F̃ on E gives rise to a astheno-Kähler metric on E, that is ddc(F̃ ∣E)
2 = 0,

i.e., E is a 2-pluriclosed manifold.
We now recall the following useful proposition by Alessandrini ([3, Proposition 3.1]), adapted

here to the setting of p-pluriclosed manifolds.

Proposition 6.3.2. Let M and N be connected compact complex manifolds, with dimN = n >m =
dimM ≥ 1, and let f ∶N →M be a holomorphic submersion, where a ∶= n −m = dim f−1(x), x ∈M ,
is the dimension of the standard fibre F . If N is p-pluriclosed for some p, a < p ≤ n − 1, then M is
(p − a)-pluriclosed.

Let us consider the map π∣E ∶E → Y . We note that π∣E is a holomorphic submersion with
1-dimensional fibers, therefore by Proposition 6.3.2, we have that Y is 1-pluriclosed, i.e., it admits
a SKT metric.

However, this is absurd by either the characterization of 3-dimensional SKT nilmanifolds by
[53], or Lemma 6.1.2, observing that ddc(−α33) = 8α1212.

Summing up, we have proved the following

Theorem 6.3.3 ([133]). On a compact complex manifold of dimension n, the existence of a Her-
mitian metric F such that

ddcFn−2 = 0, ddcFn−3 = 0

is not preserved by blow-up.

6.4 Geometric Bott-Chern formality and Strong Kähler with Tor-
sion metrics

In this section we investigate the relation between the notions of SKT metrics and geometrically-
Bott-Chern-formal metrics in the setting of nilmanifolds endowed with a left-invariant complex
structure J and a Hermitian metric g.

In complex dimension 3, the existence of SKT metrics is fully characterized by Fino, Parton, and
Salamon, in terms of the complex structure equation of the manifold, as we recall in the following.

Theorem 6.4.1. ([53, Theorem 1.2]). Let M = Γ/G be a 6-dimensional nilmanifold with an
invariant complex structure J . Then the SKT condition is satisfied by either all invariant Hermitian
metrics g or by none. Indeed, it is satisfied if and only if J has a basis (αi) of (1,0)-forms such
that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dα1 = 0

dα2 = 0

dα3 = Aα12 +Bα22 +Cα11 +Dα12 +Eα12

(6.4.1)
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where A,B,C,D,E are complex numbers such that

∣A∣2 + ∣D∣2 + ∣E∣2 + 2Re (BC) = 0. (6.4.2)

We will refer to 6-dimensional nilmanifolds satisfying (6.4.1) and (6.4.2) as
Fino-Parton-Salamon-nilmanifolds, shortly FPS-nilmanifolds and we will denote the Lie algebra of
the group G by the symbol g.

By this classification result, we are able to prove the following theorem.

Theorem 6.4.2 ([133]). Let (M,J) be an FPS-nilmanifold. Then, any left-invariant (SKT) metric
is geometrically-Bott-Chern-formal.

Before proving Theorem 6.4.2, we will need the following lemma for the ∂∂ operator on this
class of manifolds.

Lemma 6.4.3. Let (M,J) be a FPS-nilmanifold. Then,

∂∂ ∣⋀p,q g ≡ 0.

Proof. (of Lemma 6.4.3). We begin by observing that it suffices to prove that ∂∂α33 = 0. In fact,
let us consider the left-invariant (p, q)-form on M

σ ∶= αi1 ∧ ⋅ ⋅ ⋅ ∧ αip ∧ αj1 ∧ . . . αjq .

We note that if σ does not contain α33, them ∂∂σ = 0. In fact, let us consider the two cases:
(1) ik ≠ 3, jl ≠ 3 for every k ∈ {1, . . . , p}, l ∈ {1, . . . , q}.
(2) ik = 3 for some k ∈ {1, . . . , p} and jl ≠ 3 for every l ∈ {1, . . . , q}, or ik ≠ 3 for every k ∈ {1, . . . , p}
and jl = 3 for some l ∈ {1, . . . , q}.

In case (1), by structure equations (6.4.1) we immediately have that ∂αik = ∂αjl = 0. Hence,
by Leibnitz rule, ∂∂σ = ∂(∂σ) = 0.

For case (2), let ik = 3 for k ∈ {1, . . . , p} and jl ≠ 3. Then, up to a sign change, by Leibnitz rule
we have that ∂σ = ∂α3 ∧ σ̂, where σ̂ is σ from which we remove α3. Since ∂α3 = Aα12 + Bα22 +
Cα11 +Dα12, we can write that

∂σ = Aα12 ∧ σ̂ +Bα22 ∧ σ̂ +Cα11 ∧ σ̂ +Dα12 ∧ σ̂.

Since ∂σ does not contain α3 or α3, once again by (6.4.1) and Leibnitz rule, we obtain ∂∂σ =
∂(∂σ) = 0. Analogous computations can be carried out when ik ≠ 3 for every k ∈ {1, . . . , p} and
jl = 3 for some l ∈ {1, . . . , q}.

Let us then consider ∂∂α33. If g is any left-invariant metric on (M,J) with fundamental
associated form

F = i

2

3

∑
k=1

Fkkα
kk + 1

2
∑
k<h

(Fkhα
kh − F khα

hk)

then, by the above argument ∂∂F = i
2F33∂∂α

33. By Theorem 6.4.1, any left-invariant Hermitian
metric on (M,J) is SKT, therefore, g is SKT, i.e., ∂∂F = ∂∂α33 = 0.

Therefore, up to swapping the forms and changing the sign accordingly, for a left-invariant
form σ = α33 ∧ σ̂ with σ̂ not containing α3 nor α3, for the above arguments we have that ∂∂σ =
∂∂(α33) ∧ σ̂ = 0. Then, by linearity of the ∂∂ operator, we can conclude.
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Proof (of Theorem 6.4.2). First of all, we observe that the complex structure J on the nilman-
ifold M ∶= Γ/G is nilpotent, i.e., there exists a basis of (1,0)-forms {αi}3

i=1, such that dα ∈
SpanC⟨αij , αij⟩2

i,j=1. Hence, [11, Theorem 3.7] (see also [124, Corollary 3.12]) yields the isomor-
phisms

Hp,q
BC(g, J)↪Hp,q

BC(M), (6.4.3)

i.e., the Bott-Chern cohomology of (M,J) can be computed via the subcomplex of left-invariant
forms.

Now, let g be a left-invariant metric on (M,J) with fundamental associated form F . We will
show that g is geometrically-Bott-Chern-formal. Let us then fix two Bott-Chern harmonic forms
β ∈ Hp,qBC(M,g), γ ∈ Hr,sBC(M,g). Then, the product β ∧ γ is Bott-Chern harmonic with respect to
g if, and only if,

d(β ∧ γ) = 0, ∂∂ ∗g (β ∧ γ) = 0.

By Leibnitz rule, d(β ∧ γ) = 0 since both β and γ are Bott-Chern harmonic. Moreover, by Lemma
6.4.3, ∂∂(∗gβ ∧ γ) = 0, i.e., β ∧ γ ∈ Hp+r,q+sBC (M,g). Hence, g is a geometrically-Bott-Chern -formal
metric on (M,J).

A similar result also holds for a class of manifolds which generalizes the FPS manifolds in higher
dimensions.

Theorem 6.4.4 ([133]). Let M be any 2n-dimensional nilmanifold endowed with an invariant
integrable almost complex structure J induced by a coframe {η1, . . . , ηn} of left-invariant (1,0)-
forms on (M,J) with structure equations given by

⎧⎪⎪⎨⎪⎪⎩

dηi = 0, i ∈ {1, . . . , n − 1},
dηn ∈ Span⟨ηij , ηij⟩i,j=1,...,n−1.

Then, any invariant SKT metric is geometrically-Bott-Chern-formal.

Proof. In a similar fashion to proof of Theorem 6.4.2, it can be shown that, if there exists a
left-invariant SKT metric on (M,J), then ∂∂ηnn = 0, and in particular the ∂∂ operator vanishes
on any left-invariant form on (M,J). Notice that the Bott-Chern cohomology of (M,J) can be
computed via the subcomplex of left-invariant forms and its Bott-Chern harmonic representatives
are invariant since the complex structure J is nilpotent and [11, Theorem 3.8] applies. Hence, if g
is a SKT metric on (M,J) and we take two Bott-Chern harmonic forms α and β of bedegree (p, q),
respectively (r, s), then α and β are left-invariant and α ∧ β ∈ ⋀p+r,q+s g satisfies d(α ∧ β) = 0 and
by, structure equations, ∂∂(∗gα∧β) = 0. Therefore α∧β is Bott-Chern harmonic, i.e., the product
of two left-invariant Bott-Chern harmonic forms with respect to g is Bott-Chern harmonic. This
implies that every left-invariant SKT metric is geometrically-Bott-Chern-formal.

In higher dimension and under more general conditions on the complex structure of the nil-
manifold, however, similar results do not hold. Certain products of compact complex surfaces, e.g.,
are SKT but do not admit geometrically-Bott-Chern-formal metrics, as proved in the following
theorem.

Theorem 6.4.5 ([133]). Let (M,J) be the product of either two Kodaira surfaces, two Inoue
surfaces, or a Kodaira surface and a Inoue surface. Then (M,J) admits SKT metrics but does not
admit geometrically-Bott-Chern-formal metrics.
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Proof. We begin by noticing that given the product of any two of the above compact complex
surfaces (M,J) = (M ′, J ′) × (M ′′, J ′′), such manifold admits an SKT metric.

Let us consider the product metric g ∶= g′ + g′′, given by the sum of the diagonal constant
metrics g′ and g′′ with respect to certain coframes {η1, η2} and {η3, η4} on, respectively, (M ′, J ′)
and (M ′′, J ′′) and let

F ′ = i

2
(η11 + η22), F ′′ = i

2
(η33 + η44)

be the fundamental forms associated to, respectively, g′ and g′′. By a dimension argument, we have
that on each factor

∂∂F ′ = 0, ∂∂F ′′ = 0.

Therefore, if F ∶= F ′ + F ′′, it is clear that

∂∂F = ∂∂F ′ + ∂∂F ′′ = 0,

i.e., the product metric g is SKT on (M,J). (We will refer to such metric by g.)
We will show that none of the above product manifolds admits geometrically-Bott-Chern-formal

metrics by exhibiting a non vanishing Aeppli-Bott-Chern-Massey product on each manifold.
Note that on each product, Bott-Chern and Aeppli cohomologies can be computed via the

subcomplex of invariant complex forms, as follows. First of all, the de Rham cohomology and
the Dolbeault cohomology of compact surfaces diffeomorphic to solvmanifolds can be computed in
terms of invariant forms, see, e.g., [12]. Therefore, applying Kunneth formula, it follows that the de
Rham and the Dolbeault cohomologies of the product of any two such surfaces can be computed in
terms of the invariant forms. By [11, Theorem 3.7], also the Bott-Chern and Aeppli cohomologies
can be computed in terms of the invariant forms.

(i) The product of two Kodaira surfaces of primary type.
Let (M,J) = (KT,JKT ) × (KT,JKT ) be the product of two Kodaira surfaces. The complex
structure J is determined by the coframe {η1, η2, η3, η4} of left-invariant (1,0)-forms such that its
structure equations read

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0

dη2 = Aη11

dη3 = 0

dη4 = Bη33,

(6.4.4)

for A,B ∈ C ∖ {0}.
From (6.4.4), it is easy to see that the following Bott-Chern cohomology classes

[η11]BC , [η33]BC , [η3]BC ,

are non zero. Also, we have that

η11 ∧ η33 = ∂∂ (− 1

AB
η24) , η33 ∧ η3 = 0. (6.4.5)

Then, it is well defined the following Aeppli-Bott-Chern-Massey product

⟨[η11]BC , [η33]BC , [η3]BC⟩ABC = [− 1

AB
η234]

A
∈

H2,1
A (M)

H1,0
A (M) ∪ [η11]BC +H1,1

A (M) ∪ [η3]BC
.

Since d ∗ η234 = −d(η12314) = 0, the form η234 is Aeppli harmonic, hence, as a cohomology class in
H2,1
A (M), we have that

[− 1

AB
η234]

A
≠ 0.



112 CHAPTER 6. COHOM. AND FORM. PROPERTIES OF SKT AND AK METRICS

It remains to show that [− 1
AB

η234]
A
∉H1,0

A (M) ∪ [η11]BC +H1,1
A (M) ∪ [η3]BC .

Let us then suppose, by contradiction, the opposite, i.e.,

− 1

AB
η234 =

h1,0A

∑
i=1

riξ
i ∧ η11 +

h1,1A

∑
j=1

sjψ
j ∧ η3 + ∂R + ∂S, (6.4.6)

where hp,qA ∶= dimHp,qA (M,g), ri, sj ∈ C, R ∈ A1,1(M), S ∈ A2,0(M), and {ξi} and {ψj} are the
left-invariant harmonic representatives of, respectively, H1,0

A (M), and H1,1
A (M), with respect to g.

It is immediate to compute the invariant Aeppli cohomology of (M,J) of bi-degree (1,0) and
(1,1), resulting in

ξ1 = η1, ξ2 = η2, ξ3 = η3, ξ4 = η4,

ψ1 = η12, ψ2 = η13, ψ3 = η14, ψ4 = η21, ψ5 = η22, ψ6 = η23, ψ7 = η31,

ψ8 = η32, ψ9 = η33, ψ10 = η34, ψ11 = η41, ψ12 = η43, ψ13 = η24 − AB
AB

η42.

Then, equation (6.4.6) can be rewritten as

− 1

AB
η234 = −r2η

121 − r3η
131 − r4η

141 − s1η
132 − s2η

133 − s3η
134 − s4η

231 − s5η
232 (6.4.7)

− s6η
233 + s10η

341 + s11η
343 + s12η

344 − s13η
234 − s13

AB

AB
η342 + ∂R + ∂S.

We note that the form η12134 is d-closed. Therefore, if we multiply (6.4.7) by η12134, we obtain

0 = s13
AB

AB
η12341234 + ∂(R ∧ η12134) + ∂(S ∧ η12134),

i.e.,

s13
AB

AB
Vol = ∂(−R ∧ η12134) + ∂(−S ∧ η12134). (6.4.8)

By integrating (6.4.8) and applying Stokes theorem on a manifold with empty boundary, we obtain
that s13 = 0.

If we repeat the same argument, multiplying now (6.4.7) by the d-closed form η14123, we obtain

1

AB
Vol = ∂(R ∧ η14123) + ∂(S ∧ η14123),

which, by integrating and Stokes theorem, leads to a contradiction.
To summarize,

⟨[η11]BC , [η33]BC , [η3]BC⟩ABC ≠ 0,

i.e., we obtained a non vanishing Aeppli-Bott-Chern-Massey product, which, by [18, Theorem 2.4],
implies that (M,J) does not admit geometrically-Bott-Chern-formal metrics.

(ii) The product of two Inoue surfaces of type SM .
Let (M,J) = (SM , JSM ) × (SM , JSM ) be product of two Inoue surfaces of type SM . The com-
plex structure J is determined by the left-invariant (1,0)-coframe {η1, η2, η3, η4} with structure
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = α−iβ
2i η

12 − α−iβ
2i η

12

dη2 = −iαη22

dη3 = γ−iδ
2i η

34 − γ−iδ
2i − γ−iδ

2i η
34

dη4 = −iγη44,

(6.4.9)
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for α, γ ∈ R ∖ {0}, β, δ ∈ R.
From (6.4.9), it is clear that the following Bott-Chern cohomology classes

[η22]BC , [η343]BC , [η44]BC

are well defined and non zero. Moreover,

η22 ∧ η343 = ∂∂(− 1

2αγ
)η233, η343 ∧ η44 = 0,

hence the following Aeppli-Bott-Chern-Massey product

⟨[η22
BC , [η343]BC , [η44]BC⟩ABC = [ 1

αγ
η23434]

A

∈
H3,2
A (M)

H2,1
A ∪ [η22]BC +H2,1

A (M) ∪ [η44]BC
,

is well defined.
Note that since d(∗gη23434) = −d(η121) = 0, the form η23434 is Aeppli-harmonic and, as a Aeppli

cohomology class,

[ 1

αγ
η23434]

A

≠ 0.

It remains to show that [ 1
αγ η

23434]
A
∉H2,1

A ∪ [η22]BC +H2,1
A (M)∪ [η44]BC . In order to do, we prove

that H2,1
A (M) = {0}, yielding that H2,1

A ∪ [η22]BC +H2,1
A (M) ∪ [η44]BC = 0.

By definition, we observe that

H2,1
A (M) ∶=

Ker(∂∂∣A2,1(M))

Im(∂∣A1,1(M)) + Im(∂∣A2,0(M))

With the aid of structure equations (6.4.9) and Sagemath, we can compute

dimC Ker(∂∂∣⋀2,1 g
) = 15

dimC Im(∂∣⋀1,1 g
) = 12

dimC Im(∂∣⋀2,0 g
) = 6

dimC Im(∂∣⋀1,1 g
) ∩ Im(∂∣⋀2,0 g

) = 3,

so that

dimCH
2,1
A (M) = dimC Ker(∂∂∣⋀2,1 g

) − dimC(Im(∂∣⋀1,1 g
) + Im(∂∣⋀2,0 g

))

= 15 − (18 − 3) = 0.

Therefore, H2,1
A (M) = {0} and

⟨[η22]BC , [η343]BC , [η44]BC⟩ABC = [ 1

αγ
η23434]

A

≠ 0,

which, by [18, Theorem 2.4] implies that (M,J) does not admit any geometrically-Bott-Chern-
formal metric.

(iii) The product of a Inoue surface of type SM and a primary Kodaira surface.
Let (M,J) = (SM , JSM ) × (KT,JKT ) be the product of a Inoue surface of type SM and a primary
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Kodaira surfaces. The complex structure J is determined by the coframe of left-invariant (1,0)-form
{η1, η2, η3, η4} with structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = α−iβ
2i η

12 − α−iβ
2i η

12

dη2 = −iαη22

dη3 = 0

dη4 = Aη33,

(6.4.10)

with α ∈ R ∖ {0}, β ∈ R, B ∈ C ∖ {0}.
We consider the following Bott-Chern cohomology classes

[η22]BC , [η33]BC , [η3]BC .

They are clearly well defined and they are not zero. Moreover,

η22 ∧ η33 = ∂∂ ( 1

iαA
η24) , η33 ∧ η3 = 0.

Therefore, the Aeppli-Bott-Chern-Massey product

⟨[η22]BC , [η33]BC , [η3]BC⟩ABC = [ 1

iαA
η234]

A
∈

H2,1
A (M)

H1,0
A (M) ∪ [η22]BC +H1,1

A (M) ∪ [η3]BC
is well defined.

Note that d ∗ ( 1
iαA

η234) = − 1
iαA

d(η12314) = 0, i.e., the form 1
iαA

η234 is Aeppli-harmonic and

[ 1

iαA
η234]

A
≠ 0,

as a Aeppli cohomology class.
It remains to show that [ 1

iαA
η234]

A
∉ H1,0

A (M) ∪ [η22]BC +H1,1
A (M) ∪ [η3]BC . Let us suppose

by contradiction that this is the case, i.e.,

1

iαA
η234 =

h1,0A

∑
i=1

λiξ
i ∧ η22 +

h1,1A

∑
j=1

µjψ
j ∧ η3 + ∂R + ∂S, (6.4.11)

with λi, µj ∈ C, R ∈ A1,1(M), S ∈ A2,0(M), and {ξi} and {µj} are, respectively, a basis for
H1,0
A (M,g) and H1,1

A (M,g). By structure equations (6.4.10), we can compute the spaces of Aeppli-
harmonic forms with respect to g

H1,0
A (M,g) = ⟨η3⟩, H1,1

A (M,g) = ⟨η33, η34, η43⟩.

Then, equation (6.4.11) becomes

1

iαA
η234 = −λ1η

233 + ∂R + ∂S. (6.4.12)

Since the form η14123 is d-closed, if we multiply (6.4.12) by η14123, we obtain

1

iαA
Vol = ∂(−R ∧ η14123) + ∂(−S ∧ η14123),

which, by integrating over M and applying Stokes theorem, leads to contradiction.
Hence, we showed that

⟨[η22]BC , [η33]BC , [η3]BC⟩ABC ≠ 0,

i.e., (M,J) admits a non vanishing Aeppli-Bott-Chern-Massey product. By [18, Theorem 2.4], this
implies that (M,J) does not admit any geometrically-Bott-Chern-formal metric.
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We prove one more result in this direction, showing that the existence of Aeppli-Bott-Chern-
Massey products obstructs the existence of geometrically-Bott-Chern-formal metrics on a family
of 4-dimensional complex nilmanifolds which cannot be constructed as a product of two or more
manifolds.

We start by considering the set of complex forms {η1, η2, η3, η4} of type (1,0) satisfying the
following structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0

dη2 = 0

dη3 = Aη21

dη4 = B1η
12 +B2η

11 +B3η
22,

with A,B1,B2,B3 ∈ Q[i]. Let g∗ = SpanR⟨Re(ηi)Im(ηi)⟩i=1,...,4. Then, setting
g1,0 = SpanC⟨η1, η2, η3, η4⟩, we obtain that g∗C = g1,0⊕g1,0 gives rise to an integrable almost complex
structure J on the real nilpotent Lie algebra g. We will consider the natural complex structure
J on g which arises by choosing {η1, η2, η3, η4} as a coframe of (1,0)-form on g∗C. Let G be the
simply-connected and connected Lie group with Lie algebra g. By Malcev’s theorem we have that
the 8-dimensional real Lie group G associated to g admits a discrete uniform subgroup Γ such that
M ∶= Γ/G is compact and, in particular, (M,J) is an 8-dimensional nilmanifold with an invariant
complex structure.

Moreover, since J is nilpotent complex structure on (M,J), by [11, Theorem 3.8] (see also,
[123, Corollary 3.12]), we have the following isomorphisms

Hp,q
BC(g, J)→Hp,q

BC(M),

i.e., the Bott-Chern cohomology of (M,J) can be computed by means of the complex of left-
invariant forms on g.

Theorem 6.4.6 ([133]). Let M = Γ/G be a complex 4-dimensional nilmanifold endowed with the
left-invariant complex structure J determined by a coframe of (1,0)-forms {η1, η2, η3, η4} with struc-
ture equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dη1 = 0

dη2 = 0

dη3 = Aη21

dη4 = B1η
12 +B2η

11 +B3η
22,

(6.4.13)

with A ∈ C ∖ {0}, Bj ∈ Q[i], such that

∣A∣2 + ∣B2∣2 = 2Re (B2B3). (6.4.14)

Then (M,J) admits a SKT metric but does not admit any geometrically-Bott-Chern-formal metric.

Proof. Let now consider the diagonal metric g with fundamental associated form

F = i

2

4

∑
h=1

ηhh.

With the aid of (6.4.13) and (6.4.14), we can see clearly that g is SKT, i.e., ∂∂F = 0.
We will show that (M,J) admits a non vanishing ABC-Massey product, which suffices to prove

that there exists no geometrically-Bott-Chern-formal metric on (M,J).
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Let us consider the following Bott-Chern cohomology classes

[η11]BC , [η22]BC , [η2]BC .

Since
η22 ∧ η2 = 0, η11 ∧ η22 = ∂∂( 1

∣A∣2
η33),

the Aeppli-Bott-Chern-Massey product

⟨[η11]BC , [η22]BC , [η2]BC⟩ABC = [− 1

∣A∣2
η233]

A

∈
H2,1
A (M)

H1,0
A (M) ∪ [η11]BC +H1,1

A (M) ∪ [η2]BC
,

is well defined.
We notice that the d∗g ( 1

∣A∣2 η
233) = 1

∣A∣2d(η
12414) = 0, i.e., the form η233 is Aeppli harmonic and,

as a Aeppli cohomology class, we have that [− 1
∣A∣2 η

233]A ≠ 0. It remains to show that [− 1
∣A∣2 η

233]A ∉
H1,0
A (M) ∪ [η11]BC +H1,1

A (M) ∪ [η2]BC .
Let us now suppose by contradiction that [− 1

∣A∣2 η
233]A ∈H1,0

A (M)∪[η11]BC +H1,1
A (M)∪[η2]BC .

By straightforward computations, it is easy to check that the spaces H1,0
A (M,g) and H1,1

A (M,g)
are generated, respectively, by ⟨ψj⟩2

j=1 and ⟨ξi⟩11
i=1, where

ψ1 = η1, ψ2 = η2,

and

ξ1 = η13, ξ2 = η14, ξ3 = η23, ξ4 = η24,

ξ5 = η31, ξ6 = η32, ξ7 = η34, ξ8 = η41,

ξ9 = η42, ξ10 = η43, ξ11 = η33 + η44.

Then, [− 1
∣A∣2 η

233]A ∈H1,0
A (M) ∪ [η11]BC +H1,1

A (M) ∪ [η2]BC implies that

− 1

∣A∣2
η233 =

2

∑
i=1

riψ
i ∧ η11 +

11

∑
j=1

sjξ
j ∧ η2 + ∂R + ∂S, (6.4.15)

for ri, sj ∈ C, R ∈ A1,2(M), S ∈ A2,1(M), so that

− 1

∣A∣2
η233 = −r2η

121 − s1η
213 − s2η

124 + s5η
231 + s6η

232 + s7η
234 (6.4.16)

+s8η
241 + s9η

242 + s10η
243 + s11η

233 + s11η
244 + ∂R + ∂S.

We note that the form η13123 is d-closed, therefore, if we multiply (6.4.16) by η13123, we obtain

0 = s11η
12341234 + ∂(R ∧ η13123) + ∂(S ∧ η13123),

which, by integrating and applying Stokes theorem, forces s11 = 0. Equation (6.4.16) reduces to

− 1

∣A∣2
η233 = −r2η

121 − s1η
213 − s2η

124 + s5η
231 + s6η

232 (6.4.17)

+s7η
234 + s8η

241 + s9η
242 + s10η

243 + ∂R + ∂S.
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Now, the form η14124 is d-closed, so if we multiply (6.4.17) by η14124, we obtain

− 1

∣A∣2
Vol = ∂(R ∧ η14124) + ∂(S ∧ η14124),

which, by integration and applying Stokes theorem, leads to contradiction.
Therefore, we showed that

⟨[η11]BC , [η22]BC , [η2]BC⟩ABC ≠ 0,

i.e., (M,J) admits a non vanishing Aeppli-Bott-Chern-Massey product, which implies that (M,J)
does not admit any geometrically-Bott-Chern-formal metric.
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Appendix A

We present the notion of complex manifold as a differentiable manifold endowed with an equivalence
class of holomorphic atlases.

LetM be a differentiable manifold of real dimension 2n. A holomorphic chart onM (U,ϕ) is the
datum of a open set U ⊂M and a map ϕ∶U → ϕ(U) ⊂ Cn, which is a homeomorphism. In particular,
for every point p ∈ U , we have holomorphic coordinates ϕ(p) = (z1(p), . . . , zn(p)). We will denote
such coordinates as (z1, . . . , zn). A holomorphic atlas on M is a collection of holomorphic charts
on M {(Ui, ϕi)}i∈I such that

• ⋃i∈I Ui =M , i.e., the family {Ui}i∈I is a covering of M ;

• on any Ui ∩ Uj ≠ ∅, the transition function ϕij ∶= ϕj ○ ϕ−1
i ∶ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a

biholomorphism between open sets of Cn.

Let U = {(Ui, ϕi)}i∈I , V = {(Vj , ψj)}j∈J be two holomorphic atlases on M . We say that a holomor-
phic chart (Ui, ϕi) of U is compatible with a holomorphic chart (Vj , ψj) of V if, on Ui ∩ Vj ≠ ∅,
the map ϕi ○ ψ−1

j ∶ψj(Ui ∩ Vj) → ϕi(Ui ∩ Vj) is s holomorphic map between open subsets of Cn.
Moreover, two atlases of M U and V are compatible if every holomorphic charts of U is compatible
with every holomorphic chart of V.

Remark. Compatibility yields an equivalence relation on the set of holomorphic atlases.

Definition. A complex manifold M of complex dimension n is a differential manifold M of real
dimension 2n endowed with an equivalence class of holomorphic atlases.

We will denote the complex dimension of M by dimCM.

For the sake of simplicity, from now on, unless specified, we will call an equivalence class of
holomorphic atlases simply a “holomorphic atlas".

Let M be a complex manifold and let f ∶M → C be a continuous map from M to C. We
say that f is a holomorphic function on M if, for every holomorphic chart (U,ϕ) of M , the map
f ○ ϕ−1∶ϕ(U)→ C is holomorphic.

Remark. Given two holomorphic charts (U,ϕ), (V,ψ) in the same holomorphic atlas of M , with
U∩V ≠ ∅, if f○ϕ−1 is holomorphic where defined, then f○ψ−1 = f○(ϕ−1○ϕ)○ψ−1 = (f○ϕ−1)○(ϕ○ψ−1)
is holomorphic where defined.

Let M and N be two complex manifolds of complex dimension, respectively, n and m and let
f ∶M → N be a continuous s map. We say that f is holomorphic if for every holomorphic chart
(U,ϕ) of M and every holomorphic chart (V,ψ) of N such that f(U) ∩ V ≠ ∅, the map

ψ ○ f ○ ϕ−1∶ϕ(U ∩ f−1(V )))→ ψ(V )

is a holomorphic map between opens of Cn and Cm. In particular, f is said a biholomorphism if f
is a holomorphic homeomorphism, and the manifolds M and N are said biholomorphic.
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Let M and let E be a two differentiable manifolds with, respectively dimRM = n and dimRE =
n + 2r. A complex vector bundle of rank r over M is a smooth map π∶E →M such that, for every
p ∈M , Ep ∶= π−1(p), i.e., the fiber of E over p, has a structure of a r-dimensional complex vector
space andM admits a covering {Ui}i∈I such that there exists diffeomorphisms ψi∶π−1(Ui)→ Ui×Cr,
for every i ∈ I, with the following properties:

• π∣π−1(Ui) = π1 ○ψi, where π1 is the projection on the first component of each Ui ×Cr, i.e., the
following diagram is commutative

π−1(Ui) Ui ×Cn

Ui

ψi

π∣π−1(Ui) π1

• for every p ∈ Ui, the restriction ψi∣Ep ∶Ep → {p} ×Cr is a C-linear map.

For every i, j ∈ I such that Ui ∩ Uj ≠ ∅, the transition functions ψij ∶= ψj ○ ψ−1
i ∶ψi(Ui ∩ Uj) →

ψj(Ui ∩ Uj) are smooth maps. More precisely, ψij is a diffeomorphism of (Ui ∩ Uj) × Cr and, for
every p ∈ Ui ∩Uj , the restriction ψij(p) of ψij to {p}×Cr gives a C-linear automorphism of Cr and
p↦ ψij(p) ∈ GL(r;C) is a smooth map.

A holomorphic vector bundle of rank r over a complex manifold M of complex dimension n
differs in the fact the one requires E to be a complex manifold of complex dimension n+r, the map
π∶E →M to be holomorphic, and the maps ψi and the induced maps p ↦ ψij(p) ∈ GL(r,C) to be
holomorphic.

Remark. A complex vector bundle π∶E → M of rank r is also a differentiable vector bundle of
rank 2r, by considering the underlying differentiable structure on E and the structure of real vector
space on each fiber Ep, p ∈M . Viceversa, a differentiable bundle E →M or rank r can be considered
as complex vector bundle E ⊗ C → M or rank r by considering the complexification of each fiber
(E⊗C)p = Ep⊗C. Moreover, a holomorphic vector bundle is clearly also a complex vector bundle,
whereas a complex vector bundle over a complex manifold does not have in general a structure of
holomorphic vector bundle.

As for differentiable and complex vector bundles, a holomorphic vector bundle E is uniquely
determined by a cocyle, i.e., a covering {Ui}i∈I of the base manifold and holomorphic maps {θij ∶Ui∩
Uj → GL(r;C)}i,j∈I , where r is the rank of E, which satisfy the following properties:

• θii(p) = idCr , for every p ∈ Ui,

• θ−1
ij (p) = θji(p), for every p ∈ Ui ∩Uj ,

• θki(p) ○ θjk(p) ○ θij(p) = idCr , for every p ∈ Ui ∩Uj ∩Uk.

Example (Holomorphic tangent bundle). Let M be a complex manifold with dimCM = n and let
{(Ui, ϕi)} be a holomorphic atlas of M , with ϕi = (zi1, . . . , zin). Locally, we consider the following
sets

Ui ×Cn = {(p, vi)∣ p ∈ Ui, vi = t(vi1, . . . , vin) ∈ Cn}.

On the intersections, if p ∈ Ui ∩Uj ≠ ∅ and (p, vi) ∈ Ui ×Cn, (p, vj) ∈ Uj ×Cn, we have the relations

vil =
n

∑
k=1

∂zil

∂zjk
vjk, for l = 1, . . . , n,
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so that, if we set

ψij ∶=
⎛
⎝
∂zil

∂zjk

⎞
⎠

n

l,k=1

∈ GL(n;C), (6.4.18)

we have that vi = ψijvj .
Then TM ∶= ⋃i(Ui × Cn), endowed with the identifications given by ψij as in (6.4.18), is the

holomorphic tangent bundle of M .
Note that the tangent bundle TM of the differentiable manifold underlying a complex manifold

M of complex dimension n is a differentiable vector bundle of rank 2n and, by considering its
complexified version TCM ∶= TM ⊗C, it is a complex vector bundle of rank 2n over M .

Let now π1∶E1 →M and π2∶E2 →M be two holomorphic (respectively, complex) vector bundles
over M of rank, respectively r1, and r2. Then a map of holomorphic, respectively complex vector
bundles is a holomorphic, respectively differentiable map Φ∶E1 → E2 such that the following diagram
is commutative

E1 E2

M M

Φ

π1 π2

id

and for every point p ∈ M , the restriction Φ(p)∶ (E1)p → (E2)p is linear and the rank of Φ(p) is
independent of p ∈M.

Let now f ∶M → C be a complex valued function on M . It may be useful to describe the
local action of the exterior differential d on f . If (z1, . . . , zn) are holomorphic coordinates on a
neighborhood U ⊂M , then locally on U ,

df = ∂f + ∂f =
n

∑
j=1

∂f

∂zj
dzj +

n

∑
j=1

∂f

∂zj
dzj ,

where dzj and dzj are, respectively, the holomorphic (1,0)-forms and anti-holomorphic (0,1)-
forms, dual to the (1,0)-vector fields ∂

∂zj
and (0,1)-vector fields ∂

∂zj
induced by the holomorphic

coordinates (z1, . . . , zn). In particular, by identifying Cn with R2n, the holomorphic coordinates
can be thought of as zj = xj + iyj and one obtains that

∂

∂zj
= 1

2
( ∂

∂xj
− i ∂
∂yj

) , ∂

∂zj
= 1

2
( ∂

∂xj
+ i ∂
∂yj

) ,

and
dzj = dxj + idyj , dzj = dxj − idyj .

Note that with this notation, a complex function f is holomorphic if, and only if, ∂f = 0.
Analougously, for any given form α on M locally written as

α = αIJdz
I ∧ dzJ ,

where I = {1 ≤ i1 < ⋅ ⋅ ⋅ < ip ≤ n} and J = {1 ≤ j1 < ⋅ ⋅ ⋅ < jq ≤ n} and dzI ∶= dzi1 ∧ ⋅ ⋅ ⋅ ∧ dzip and
dzJ ∶= dzj1 ∧ ⋅ ⋅ ⋅ ∧ dzjq , the local expression of the action of d is given by

dα = ∂α + ∂α =
n

∑
k=1

∂αIJ
∂zk

dzk ∧ dzI ∧ dzJ +
n

∑
k=1

∂αIJ
∂zk

dzk ∧ dzI ∧ dzJ .
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We also recall the implicit formulas for the exterior differential on any differential form α on M .
More specifically, if α = α1 ∧ ⋅ ⋅ ⋅ ∧αk is any complex k-form (see Section 1) on M and Z1, . . . , Zk+1 ∈
TCM , then

dα(Z1, . . . , Zk+1) =
k+1

∑
j=1

(−1)j+1Zj(α(Z1, . . . , Ẑj , . . . , Zk+1)

+ ∑
1≤j<l≤k+1

(−1)j+lα([Zj , Zl], Z1, . . . , Ẑj , . . . , Ẑl, . . . , Zk+1).
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Appendix B

In this appendix, we recall the notion of formality according to Sullivan and geometric formality
according to Kotschick as introduced in [143], respectively, [87]. In order to do so, we lend the
terminology from the category of differential graded algebras.

Let M be a n-dimensional smooth manifold and let (⋀●(M), d) be its de Rham complex. Such
a complex has a structure of a differential graded algebra (shortly, DGA), i.e., the structure of an
algebra A over some field K which is decomposable as A = ⊕jAj , where each Aj is a subalgebra
of A, and which is endowed with a differential dA, i.e., a K-linear map d∶A→ A such that

• d(Aj) ⊂ Aj+1,

• d(α ⋅ β) = dα ⋅ β + (−1)degαα ⋅ dβ, for every α,β ∈ A,

• d2 = 0.

In this category, a morphism of DGA’s is an algebras morphism f ∶ (A, dA) → (B, dB) such that
f(Aj) ⊂ Bj and dB ○ f = f ○ dA. The cohomology of a DGA (A, dA) is the DGA (H●

A,0), where
each space Hk

A is defined as

Hk
A ∶=

Ker(dA∶Aj → Aj+1)
Im(dA∶Aj−1 → Aj)

.

By definition, a morphism of DGA’s f ∶ (A, dA) → (B, dB) commutes with the differentials dA and
dB, hence it induces a DGA’s morphism at the level of cohomologies

Hf ∶ (H●
A,0)→ (H●

B,0)

by Hf([α]) ∶= [f(α)], for every [α] ∈H●
A. We say that a morphism of DGA’s f ∶ (A, dA)→ (B, dB)

is a quasi-isomorphism if Hf is an isomorphism.
Let us now consider two DGA’s (A, dA) and (B, dB). We say that (A, dA) and (B, dB) are

equivalent as DGA’s if there exists a family of DGA’s {(Cj , dCj)}2k+1
j=1 such that (C0, dC0) = (A, dA)

and (C2k+1, dC2k+1) = (B, dB), for each i ∈ {1, . . . , k}, there exists morphisms fi and gi

(C2i, dC2i)

(C2i−1, dC2i−1) (C2i+1, dC2i+1)

fi gi

such that Hfi and Hgi are quasi-isomorphisms, for every i ∈ {1, . . . , k}.

Definition. A DGA (A, dA) is said formal if it is equivalent, as a DGA, to a DGA (B, dB) whose
differential dB is identically zero, i.e., dB ≡ 0.

Whence, the definition of formality according to Sullivan, see [143, Definition ].
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Definition. A differentiable manifold M is said to be formal according to Sullivan if its de Rham
complex (A●(M), d) is a formal DGA.

Examples of formal manifolds are compact Kähler manifold, or more generally, complex mani-
folds satisfying the ∂∂-lemma, see, e.g., [47]. However, in general a manifold is not formal according
to Sullivan; more precisely, there exist certain cohomological obstructions. We present here the def-
inition adapted to the de Rham complex of a differentiable manifold M , see [99].

Definition. Let [α] ∈ Hp
dR(M), [β] ∈ Hq

dR(M), and [γ] ∈ Hr
dR(M) be de Rham cohomology

classes on M such that [α] ∪ [β] = 0 ∈ Hp+q
dR (M) and [β] ∪ [γ] = 0 ∈ Hq+r

dR (M), i.e., there exist
fαβ ∈ Ap+q−1(M) and fβγ ∈ Aq+r−1(M) such that

α ∧ β = dfαβ, β ∧ γ = dfβγ .

Then, the Massey product ⟨[α], [β], [γ]⟩ is the equivalence class of de Rham cohomology classes
defined as

⟨[α], [β], [γ]⟩ ∶= [fαβ ∧ γ − (−1)pα ∧ fβγ] +J ∈
Hp+q+r−1
dR (M)
J

,

where J is the ideal of Hp+q+r−1
dR (M) defined by J ∶= [α] ∪Hq+r−1

dR (M) + [γ] ∪Hp+q−1
dR (M).

Massey products do not depend on the representatives α, β, and γ nor on the primitives fαβ
and fβγ , hence they are well defined. Moreover, if f ∶ (A, dA)→ (B, dB) is a DGA’s morphism, then
it is easy to see that Massey products are compatible with Hf , i.e., it holds

Hf ⟨[α], [β], [γ]⟩ = ⟨Hf [α],H(f)[β],H(f)[γ]⟩.

Hence, we immediately have the following.

Proposition. On a formal manifold M , all Massey products vanish.

In general, on a compact differentiable manifoldM , the choice of representatives for the de Rham
cohomology yields just a structure of A∞-algebra in the sense of Stasheff [134], by the Homotopy
Transfer Principle by Kadeishvili [80], see e.g. [156, 102]. We refer to [97, 34] for understanding
the relationship between the higher multiplications and the Massey products. Such an A∞-algebra
is actually an algebra if and only if X is formal according to Sullivan. In particular, when we can
choose a specific set of representatives, we obtain a strong notion of formality, which has then been
introduced by Kotschick in [87]. Let M be a differentiable manifold endowed with a Riemannian
metric g. Then, set d∗ ∶= − ∗ ○d ○ ∗, where ∗ is the usual Hodge operator on A●(M), and set
∆ ∶= dd∗ + d∗d, i.e., the usual Hodge Laplacian, and

Hk∆(M) ∶= {α ∈ Ak(M) ∶ ∆α = 0}

the harmonic k-forms on M with respect to g, for every k ∈ {1, . . . ,dimM}. Recall that, by Hodge
theory, the following isomorphisms of real vector spaces hold

Hk∆(M)→Hk
dR(M).

In fact, whereas de Rham cohomology has a structure of algebra induced by the ∪ product of
cohomology classes, the wedge product in general does not induce a structure of algebra on the
space of harmonic forms. Hence, the following definition.

Definition. The Riemannian metric g is said to be formal according to Kotschick if H●
∆(M) has a

structure of algebra induced by the ∧ product. A differentiable manifold admitting a formal metric
according to Kotschick is said to be geometrically formal.
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As observed by Kotschick, globally symmetric spaces are geometrically formal and any Rieman-
nian metric on rational homology spheres is formal according to Kotschick. Moreover, examples
can be constructed by taking products of formal manifolds. For geometrically formal manifolds, as
Sullivan points out in [143], the following holds.

Proposition. Geometrically formal manifolds are formal according to Sullivan.
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Appendix C

In this appendix, the main facts about the geometry of Lie groups are recalled.
Let G be a connected differential manifold and let

⋅ ∶G ×G→ G

(g, h)↦ g ⋅ h

be a group operation on G, i.e., ⋅ is associative, admits an identity e ∈ G and every g ∈ G admits
an inverse g−1 ∈ G with respect to ⋅. If the operations (g, h)↦ g ⋅ h and g ↦ g−1 are C∞ maps with
respect to the differentiable structure on G, then (G, ⋅) is a said a Lie group.

If (G1, ⋅1) and (G2, ⋅2) are two Lie groups, a group homomorphism ϕ∶G1 → G2 is said to be a
homomorphism of Lie groups if ϕ is also a C∞ map of differentiable manifolds. An isomorphism of
Lie groups is an invertible homomorphism of Lie groups ϕ such that ϕ−1 is a C∞ map.

For every g ∈ G, the right translation by g (respectively, left translation by g) are the maps

Rg ∶ GÐ→ G

h↦ Rg(h) ∶= h ⋅ g

respectively,

Lg ∶ GÐ→ G

h↦ Lg(h) ∶= g ⋅ h

By definition of Lie group, both Rg and Lg are diffeomorphisms of G but they are not homomor-
phisms of Lie groups. Note that their differentials at a point h ∈ G are

(dRg)h ∶ ThG→ ThgG

Xh ↦ (dRg)h(Xh)

and

(dLg)h ∶ ThG→ TghG

Xh ↦ (dLg)h(Xh).

A C∞ vector field X ∈ Γ(G,TG) on G is said to be right-invariant (respectively, left-invariant)
if dLg(X) =X (respectively, dRgX =X), i.e., for every h ∈H,

(dLg)h(Xh) =Xgh

respectively,
(dRg)h(Xh) =Xhg,
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A C∞ differential form α ∈ Γ(G,T ∗G) is said to be right-invariant (respectively, left-invariant) if
R∗
g(α) = α (respectively, L∗g(α) = α), where R∗

g , respectively L∗g , is the pull back of forms by the
map Rg, respectively, Lg.

If on the set of left-invariant vector fields g ∶= {X ∈ Γ(G,TG) ∶ dLgX =X, ∀g ∈ G} one considers
the bracket of vector fields

[X,Y ] =XY − Y X, X,Y ∈ g,

then the space (g, [⋅, ⋅]) has a structure of a Lie algebra, i.e., the structure of a vector space endowed
with a bilinear anticommutative binar operation. In particular, g is called the Lie algebra associated
to G. Viceversa, for every Lie algebra h, there exists a unique (up to isomorphism) Lie group H
such that h is the Lie algebra associated to H.

On a Lie group G, it can be easily seen that the map

g→ TeG

X ↦Xe

is an isomorphism of Lie algebras, i.e., a linear isomorphisms compatible with the brackets of each
space, hence g can be identified with TeG and dimg = n. Analogously, the dual vector space g∗ of
g, i.e., the space of left-invariant differential forms on G, can be identified with T ∗e G. Note that,
for every α ∈ g∗, X ∈ g, α(X) is a left-invariant function on G, which implies that α(X) ∈ R is a
constant.

The implicit formula for the exterior differential applied to a 1-form α ∈ Γ(G,T ∗G)

dα(X,Y ) =X(α(Y )) − Y (α(X)) − α([X,Y ])

yields that, if α ∈ g∗, X,Y ∈ g∗, then

dα(X,Y ) = −α([X,Y ]).

Let then {e1, . . . , en} be a basis for g and suppose that

[ei, ej] = ckijek,

with ckij ∈ R. Then, if {e1, . . . , en} is the base of g∗ dual to {e1, . . . , en}, it is easy to see that

dei(ej , ek) = −cijk.

Therefore, the structure constants ckij characterizing the Lie algebra g of a Lie group G are deter-
mined by either the brackets of a fixed base {e1, . . . , en} of g or the structure equations of its dual
base {e1, . . . , en}.

Let G be a Lie group and g its associated Lie algebra. The derived series is the sequence

g(0) ∶= g, g(1) ∶= [g,g], g(k) ∶= [g(k−1),g(k−1)],

whereas the lower central series is defined as

g(0) ∶= g, g(1) ∶= [g,g], g(k) ∶= [g,g(k−1)].

The Lie algebra g is said to be solvable (respectively, nilpotent), if the derived series (respectively,
the lower central series), reaches {0}, i.e., there exists a k′ (respectively, k′′) such that g(k

′) =
{0}, respectively, g(k′′) = {0}. Consequently, the Lie group G is said to be solvable (respectively
nilpotent) if g is solvable (respectively, nilpotent). Note that for every k, g(k) ⊂ g(k), hence a
nilpotent algebra is also solvable.
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Definition. A solvmanifold M is a compact quotient M =H/G of a simply connected solvable Lie
group G and a closed subgroup H ≤ G.

A nilmanifold M is a compact quotient Γ/G of a simply connected nilpotent Lie group G by a
discrete uniform subgroup Γ ≤ G.

Remark. (i) By Mal’cev theorem, a simply connected nilpotent Lie group G admits a discrete
uniform subgroup Γ (so that Γ/G is a nilmanifold) if, and only if, G admits a basis such that the
constant structures are rational numbers, see [98].
(ii) Notice that on a solvmanifold (respectively, nilmanifold) H/G, left-invariant tensors on G such
as vector fields, differential forms, metrics, and endomorphisms, are in particular left-invariant with
respect to any element of H, therefore they descend to the quotient H/G.

We end this section by recalling two classical fundamental results regarding the de Rham coho-
mology of solvmanifolds and nilmanifolds.

Let us consider (⋀● g∗, d), i.e., the complex of left-invariant forms on Lie group G endowed with
the exterior differential d. Let Γ be a discrete uniform subgroup of G, and let us considerM ∶= Γ/G.
Then, the following result assures that the inclusion

⋀● g∗ ↪ A●(M)

yields an isomorphism between the de Rham cohomology of g, namely

Hk(g∗) ∶= Ker(d∶⋀k g∗ → ⋀k+1 g∗)
Im(d∶⋀k−1 g∗ → ⋀k g∗)

and the usual de Rham cohomology H●
dR(M ;R) of the solvmanifold M .

Theorem. ([108, Theorem 1]) Let M = Γ/G be a nilmanifold, with G a simply connected nilpotent
Lie group and Γ ⊂ G a discrete uniform subgroup. Then, the inclusion

⋀● g∗ ↪ A●(M)

induces the isomorphism
H●(g∗) ≃H●

dR(M ;R).

More in general, let G be a completely-solvable Lie group, i.e., its Lie algebra g is isomorphic to
a subalgebra of the upper triangular matrices in gl(m,R) for some m. Note that, in particular, a
completely solvable Lie groups is solvable and a nilpotent Lie group is completely solvable.

Theorem. ([70, Corollary 4.2]) Let G be a simply connected completely solvable Lie group with
Lie algebra g. Let H be a discrete uniform subgroup of G and M ∶=H/G. Then the injection

⋀● g↪ A●(M)

induces an isomorphism
H●(g) ≃H●(M ;R).
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