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Introduction

Autonomous systems can be found in many different environments: from highly tech-
nological industry to everyday life. All robots share common goals: they must assure
the highest possible precision, efficiency and repeatability. Some well known exam-
ples are represented by industrial robots, computer numerically controlled (CNC)
machines and laser guided vehicles (LGV). One of the keystones in order to pursue
the aforementioned goals resides in motion planning, in other words, the need to im-
pose a trajectory that allows the robot to move while maintaining some user-defined
criteria. These features mainly concern smoothness and efficiency, in order to im-
prove repeatability and productivity, which could be settled by using different kind
of planning primitives. One of the most used strategy needs the robot to stop or dras-
tically reduce its velocity to overcome direction changes, whose principal drawback
is the dilation of working time. For this reason in latest years many researchers have
investigated a wide range of possibilities trying to improve both precision tracking
and optimality criteria.

This thesis will deal with the aforementioned problem by developing a trajec-
tory planning primitive able to guarantee high smoothness while restraining the com-
putational burden. To achieve such goals the path-velocity decomposition has been
used: practically trajectory and velocity primitives have been separately considered.
Moreover the first problem, trajectory planning, has been itself divided in path and
orientation in order to deliver a more complete approach that can be used for several
kind of robots. The main applicative case study in this thesis will be a six degree of
freedom anthropomorphic manipulator.



2 Introduction

This thesis is divided in two parts:

I. In the first part a path primitive, η3D-splines, is theorized, developed and finally
tested. In comparison with existing literature mainly composed of C 1 and C 2

planners like the ones proposed in [1–4] this work will deliver a planner able to
guarantee C 3 continuity along the whole trajectory. Another main advantage
of the η3D-splines is the capability of evaluating their parameters within the
sample time of most robotic systems. This useful combination allows a wide
range of possibilities, for example planning a precise trajectory to avoid ob-
jects, emulate other geometric primitives and even re-evaluating trajectory on
the fly. More details on the existent literature and the novelties introduced can
be found in section 1.

II. The second part is relative to an orientation primitive conceived for any three-
dimensional rotational frame. After considering different representations, well
summarized by [5], the end effector orientation is expressed by using an Euler
quaternion. Moreover, in order to obtain a more general purpose strategy, each
quaternion component is planned singularly and is later normalized. By ex-
ploiting this feature any one-dimensional primitive can be used to plan each of
the quaternion components, still obtaining a high continuity degree. As well as
for the path planner, the main advantage of the orientation primitive resides in
combining low computational burden with high order continuity, which allows
to obtain a flexible and robust orientation planner. More details on the existent
literature and the novelties introduced can be found in section 4.



Part I

Path Planner





Chapter 1

State of the Art

1.1 Cartesian Paths

Cartesian paths for robotic systems must be planned by accounting for their conti-
nuity properties. Indeed, non-smooth primitives worsen the controllers performances
and simultaneously stress the system mechanics. The path geometric continuity prob-
lem is widely discussed in the literature and it is managed through apposite planners.
Early works were focused on the generation of planar curves mainly conceived for
autonomous mobile robots. The emphasis was initially posed on the generation of
minimum length paths between assigned points [1, 2, 6, 7]. The problem has been
continuously revised along the years by also considering alternative cost indexes [8].
The resulting composite routes, obtained by joining linear segments and circular arcs,
were generated so as to guarantee the continuity of the path tangent. In the same
years, other authors [3, 4, 9–12] introduced the concept of second order geometric
continuity, thus including the path smoothness among the criteria to be considered:
not only the path tangent, but also its curvature must be continuous. The second order
continuity was achieved by means of apposite primitives like clothoids, polar curves
or cubic spirals. Later, to the same purpose, other flexible path primitives appeared
in the literature. For example, the Bezier curves adopted in [13–15], the B-splines
proposed in [16], and, finally, the η2-splines devised in [17].
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The common denominator of the papers just cited is that smoothness reasons
motivate the adoption of continuous curvature paths. However, in [18] it was shown
that the smooth control of unicycle vehicles actually requires an additional continuity
level: the generation of continuous control signals necessarily imposes paths whose
curvature-derivative is continuous, so that a novel path planning primitive, named
η3-splines [19, 20], was developed, later followed by η4-splines [21].

In more recent years, the smooth path planning problem has been extended to
three-dimensional (3D) Cartesian curves. The fields of application of 3D trajecto-
ries are substantially two: the generation of collision-free routes in cluttered envi-
ronments [22,23] and the generation of paths with specific geometric characteristics,
like the ones required, for example, by Computer Numerical Control (CNC) ma-
chines [24–26] or for arc welding and laser cutting applications. In the first case,
the commonly adopted solution is based on the generation of collision-free, discrete,
Cartesian paths, whose points are chosen by means of algorithms – like, for example,
Rapidly-exploring Random Trees (RRT or RRT*) – which optimize a proper cost
index. The desired degree of smoothness is typically achieved by means of spline
trajectories, which interpolate the given points directly in the Cartesian space or, al-
ternatively, in the configuration space. For such class of problems, the actual shape
of the Cartesian path is not rigidly imposed in advance [27–30].

A similar solution can also be adopted for the management of the second class of
problems. In case of applications which allow relatively high computational times, a
path with the prescribed geometry can be generated by means of a dense sequence of
pass-through points [31–33]. In all the other cases, an actual Cartesian path, with the
required geometric continuity, must be planned. For a long time, linear segments and
circular arcs were the sole path primitives considered in robotic contexts. As earlier
pointed out, they only allow continuous-tangent paths. In advanced applications, like
the ones involving CNC machines, such limit can not be admitted, so that, recently,
many works concerning the generation of smooth curves have appeared in the lit-
erature: Bezier curves are used in [34, 35] for the synthesis of continuous-curvature
paths, while B-splines are adopted in [36] for a jerk bounded application requiring
continuous curvature derivatives.



1.2. Corner Smoothing 7

1.2 Corner Smoothing

Complex geometric profiles are handled by CNC machines by dividing them into
sets of linear and circular segments. If such primitives are not properly joined, the
working tool must stop at the junction points in order to fulfill the dynamic limits of
the actuators and to guarantee a good tracking.

Two alternative strategies can be adopted in order to mitigate possible problems:
an optimal feed-rate must be planned for the sequence of points [37, 38] or a cor-
ner smoothing method must be adopted. In the literature, several papers investigated
the latter solution. Some works propose a global approach involving the whole com-
posite path [39, 40], but the majority of them devise local strategies focusing on the
management of single junction points. All techniques replace corner points of the
original trajectories with appropriate junction curves. The main primitives used to
this purpose are the B-splines [36, 41–43] and the Bezier curves [35, 44], but also
other alternative solutions have been proposed such as, for example, the parametric
curves [45] and the Pythagorean Hodographs [46, 47].

It is worth to mention that junction curves, by themselves, are not sufficient to
prevent rough movements of the actuators, which could cause quality losses and
machinery failures. Better performances can be achieved by also ensuring that the
overall composite path is sufficiently smooth. Such result can be obtained by guar-
anteeing that the actuators signals are continuous together with their first and sec-
ond time derivatives. Advanced approaches also impose the jerk continuity. Plan-
ning strategies often adopt the path/velocity decomposition paradigm, which allows
to separately plan the timing law and the path profile. The trajectory smoothness is
achieved by assuming a timing law with a high degree of continuity and a path with
proper geometric characteristics. To this purpose, the concept of geometric continuity
is fundamental. A path admits a G n geometric continuity if its n-th derivative w.r.t.
the arc length parameter is continuous. Many papers in the literature propose, for the
solution of the corner smoothing problem, G 2 curves [35, 43–46], i.e., curves admit-
ting continuous tangent vectors and curvatures, while just a few works allow a higher
smoothness level [36, 47].





Chapter 2

η3D-splines

The path planning primitive proposed in this work, named η3D-splines and based on
7th order polynomials, is conceived for applications belonging to the second class
of problems. They guarantee the same smoothness level of [36], but are conceived
for more general application contexts. In particular, while in CNC applications the
emphasis is primarily posed on the creation of junction curves which smoothly join a
sequence of linear segments, for a general purpose robotic application the target is the
generation of flexible curves able to connect generic primitives by guaranteeing the
required continuity level. Indeed, if junction curves are not properly designed, refer-
ence signals for joint velocities, accelerations, and jerks may be discontinuous, thus
worsening the systems performances. Continuity problems can be handled by stop-
ping the manipulator at the end of each segment of the trajectory, but such solution is
clearly inefficient. Conversely, η3D-splines, by guaranteeing the required geometric
continuity of the path, allow joint reference signals which are C 3, so that composite
trajectories can be executed with no stops.

The strengths of η3D-splines, if compared with other planning primitives, are es-
sentially two: the planning method, which allows an efficient online evaluation of the
curve coefficients directly from the interpolating conditions, and their straightforward
emulation capabilities.

Concerning the first point, the third-order geometric continuity can be obtained
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by assigning, at the start and at the end points of the curve, the desired Frenet-frames,
curvatures, curvature-derivatives and torsions. Such interpolating conditions directly
appear in the closed form expressions synthesized for the efficient computation of
the spline coefficients: the same continuity level achieved in [36] can be reached
at a negligible computational cost. This allows one to easily manage situations in
which the Cartesian path must be re-planned on-the-fly during the movement – see for
example [48] [49] – by simultaneously maintaining the overall geometric continuity.
The planning method is more immediate and intuitive than the ones adopted for the
synthesis of B-spline or Bezier curves, which require a proper choice of the control
points in order to satisfy the assigned continuity properties and to model the curves
shape.

As anticipated, η3D-splines can also emulate other common primitives. More
precisely, they exactly generate linear segments, while they can emulate, with good
approximation, curves like circular arcs, clothoids, helical curves, and conic spirals.
Additionally, any 7th order polynomial curve, for example a Bezier curve, satisfying
the given interpolating conditions, can be replaced by an analogous η3D-spline with
the same coefficients and vice-versa [50]. Such emulation capabilities are carried out
through a set of six independent parameters which can be used to finely shape the
curve.

The emulation capabilities of η3D-splines have been exploited for the implemen-
tation of a Cartesian planner entirely based on such primitive, and suited for applica-
tions in which the path must be generated on-the-fly. Such planner is able to generate,
in a simple and intuitive way, complex composite paths with third-order geometric
continuity.

The chapter is organized as follows. Section 2.1 shows that jerk continuous ref-
erence signals for robotic manipulators can be obtained by planning paths with third
order geometric continuity. The same Section further introduces some preliminary
considerations concerning 3D curves and recalls the definitions of geometric continu-
ity. Section 2.2 proposes the closed-form equations which are used for the evaluation
of the η3D-splines coefficients. In the same section, two important properties of the
novel primitive are enunciated. In Section 2.3, a simple method is proposed for the
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selection of the shaping parameters, and the emulation capabilities of the novel path
primitive are discussed. In Section 2.4, the η3D-splines are experimentally tested by
generating a composite 3D path for an industrial manipulator. Final conclusions are
drawn in Chapter 5.3.

2.1 Preliminary considerations on the geometric continuity
of 3D curves

In robotic applications, paths are typically planned so as to guarantee the smoothness
of the actuators reference signals. In particular, if q := [q1 q2, . . . ,qn]

T is the vector
of the joint variables and n is the number of joints, q, q̇, and q̈ should be continuous,
but advanced applications also impose the jerk continuity. Such additional continuity
level is introduced to reduce the mechanical solicitations acting on the manipulator
structure and to improve the controller performances. For Cartesian trajectories, such
continuity requests naturally lead to equivalent requirements involving the motion
of the origin of the tool frame, i.e., p := [px py pz]

T . The conditions which must be
satisfied by a Cartesian curve in order to guarantee the continuity of the joints jerks
are derived in the reminder of this section. Furthermore, some geometric expressions
used in next Section 2.2 are briefly recalled.

Cartesian trajectories are typically planned by avoiding kinematic singularities,
so that the Jacobian matrix of the system (a 6-DoF manipulator), i.e., J(q), in this
work will be supposed non singular and the inverse kinematic function, i.e., q =

q(p), will be assumed continuous. By virtue of the last hypothesis, the Cartesian
path continuity guarantees, in turn, the continuity of q. Furthermore, for industrial
manipulators, J(q) is a continuously differentiable function of class C ∞.

Linear velocities can always be evaluated through a Jacobian matrix, J(q), ac-
cording to the following equation

ṗ = J(q)q̇ . (2.1)

Such equation can be reorganized as follows

q̇ = J−1(q) ṗ . (2.2)
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According to the premises, the Jacobian matrix is not singular, so that its inverse
exists. Moreover, since J(q) ∈ C ∞ and bearing in mind the inverse function theo-
rem, J−1(q) is certainly a continuous function. Since q is continuous, (2.2) makes it
possible to conclude that the continuity of q̇ is achieved by assuming a continuous ṗ.

The same reasoning can be used with the higher order derivatives. The differen-
tiation of (2.1) leads to the following equations

p̈ = J̇(q)q̇+J(q)q̈ ,
...p = J̈(q)q̇+2J̇(q)q̈+J(q) ...q ,

which can be rewritten as follows

q̈ = J−1(q) [p̈− J̇(q)q̇] , (2.3)
...q = J−1(q) [ ...p − J̈(q)q̇−2J̇(q)q̈] . (2.4)

Since J(q) ∈ C ∞, (2.3) and (2.4) allow one asserting that the continuity of q̈ and
...q

is obtained by assuming that also p̈ and
...p are continuous. Practically, if p is C 3 then

q is C 3 as well.
Cartesian trajectories are very commonly planned by adopting the path-velocity

decomposition approach [51], so that they are obtained by combining a path, p(s),
with a timing law, s(t). s is the so-called curvilinear coordinate and it coincides with
the distance from the beginning of the curve, measured along the curve itself. Con-
sequently, s ∈ [0,s f ] for a curve whose length is s f . Bearing in mind such considera-
tions, the time derivatives of p can be written as follows

ṗ =
d
dt

p[s(t)] =
dp
ds

ds
dt

=
dp
ds

ṡ , (2.5)

p̈ =
d2

dt2 p[s(t)] =
d2p
ds2 ṡ2 +

dp
ds

s̈ , (2.6)

...p =
d3

dt3 p[s(t)] =
d3p
ds3 ṡ3 +3

d2p
ds2 s̈ṡ+

dp
ds

...
s . (2.7)

Clearly, (2.5)–(2.7) imply that the continuity of ṗ, p̈, and
...p requires the continuity

of (dp)/(ds), (d2p)/(ds)2, and (d3p)/(ds)3, as well as of ṡ, s̈, and ...
s . Hence, the

continuity problem can be split into two separate sub-problems, the first one involving
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the timing law, the second one concerning the geometric characteristics of the path. In
particular, for paths which are parametrized as function of the curvilinear coordinate,
i.e., s, the two concepts of analytic and geometric continuity coincide, so that if p(s)
is a continuous function, i.e., if p(s) ∈ C 0, then it also admits 0 order geometric
continuity – or, equivalently, p(s)∈G 0. The same concept also applies to higher order
derivatives, so that if p(s) ∈ C 1, then [dp(s)]/(ds) admits a geometric continuity of
the first order, i.e., p(s) ∈ G 1, and so on. This implies that, for the problem at hand,
the focus is posed on paths belonging to G 3 in order to achieve the continuity of
(2.5)–(2.7).

For the reader convenience, the reminder of this section will recall some geo-
metric implications of the G 3 continuity concepts. For practical reasons, curves are
often defined through a function p(u) ∈ R3, where u ∈ [u0,u f ] is a generic scalar pa-
rameter which is used instead of s. By construction [52], p′(u) := [dp(u)]/(du) is a
vector which is tangent in u to the curve. For regular curves, i.e., curves for which
∥p′(u)∥> 0,∀u ∈ [u0,u f ], there always exists a direct, bijective relationship between
u and s, which can be expressed as follows

s =
∫ u

u0

∥∥p′(τ)
∥∥dτ . (2.8)

Consequently, if p(u) is continuous in u, then p[u(s)] is continuous in s – u(s) is the
inverse function of (2.8) – and the curve is G 0. Equation (2.8) immediately allows
one writing

ds
du

=
∥∥p′(u)

∥∥ ,
so that the path derivative w.r.t. s can be written as follows

dp(u)
ds

=
dp(u)

du
du
ds

= p′(u)
1
ds
du

=
p′(u)
∥p′(u)∥

= t(u), (2.9)

Practically, the G 1 continuity implies that unit vector t(u), which is by construction
tangent to the curve (see also Fig. 2.1), is a continuous function of u.

For which concerns the second order geometric continuity, i.e., the continuity of
(d2p)/(ds2), the following equation is obtained by differentiating (2.9):

d2p(u)
ds2 =

d
ds

[
dp(u)

ds

]
=

d
ds

[t(u)] = κ(u)n(u). (2.10)
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r(u) = κ
-1(u) 

t(u)

n(u)

b(u)

x

z

y

p(u)

Figure 2.1: A generic curve p(u) (solid line), together with its Frenet frame and its
osculating circle (dashed line) shown for a generic u.

The last equality in (2.10) is due to the first Frenet-Serret equation [52]. n(u) is the
normal unit vector which points toward the center of the osculating circle (see also
Fig. 2.1), i.e., the circle which best approximates the curve in u. κ(u) is the curvature
in u, i.e., it is the reciprocal of the radius of the osculating circle. They are defined as
follows [52]

n(u) =
[p′(u)×p′′(u)]×p′(u)
∥p′(u)×p′′(u)∥∥p′(u)∥

, (2.11)

κ(u) =
∥p′(u)×p′′(u)∥

∥p′(u)∥3 . (2.12)

Evidently, n(u) is well defined if the curve is biregular, i.e., if it satisfies condition
∥p′(u)×p′′(u)∥> 0,∀u ∈ [u0,u f ]. By virtue of (2.10), a curve is G 2 if n(u) and κ(u)
are continuous functions.

By further differentiating (2.10), the following equation is obtained

d3p(u)
ds3 =

d
ds

[κ(u)n(u)] =
dκ(u)

ds
n(u)+κ(u)

dn(u)
ds

=
κ ′(u)
∥p′(u)∥

n(u)+κ(u)
dn(u)

ds
. (2.13)

The second Frenet-Serret equation [52] asserts that

dn(u)
ds

=−κ(u)t(u)+ τ(u)b(u), (2.14)

where
b(u) := t(u)×n(u) =

p′(u)×p′′(u)
∥p′(u)×p′′(u)∥

(2.15)
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is the so called binormal unit vector and

τ(u) =
[p′(u)×p′′(u)] ·p′′′(u)

∥p′(u)×p′′(u)∥2 (2.16)

is the torsion of the curve in u. Unit vectors t(u), n(u), and b(u) are each other
orthogonal and form the so-called Frenet frame associated to point u along the curve.
From (2.13) and (2.14) it immediately descends that the G 3 continuity is achieved if
a curve is G 2, i.e., t(u), n(u), κ(u) are continuous, and, furthermore, if the continuity
is also guaranteed for

dκ(u)
ds

=
κ ′(u)
∥p′(u)∥

=
[p′(u)×p′′(u)] · [p′(u)×p′′′(u)]

∥p′(u)×p′′(u)∥∥p′(u)∥4

−3[p′(u) ·p′′(u)]
∥p′(u)×p′′(u)∥

∥p′(u)∥6

=b(u) · p′(u)×p′′′(u)

∥p′(u)∥4 −3κ(u)
p′(u) ·p′′(u)

∥p′(u)∥3 (2.17)

and for τ(u). By virtue of (2.9), (2.11), (2.12), and (2.16), the G 3 continuity imposes
that p(u) and its derivatives w.r.t. u, up to the third order, must be continuous, i.e.,
p(u) ∈ C 3.

Summarizing, (2.2)–(2.7) allow one asserting that the continuity of q, q̇, q̈, and
...q can be obtained by planning G 3 curves, i.e., by imposing that t(u), n(u), b(u),
κ(u), κ ′(u), and τ(u) are continuous functions, and, moreover, by generating a timing
law such that the continuity is also guaranteed for s, ṡ, s̈, and ...

s . The timing law
generation problem is not addressed in this work, but possible approaches can be
found in the literature (see for example [53]).

2.2 The η3D-splines

The proposed primitive is based on a 7th order vector polynomial defined as follows

p(u) :=χχχ0 +χχχ1u+χχχ2u2 +χχχ3u3 +χχχ4u4 +χχχ5u5 +χχχ6u6 +χχχ7u7, (2.18)

where u ∈ [0,1], while χχχ i := [αi βi γi]
T ∈ R3 are properly defined vector coefficients.

The G 3 continuity is certainly achieved ∀u ∈ (0,1) since, for constant values of χχχ i,
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Table 2.1: Interpolating conditions for the η3D-spline curve. (2.50)

A B

p(0) = pA p(1) = pB

[t(0) n(0) b(0)] = [tA nA bA] [t(1) n(1) b(1)] = [tB nB bB]

κ(0) = κA κ(1) = κB

τ(0) = τA τ(1) = τB
dκ

ds (0) = κ̄A
dκ

ds (1) = κ̄B

the derivatives of p(u) of any order are continuous in such interval. However, this
work aims at generating G 3 composite paths obtained by joining several curves, so
that coefficients χχχ i must be assigned so as to also impose the G 3 continuity in the
junction points between adjacent curves. According to the discussion in Section 2.1,
such result can be achieved by imposing that, at the end of each curve, t, n, b, κ ,
κ ′, and τ coincide with the homologous terms of the subsequent one. Practically, the
G 3 continuity is obtained if the interpolating conditions shown in Table 2.1 can be
arbitrarily imposed to (2.18) (subscripts A and B indicate the assigned interpolating
conditions at the beginning and at the end of the curve, respectively). Evidently, such
boundary conditions can be imposed by solving an appropriate system of equations
but, more conveniently, this work proposes closed form expressions for the imme-
diate and efficient evaluation of the χχχ i parameters. In particular, the coefficients of
the seventh order polynomial curve, satisfying the boundary conditions specified in
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Table 2.1, can be immediately obtained by means of the following expressions

χχχ0 =pA, (2.19)

χχχ1 =η1tA, (2.20)

χχχ2 =(1/2)[κAη
2
1 nA +η3tA], (2.21)

χχχ3 =
1
6
[κAτAbAη

3
1 +

(
κ̄Aη

2
1 +3κAη1η3

)
nA]+η5tA, (2.22)

χχχ4 =− (2/3)κAτAbAη
3
1 − (1/6)κBτBbBη

3
2

− (1/3)
[
η

2
1 (2 κ̄A +15κA)+6κAη1η3

]
nA

− (1/6)
[
η

2
2 (κ̄B −15κB)+3κBη2η4

]
nB

− (20η1 +5η3 +4η5)tA −35pA +35pB

− (1/2)(30η2 −5η4 +2η6)tB, (2.23)

χχχ5 =κAτAbAη
3
1 +

1
2

κBτBbBη
3
2

+
[
η

2
1 (κ̄A +10κA)+3κAη1η3

]
nA

+(1/2)
[
η

2
2 (κB −14κB)+3κBη2η4

]
nB

+(45η1 +10η3 +6η5)tA

+(39η2 −7η4 +3η6)tB +84pA −84pB, (2.24)

χχχ6 =− (2/3)κAτAbAη
3
1 − (1/2)κBτBbBη

3
2

− (1/6)
[
η

2
1 (4 κ̄A +45κA)+12κAη1η3

]
nA

− (1/2)
[
η

2
2 (κ̄B −13κB)+3κBη2η4

]
nB

− (1/2)(72η1 +15η3 +8η5)tA −70pA +70pB

− (1/2)(68η2 −13η4 +6η6)tB, (2.25)

χχχ7 =(1/6)(κAτAbAη
3
1 + κBτBbBη

3
2 )

+(1/6)
[
η

2
1 (κ̄A +12κA)+3κAη1η3

]
nA

+(1/6)
[
η

2
2 (κ̄B −12κB)+3κBη2η4

]
nB

+(10η1 +2η3 +η5)tA

+(10η2 −2η4 +η6)tB +20pA −20pB. (2.26)
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By analyzing (2.19)–(2.26), it can be noticed that the χχχ i coefficients only depend on
the interpolating conditions and on a set of six independent parameters which can
be conveniently packed into vector ηηη := [η1 η2 η3 η4 η5 η6]

T , where η1,η2 ∈R+ and
η3,η4,η5,η6 ∈ R. Consequently, given the interpolating conditions and vector ηηη ,
the η3D-splines coefficients can be obtained at a negligible computational cost. The
selection of ηηη influences the curve shape and will be discussed in Section 2.3.

Since the procedure for the synthesis of (2.19)–(2.26) only consists in solving a
linear system it is not proposed but, more conveniently, the curve properties and its
strengths are pointed out in the following by means of two propositions. In particular,
Proposition 1 asserts that η3D-splines can generate, through a proper choice of ηηη , all
possible 7th order polynomial curves which satisfy the assigned interpolating condi-
tions. The proof of Proposition 1, points out another important characteristic which is
stated in Proposition 2: the interpolating conditions, which are normally assigned so
as to guarantee the G 3 continuity, are always satisfied independently from the choice
of ηηη . This implies that the curve can be modeled by means of ηηη , but the choice of ηηη

does not affect the continuity properties of the combined path.

Proposition 1 Given a generic 7th order polynomial p(u), expressed by means of
(2.18), which satisfies the interpolating conditions of Table 2.1, through a proper
choice of vector ηηη it is always possible to find an η3D-spline, namely pηηη(u), such
that pηηη(u) = p(u).

Proof – The coefficients of a generic 7th order spline p(u) satisfying the interpo-
lating conditions specified in Table 2.1 will be indicated as χ̃χχ i, i = 0,1, . . . ,7, while
the coefficients of an η3D-spline pηηη(u) satisfying the same interpolating conditions
will be indicated as χχχ i. In order to prove Property 1, it is necessary to demonstrate
that, through a proper choice of vector ηηη , it is always possible to obtain pηηη(u) = p(u)
or, equivalently, χχχ i = χ̃χχ i, i = 0,1, . . . ,7.

Interpolating condition p(0) = pA is evidently satisfied for a curve like (2.18) if
χ̃χχ0 = pA. According to (2.19), the first coefficient of pηηη(u) is given by χχχ0 = pA, so
that, evidently, χχχ0 = χ̃χχ0.
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By virtue of (2.9), the following condition applies for any generic curve

p′(u) = t(u)
∥∥p′(u)

∥∥ . (2.27)

If the same curve satisfies initial condition t(0) = tA then, for u = 0, (2.27) can be
written as follows

p′(0) = tA
∥∥p′(0)

∥∥ . (2.28)

By differentiating (2.18), it is possible to evince that the first derivative of p(u), com-
puted for u = 0, is given by p′(0) = χ̃χχ1, so that from (2.28) it descends that

p′(0) = χ̃χχ1 = tA
∥∥p′(0)

∥∥ . (2.29)

Evidently, coefficient χχχ1 of pηηη(u) is given by (2.20). By assuming

η1 =
∥∥p′(0)

∥∥ (2.30)

condition χχχ1 = χ̃χχ1 is satisfied.
Any orthogonal Frenet frame is a base for the 3D Cartesian space, so that the

following expression is certainly true

p′′(0) = αtA +βnA + γbA, (2.31)

where α , β , and γ are proper scalar.
Bearing in mind (2.28) and (2.31), if a generic curve satisfies condition n(0)= nA,

then (2.11), after a few algebraic manipulations, can be written as follows

nA =
[p′(0)×p′′(0)]×p′(0)
∥p′(0)×p′′(0)∥∥p′(0)∥

=
βnA + γbA

∥βbA − γnA∥
.

Evidently, such expression is true only if

γ = 0. (2.32)

If the curve also fulfills κ(0) = κA, then (2.12) – together with (2.28), (2.31), and
(2.32) – allows one writing the following expression

κA =
∥p′(0)×p′′(0)∥

∥p′(0)∥3 =
∥p′(0)∥∥tA × (αtA +βnA)∥

∥p′(0)∥3 =
β

∥p′(0)∥2
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and, consequently,
β = κA

∥∥p′(0)
∥∥2

. (2.33)

By virtue of (2.32) and (2.33), for any curve which satisfies the conditions in Ta-
ble 2.1, (2.31) assumes the following form

p′′(0) = αtA +κA
∥∥p′(0)

∥∥2 nA. (2.34)

On the other side, for a generic polynomial curve p(u) like (2.18), the following
expression holds

p′′(0) = 2χ̃χχ2, (2.35)

so that the interpolating conditions are satisfied by imposing

χ̃χχ2 =
1
2
(αtA +κA

∥∥p′(0)
∥∥2 nA). (2.36)

From (2.21), it descends that the same result can be achieved for pηηη(u) by acting
on ηηη . In particular, condition χχχ2 = χ̃χχ2 is satisfied by imposing (2.30) and by further
assigning

η3 = α. (2.37)

A similar reasoning can be used for χχχ3. Vector p′′′(0) can be expressed through
its components in the Frenet frame

p′′′(0) = α̂tA + β̂nA + γ̂bA (2.38)

where α̂ , β̂ , and γ̂ are proper scalars. If a curve fulfills τ(0) = τA, by virtue of (2.16)
the following condition holds

τA =
[p′(0)×p′′(0)] ·p′′′(0)

∥p′(0)×p′′(0)∥2 . (2.39)

By further considering (2.28), (2.34), and (2.38), and after a few algebraic manipula-
tions, (2.39) can be rearranged as follows

τA =
γ̂

∥p′(0)∥3
κA

,
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which implies that the interpolating conditions are fulfilled if the following expres-
sion is satisfied

γ̂ = τA
∥∥p′(0)

∥∥3
κA. (2.40)

By imposing dκ

ds (0) = κ̄A to (2.17), evaluated for u = 0, one can write

κ̄A = bA ·
p′(0)×p′′′(0)

∥p′(0)∥4 −3κA
p′(0) ·p′′(0)

∥p′(0)∥3 . (2.41)

By considering (2.28), (2.34), and (2.38), (2.41) simplifies as follows

κ̄A =
β̂

∥p′(0)∥3 −3κA
α

∥p′(0)∥2 ,

so that, necessarily, β̂ must assume the following structure

β̂ = κ̄A
∥∥p′(0)

∥∥3
+3κAα

∥∥p′(0)
∥∥ . (2.42)

Expressions (2.40) and (2.42) are valid for generic curves, but can be specialized
for polynomial functions. In particular, from (2.18) it descends that

p′′′(0) = 6χ̃χχ3, (2.43)

so that, bearing in mind (2.38), (2.40), and (2.42), the following expression for χ̃χχ3 is
obtained

χ̃χχ3 =
1
6

α̂tA +

(
1
6

κ̄A
∥∥p′(0)

∥∥3
+

1
2

κAα
∥∥p′(0)

∥∥)nA +
1
6

τA
∥∥p′(0)

∥∥3
κAbA. (2.44)

The same value can be assumed by an η3D-spline by assigning η5 = α̂/6, and by
recalling that (2.30) and (2.37) simultaneously hold: condition χχχ3 = χ̃χχ3 is certainly
satisfied.

An analogous procedure can be used to demonstrate that χχχ i = χ̃χχ i, for i= 4,5,6,7.
To this purpose, it is necessary to consider the interpolating conditions at the curve
endpoint (u = 1). The process requires much more algebraic manipulations, so that,
for space reasons, it is omitted.

It is worth highlighting that the demonstration also allows one asserting that the
choice of parameters ηηη never affect interpolating conditions, which are always satis-
fied independently from the values it assumes: this property is exploited in the thesis
in order to obtain curves with the desired shape. ■
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A
B

x
y

z

Figure 2.2: An η3D-spline (dotted red line) is used to smoothly join a linear segment
(dash-dotted black line) with a circular arch (solid green line). The composite path is
G 3.

Proposition 2 Any path primitive pηηη(u), obtained by selecting the coefficients of
(2.18) through (2.19)–(2.26), always satisfies the interpolating conditions of Table 2.1,
independently from the choice of ηηη .

Proof – It is an immediate consequence of the previous demonstration.
Propositions 1 and 2 suggest two possible applications for the η3D-splines. For

example, the novel planning primitive can be used to generate composite G 3-paths
or, alternatively, through an appropriate choice of vector ηηη (see Section 2.3), for the
emulation of 3D curves.

In industrial contexts, the first application is probably the most common one. An
example case is proposed in Fig. 2.2: a composite G 3-path is easily obtained by join-
ing a linear segment (dash-dotted black line) and a circular arc (solid green line),
generically located in a 3D environment, through the η3D-splines (dotted red line).
The interpolating conditions for the η3D-splines are directly obtained from the path
primitives which need to be joined. In particular, for point A, the interpolating con-
ditions are the same of the-end point of the linear segment, while in B they coincide
with the initial ones of the circular arc. More in details, pA is the end-point of the
linear segment, while tA coincides with its characteristic unit vector. In any point of
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a linear segment, including its extremes, curvature, curvature derivative, and torsion
are zero, so that κA = κA = τA = 0. Since κA = 0 and τA = 0, then nA and bA can
be freely selected: they must only satisfy conditions nA ·bA = 0 and nA ×bA = tA.
Concerning point B, pB coincides with the starting point of the circular arc and tB

is the unit tangent in the same point. For a circular arc the curvature is constant and
equal to r−1, where r is the radius of the primitive. Consequently, κB = r−1. Normal
vector nB points towards the center of the circular arc, while the binormal vector is
evaluated as bB = tB × nB. Curvature derivative and torsion are equal to zero, i.e.,
κB = τB = 0. According to Proposition 2, the imposition of such boundary condi-
tions guarantees the G 3 continuity of the composite path. However, the curve shape
can still be modeled through the choice of vector ηηη . Details on the selection of ηηη are
given in next Section 2.3. More precisely, possible strategies will be proposed for the
generation of generic junction profiles or in order to let η3D-splines emulate other
planning primitives.

2.3 Considerations on the selection of η

The curve shape can be imposed by means of ηηη . To this purpose, several alternative
strategies can be proposed. For example, it may be chosen by means of nonlinear pro-
gramming algorithms [54], in order to satisfy some given optimal criteria. However,
in many practical cases, simple heuristic strategies are sufficient for the generation
of curves with interesting geometric characteristics. The advantage of such heuristic
rules is represented by their efficiency, which allows the online generation of com-
plex G 3 paths. In particular, curves with nice geometric properties can be obtained
by assigning ηηη as follows

η1 = η2 = s f , (2.45)

η3 = η4 = η5 = η6 = 0, (2.46)

where s f is the curve length.
Such rule of thumb emerged during the studies on the emulation capabilities of

the η3D-splines. As stated in the Introduction, ηηη-splines can emulate, with very good
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approximation, many path primitives like, for example, circular arcs and clothoids.
Let us consider a set of circular arcs with different length s f = (rπ)/(2i), where r

is the radius and i = 1,2, . . . ,6. For each arc, the inner angle is clearly given by θ̃ :=
s f /r (see also Fig. 2.3). The emulation capability of η3D-splines can be measured
through the following approximation error

e(s) := min
u∈[0,1]

∥pηηη(u)−p(s)∥ , (2.47)

where pηηη(u) is the spline curve used to emulate the actual arc, i.e., p(s), s ∈ [0,s f ].
Practically, e(s) is the minimum Euclidean distance between pηηη(u) and p(s) mea-
sured for a given s ∈ [0,s f ].

Very good emulation results have been verified even when the available degrees
of freedom are only partially exploited. In particular, by assigning interpolating con-
ditions compatible with an arc, ηηη can be chosen as follows

η1 = η2 = η
∗(θ̃), (2.48)

η3 = η4 = η5 = η6 = 0,

where η∗(θ̃) is found by solving the following minimax problem

min
η∗∈S

max
s∈[0,s f ]

{|e(s)|},

where S is a proper search interval. The problem was solved for different values of
r and for i = 1,2, . . . ,6. The nonlinear programming algorithm always converged to
optimal values of η∗ which were very close to s f (they are not reported for concise-
ness).

The optimization results revealed that amplitudes of the emulation errors depend
on r and on θ̃ . In particular, the dependence on r is perfectly linear, so that the nor-
malized error, defined as en(s) := e(s)/r, s ∈ [0,s f ], is only function of θ̃ . Average
and maximum normalized errors for the 6 values of θ̃ are listed in the first two rows
of Table 2.2: they are generally small and become negligible as θ̃ decreases.

The optimal values of η∗ have been subsequently used to obtain, through a least
square nonlinear regression, the following analytic expression for η1 and η2

η1 = η2 = s f (αθ̃
2 +β θ̃ + γ), (2.49)
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Table 2.2: Average and maximum normalized errors en(s) for several values of θ̃ and
η1 = η2.

θ̃ π/2 π/4 π/6 π/8 π/10 π/12

η1 = η2 = s∗

avg 5.5 ·10−6 7.7 ·10−8 4.6 ·10−9 3.2 ·10−9 3.1 ·10−10 5.5 ·10−11

max 9.6 ·10−6 1.3 ·10−7 9.2 ·10−9 6.4 ·10−9 1.1 ·10−9 1.6 ·10−10

η1 = η2 = s f (αθ̃ 2 +β θ̃ + γ)

avg 5.2 ·10−6 2.7 ·10−6 1.7 ·10−6 8.6 ·10−7 2.7 ·10−7 2.1 ·10−8

max 9.2 ·10−6 6.7 ·10−6 4.2 ·10−6 2.2 ·10−6 6.9 ·10−7 5.3 ·10−8

η1 = η2 = s f

avg 3.2 ·10−3 2.1 ·10−4 4 ·10−5 1.4 ·10−5 6.0 ·10−6 4.0 ·10−6

max 7.8 ·10−3 5.0 ·10−4 1 ·10−4 3.3 ·10−5 1.4 ·10−5 7.0 ·10−6

r
~

θ

0

sf

Figure 2.3: A circular arc obtained by means of the η3D-splines.
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where α = -0.0099417176196074, β = -0.0055734866225982, and γ = 1.00101667238653.
The resulting approximation errors for the 6 test cases, obtained by still assuming
(2.46) and (2.48), are shown in the third and in the fourth rows of Table 2.2. For
θ̃ = π/2, the maximum error is close 10−5 m for an arc whose radius is equal to
r = 1 m. Such error is acceptable for many robotic applications and it further re-
duces for smaller values of r since, according to the definition of normalized error,
e(s) = r en(s).

Since α and β are very small, while γ ≃ 1, η∗ is generally close to s f . Such
consideration suggested to test solutions obtained by directly assigning ηηη according
to (2.45) and (2.46). As shown by the fifth and the sixth rows of Table 2.2, emulation
errors are still acceptable, especially for small values of θ̃ .

As early anticipated, η3D-splines can also emulate clothoids. Such capability has
been tested by considering the same set of curves used in [55, 56] to check the em-
ulation capabilities of Bézier curves. The set is composed by 30 clothoids, joined
together so as to obtain a composite curve 6.0 m long. The composite path curvature
is proportional to the path length, i.e., κ(s) = s, and each segment is 0.2 m long.

Very good results have been achieved by first imposing condition (2.46), and then
by calculating the remaining 2 parameters through the following optimal problem

min
η∗

1 ,η
∗
2∈S

max
s∈[0,s f ]

{|e(s)|}.

The worst case error of the optimal solutions was equal to 4.655 ·10−6 m. Errors were
only marginally influenced by perturbations of the optimal solutions. Consequently,
the worst case error only slightly increases (5.630 ·10−6 m), if the 30 optimal values
of η∗

1 and η∗
2 are replaced by the following 2 functions obtained through a nonlinear

regression

ηi(κav) := λ0i +λ1iκav +λ2iκ
2
av, i = 1,2, (2.50)

where κav := (κA +κB)/2 is the average curvature of each segment. The coefficients
of (2.50) are listed in Table 2.3. The first row of Table 2.3 points out that also for
clothoids, the optimal values of η1 and η2 are close to s f . In facts, if ηηη is chosen
according to (2.45) and (2.46), the maximum error is equal to 5.060 · 10−6 m for
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Table 2.3: Coefficients of function (2.50)

η1 η2

λ1 0.19920352009325834053 0.20097340855985815211
λ2 0.00067959647624348148 −0.00091915134872076114
λ3 −0.00018934505601462691 −0.00000857636957731629

clothoids admitting κav < 1 m−1, i.e., it is very close to the value obtained by solving
the optimization problem.

A proper selection of ηηη is also relevant when η3D-splines are used to create
junction curves between other primitives. According to previous discussion (2.45)
and (2.46) lead to a good emulation of circular arcs and clothoids, i.e., of curves with
zero or constant curvature variability [κ(u) = (κB −κA)/s f ]: apparently, such choice
seems to prevent the insurgence of possible oscillatory behaviors in the curve shape.
Therefore, (2.45) and (2.46) were also tested for the generation of generic profiles.
The resulting curves shown, as desired, moderate and slowly variable curvatures and
torsions, while oscillatory behaviors were totally absent.

The proposed selection strategy has inevitably a drawback: in case of generic in-
terpolating conditions s f is not known in advance, so that the imposition of (2.45) is
not straightforward. In order to overcome the problem, the following iterative proce-
dure has been used. An initial curve is generated by imposing η1 = η2 = ∥pA −pB∥
and its length s̃ f is evaluated. Then, a second curve is planned by imposing η1 =

η2 = s̃ f and its length is used for the next iteration. After few iterations – 2 or 3 are
normally sufficient – the procedure converges to a value which is very close to s f .

Evidently, such algorithm can only be used if it convergences toward η∗
1 = s f (η

∗
1 ),

where η∗
1 indicates the convergence point. To this purpose, function s f (η1) must as-

sume a shape similar to the one shown in Fig. 2.4: after some iterations, the algorithm
would necessarily converge toward η∗

1 independently from the starting point.

Proposition 3 For sufficiently small values of ∥pB −pA∥, the proposed algorithm
converges toward η∗

1 = s f (η
∗
1 ).
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Figure 2.4: Convergence of the algorithm if s f (η1) is monotonically increasing. The
transients are indicated through red lines.

Proof — The iterative algorithm looks for the intersection point between functions
f1 = s f (η1) and f2 =η1. As a consequence, it is first necessary to demonstrate the two
functions actually intersect each other. Owing to the continuity of function s f (η1),
this hypothesis is verified if there exist η1 < η̃1 such that s f (η1) > η1 > s f (η̃1).
Furthermore, in order to prove the convergence, it is necessary to verify that the
slope of s f (η1) is higher than -1 over the search interval and, in particular, in η∗

1 . The
reason of this second requirement can be understood with the aid of Figs. 2.4 and 2.5.
The first one shows two typical convergence sequences occurring when s f (η1) is a
monotonically increasing function. Conversely, Fig. 2.5 shows two possible situations
which may occur if (ds f )/(dη1) is negative in η∗

1 : in case (a) the derivative is greater
than -1 and the convergence is achieved, while in case (b) the algorithm does not
converge.

- There exists η1 such that s f (η1) > η1 – Closed form expressions for p′(u)
can be found by evaluating its coefficients through (2.19)-(2.26) and by assuming
that (2.45) and (2.46) apply. A few algebraic manipulations make it possible to write
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Figure 2.5: Convergence properties: (a) the algorithm converges since (ds f )/(dη1)>

−1 for η1 = η∗
1 , (b) the algorithm diverges since (ds f )/(dη1) < −1. The transients

are indicated through red lines.

p′(u) as follows

p′(u;η1) = f1(u)η3
1 bA + f2(u)η3

1 bB + f3(u)η2
1 nA + f4(u)η2

1 nB

+ f5(u)η1tA + f6(u)η1tB + f7(u)(pB −pA), (2.51)

where fi(u), i = 1,2, . . . ,7 are proper scalar polynomial functions which also depend
on κA,κB,κA,κB,τA, and τB.

By assuming η1 → 0, from (2.51) it immediately descends that

lim
η1→0

∥∥p′(u;η1)
∥∥= | f7(u)|∥pB −pA∥ . (2.52)

s f (η1) can be obtained by applying (2.52) to (2.8). The following result is obtained

lim
η1→0

s f (η1) = ∥pB −pA∥
∫ 1

0
| f7(u)|du = ∥pB −pA∥ ≥ 0,

where | f7(u)| = 140(1− u)3u3 is a function whose integral, evaluated over [0,1], is
equal to 1. Practically, by assuming η1 = 0 condition s f (η1)>η1 is banally satisfied.



30 Chapter 2. η3D-splines

- There exists η̃1 such that s f (η̃1) < η̃1 – By virtue of the triangular inequality,
(2.51) allows one writing the following expression∥∥p′(u)

∥∥≤| f1(u)|η3
1 ∥bA∥+ | f2(u)|η3

1 ∥bB∥+ | f3(u)|η2
1 ∥nA∥+ | f4(u)|η2

1 ∥nB∥

+ | f5(u)|η1 ∥tA∥+ | f6(u)|η1 ∥tB∥+ | f7(u)|∥pB −pA∥ ,

= | f1(u)|η3
1 + | f2(u)|η3

1 + | f3(u)|η2
1 + | f4(u)|η2

1

+ | f5(u)|η1 + | f6(u)|η1 + | f7(u)|∥pB −pA∥ , (2.53)

According to (2.8), s f can be obtained by integrating ∥p′(u)∥. Consequently, the inte-
grals of both sides of (2.53) lead, after some algebraic manipulations, to the following
inequality

s f (η1)≤ K1η
3
1 +K2η

2
1 +0.9074η1 +∥(pB −pA)∥ , (2.54)

where

K1 :=0.2798 ·10−2(|κAτA|+ |κBτB|)≥ 0,

K2 :=0.8988 ·10−2(|κA|+ |κB|)+0.4663 ·10−3(|κ̄A|+ |κ̄B|)≥ 0.

Bearing in mind (2.54), condition s f (η̃1) < η̃1 is satisfied if, in turn, the following
inequality holds

(K1η̃
2
1 +K2η̃1 +0.9074)η̃1 ≤ η̃1 −∥(pB −pA)∥ (2.55)

or, equivalently, if

(0,0926−K1η̃
2
1 −K2η̃1)η̃1 ≥ ∥(pB −pA)∥ (2.56)

By recalling that K1,K2, η̃1 ≥ 0, two conclusion can be drawn. Firstly, the following
inequality must apply in order to satisfy (2.55)

η̃1 ≥ ∥(pB −pA)∥ . (2.57)

Secondly, depending on the interpolating conditions (2.56) may not admit feasible
solutions. In that case, the original planning problem can be split into sub-problems,
so as to reduce ∥pB −pA∥. Owing to the structure of (2.56), it will always be possible
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to find reasonably small values for ∥pB −pA∥ and η̃1 such that (2.56) and (2.57) are
simultaneously satisfied.

It is important to remark that conditions (2.56) is actually very restrictive, being
obtained from a triangular inequality. Normally, condition s f (η̃1)< η̃1 is satisfied by
simply selecting a sufficiently large value of η̃1 fulfilling (2.57).

- Condition (ds f )/(dη1) > −1 is satisfied ∀η1 ∈ R+ – Equation (2.51) can also
be written as follows

p′(u;η1) =[tA nA bA]︸ ︷︷ ︸
0
AR

 f5(u)η1

f3(u)η2
1

f1(u)η3
1

 [tB nB bB]︸ ︷︷ ︸
0
BR

 f6(u)η1

f4(u)η2
1

f2(u)η3
1

+ f7(u)(pB −pA),

(2.58)

where 0
AR and 0

BR are rotation matrices which describe the orientation of the Frenet
frame at the beginning and at the end of the curve. Bearing in mind (2.8) and (2.58),
the derivative of s f w.r.t. η1 can be written as follows

∂ s f

∂η1
=

∫ 1

0

∂p′(u;η1)

∂η1
t(u;η1)du (2.59)

where

∂p′(u;η1)

∂η1
= 0

AR

 f5(u)
2 f3(u)η1

3 f1(u)η2
1

+ 0
BR

 f6(u)
2 f4(u)η1

3 f2(u)η2
1

 .

Equation (2.59) does not admit a closed form representation, so that its minimum
value can be found by solving the following optimization problem

min
γ∈Γ

{
∂ s f (η1)

∂η1

}
where γ =

{
0
AR,κA,κA,τA,

0
BR,κB,κB,τB,η1

}
and Γ is a proper search space. In par-

ticular, 0
AR, 0

BR ∈ SO(3), κA,κB,η1 ∈ R+, and κA,κB,τA,τB ∈ R. If the optimization
problem returns a value greater than -1, then the algorithm converges independently
from the interpolating conditions. The result does not depend on the direction and
on the norm of pB − pA, so that such vector was assumed constant and equal to
pB −pA = [1 0 0]T .
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The optimization and the subsequent analysis of the results evidenced some in-
teresting properties. The problem is nonlinear and multimodal, so that it has been
repeatedly solved by starting from randomly chosen points. The minimum cost index
obtained over all the runs was equal to −1.666 · 10−2, i.e., it was much higher than
-1. Similar cost indexes were found in other runs of the algorithm for alternative min-
imizers. A deeper analysis of the solutions revealed that the derivative of s f (η1) can
be negative for very particular configurations of the interpolating conditions and for
values of η1 close to ∥pB −pA∥ (for the specific case, for η1 close to 1). Furthermore,
the derivative is generally positive over R+: when negative solutions are detected,
they span over very narrow intervals of η1. ■

Remark 1 The most common application for η3D-splines concerns the creation of
smooth junctions between linear segments. For example, this is typical planning case
occurring for CNC machines. In such a framework, terms K1 and K2 are identically
zero, so that (2.56) is banally satisfied if the following condition holds

η̃1 ≥
∥pB −pA∥

0,0926
,

so that the iterative algorithm certainly converges.

As previously asserted, the iterative procedure proposed for the selection of ηηη

typically converges in 2-3 iterations, so that computational times are compatible with
the real-time requirement. In order to prove such assertion, the iterative procedure has
been tested by considering the generation of junction curves between circular arcs.
A set of 2250 test cases has been generated. The following constant interpolating
conditions for the starting point of the ηηη3D-splines have been assumed:

pA =

0
0
0

 , RA =

0 1 0
1 0 0
0 0 −1

 , κA = 1, κ̄A = τA = 0, (2.60)

which are relative to a circular arc whose radius is equal to 1 m. Conversely, variable
interpolating conditions have be assumed for the end-point. They have been generated
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as follows

pB =

xB

yB

zB

 ;


xB ∈ {−0.3, 0, 0.3}

yB ∈ {0.3, 0.6, 0.9}

zB ∈ {0, 0.3}

(2.61)

RB = Rx(θ2)Rz(θ1)RA; θ1,θ2 ∈
{

0,
π

4
,

π

2
,

3π

4
, π

}
(2.62)

κB ∈ {0.1, 0.5, 1, 2, 10}, (2.63)

κ̄B = τB = 0, (2.64)

where Rk(θ) ∈ SO(3) indicates a rotation around the k axis [in (2.62) k ∈ {x,z}]. As
usual η3 = η4 = η5 = η6 = 0.
The algorithm converged in all the test cases. Table 2.4 shows some statistics concern-
ing the obtained results. They are expressed as function on i, where i is the number
of iterations considered. The statistics are relative the following benchmarks:

• Percentage difference e between η and s f at the ith iteration
(

e = |η1−s f |
s f

)
;

• Computational time t at the ith iteration expressed in seconds;

• Percentage difference m between the initial and the final value of η1 at the ith
iteration

(
m = η1−||pA−pB||

η1

)
.

Table 2.4 makes it possible to draw some conclusions. The algorithm can be reason-
ably stopped at the 3rd iteration, since the average values of e is close to 1% and
the m terms are very similar to the ones achieved at the 4th iteration, i.e., the last
cycle only marginally modifies the path shape. The same table further shows that, in
many practical cases, two iterations are actually sufficient. The planning algorithm –
executed on a single core of an Intel i7-1165G7 processor running at @2.80GHz –
converges, on average, in [8 12] ·10−6 s, i.e., the execution time is compatible with a
wide range of real-time applications. Computational times associated to any i show a
very low standard deviation of the associated, i.e., they are predictable: this is another
important characteristic in real-time contexts.
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Table 2.4: Statistics concerning the computation of η1 after i iterations. e and m are
expressed in %, t is expressed in seconds.

i avg dev min max

1
e 0.095 0.058 4.90 ·10−5 0.288
t 4.07 ·10−6 2.68 ·10−7 4.00 ·10−6 5.00 ·10−6

m 0.473 0.171 0.099 0.940

2
e 0.032 0.028 3.60 ·10−8 0.152
t 8.54 ·10−6 5.08 ·10−7 8.00 ·10−6 1.00 ·10−5

m 0.507 0.188 0.099 0.940

3
e 0.012 0.014 2.60 ·10−11 0.084
t 1.30 ·10−5 2.54 ·10−7 1.20 ·10−5 1.50 ·10−5

m 0.516 0.193 0.099 0.940

4
e 0.005 0.007 1.80 ·10−14 0.047
t 1.72 ·10−5 4.58 ·10−7 1.70 ·10−5 2.00 ·10−5

m 0.519 0.195 0.099 0.940

5
e 0.002 0.003 0 0.027
t 2.14 ·10−5 5.79 ·10−7 2.10 ·10−5 2.40 ·10−5

m 0.521 0.196 0.099 0.940
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Figure 2.6: Curve shapes obtained for (blue dotted) η1 = η2 = s f /2; (red solid) η1 =

η2 = s f ; (black dash-dotted) η1 = η2 = 1.5s f ; (green dashed) η1 = η2 = 4s f .

An application of the proposed iterative procedure is shown in Fig. 2.6, in which
the η3D-splines have been used for the generation of smooth junctions between two
linear segments. The following interpolating conditions have been used, directly de-
rived from the endpoints of the linear segments: pA = [000]T , pB = [0.150.150]T ,
tA = [010]T , nA = [100]T , bA = [00−1]T , tB = [00−1]T , nB = [0−10]T , bB =

[00−1]T , κA = κB = κA = κB = τA = τB = 0.

The 4 curves shown in Fig. 2.6 have been obtained by assuming that (2.46) ap-
plies. Furthermore, named s f the path length obtained through the iterative procedure,
η1 and η2 have been chosen as follows: (a) η1 = η2 = s f /2; (b) η1 = η2 = s f ; (c)
η1 = η2 = 1.5s f ; (d) η1 = η2 = 4s f . Fig. 2.7 shows the corresponding curvatures and
highlights that solution (b) returns the smallest values: κ(u) smoothly increases from
0 up to an almost constant value – the central part of the curve is, approximately, a
circular arc – and, then, it newly decreases to 0.

Another example is proposed in Fig. 2.8. It concerns 2 straight segments which
are not coplanar. Apart from pB := [0.150.150.15]T , the remaining interpolating con-
ditions are the same used for the previous example and, similarly, the same 4 selection
rules have been assumed for η1 and η2. As shown in Fig. 2.9, solution (b) is still the
one with the smallest curvatures.

No further examples are presented to avoid a tedious dissertation, but additional
tests have shown that the proposed selection strategy generally returns curves with
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Figure 2.7: Curvature profiles corresponding to the 4 curves shown in Fig. 2.6: dashed
blue line η1 = η2 = s f /2; solid red line η1 = η2 = s f ; dash-dotted black line η1 =

η2 = 1.5s f ; dotted green line η1 = η2 = 4s f .
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η1 = η2 = 1.5s f ; (d) η1 = η2 = 4s f .
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Figure 2.9: Curvature profiles corresponding to the 4 curves shown in Fig. 2.8: dashed
blue line η1 = η2 = s f /2; solid red line η1 = η2 = s f ; dash-dotted black line η1 =

η2 = 1.5s f ; dotted green line η1 = η2 = 4s f .
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limited lengths and curvatures, and which avoid oscillatory behaviors. In general, for
sufficiently high values of η1 = η2 – higher then the ones considered in the examples
– maximum curvatures start decreasing, but curve lengths become excessive. The
above mentioned characteristics allow one concluding that the strategy proposed for
the selection of ηηη , while not yielding to optimal solutions, returns smooth G 3 curves
– curvatures and curvature derivatives are limited – of reasonable length – s f is gener-
ally comparable with ∥pB −pA∥. This result is achieved at a negligible computational
cost, since the η3D-splines coefficients are immediately obtained from (2.19)–(2.26).
As already mentioned, if specific optimal conditions were to be satisfied, ηηη should
be selected through nonlinear programming algorithms.

In next Section 2.4 the η3D-splines are experimentally tested with the aid of an
industrial manipulator.

2.4 Experimental validation

η3D-splines have been embedded in the path planner of an industrial manipulator
and, subsequently, they have been experimentally tested by generating some G 3 com-
posite paths. To this purpose, a Comau Smart SiX 6-1.4 manipulator was used. The
manipulator can be remotely controlled by means of an external Linux PC whose
kernel was patched with the Real Time Application Interface (RTAI) software [57].
The communication between PC and robot controller exploits a real-time Ethernet
connection.

As early mentioned, η3D-splines can also emulate, exactly or with a good ap-
proximation, many path primitives commonly used by conventional planners. For
this reason, a Cartesian planner, entirely based on the η3D-splines, was implemented
and exploited for the generation of a composite G 3 path.

The trajectory shown in Fig. 2.10 has been specifically synthesized to this pur-
pose. It is made of a set of curves whose interpolating conditions are assigned so as to
generate some common path primitives. In particular, the G 3 path contains 3 straight
lines (see red segments 1, 3 and 130), 3 adjacent circular arcs (see the green segments
from 5 to 7), a helical curve (see the black segments from 9 to 67), and a conic spiral
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Figure 2.10: The composite G 3 path used for Experiment 2.
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Figure 2.11: The 3 components of (d3p)/(ds3) are continuous functions.

(see the orange segments from 69 to 127). Such curves are joined by means of generic
η3D-spline profiles so as to guarantee the overall G 3 continuity of the composite path
(see cyan segments 2, 4, 8, 68, 128, 129, 131). Black dots highlight the segments
end-points. For all the curves, vector ηηη was always selected according to (2.45) and
(2.46).

The maximum emulation error (2.7 · 10−5 m) was detected for curves from 5 to
7: for many actual robotic applications such value is acceptable and, according to the
discussion in Section 2.3, it can be further reduced by shortening the arcs lengths.
Fig. 2.11 shows that, as desired, (d3p)/(ds3) is continuous over the entire composite
path and, consequently, the joint jerks shown in Fig. 2.12 are continuous as well.
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Figure 2.12: For the composite G 3 path, the resulting jerk profiles of the first 3 joints
are continuous.





Chapter 3

Corner Smoothing

The techniques mentioned in 1.2 are conceived to handle problems involving paths
made of linear segments. In order to overcome such limitation, an interesting plan-
ning primitive for the flexible generation of junction segments has been recently pro-
posed in [24]. It is named 3D general clothoids and guarantees the G 3 continuity of
the resulting composite path. According to its name, the junction curve is obtained
from a set of 4 clothoids properly placed in the three-dimensional (3D) space. Sim-
ilarly to other planners, it generates smooth junctions between linear segments but,
additionally, it also handles cases in which circular arcs are involved. The sole draw-
back of the technique is represented by the planning method, which requires solving
a system of equations involving the numerical computation of Fresnel integrals.

The planning primitive devised in 2 owns characteristics which make it suited
for the smart generation of G 3 smoothing curves. As before seen, the η3D-splines
coefficients are directly and efficiently obtained, through closed form expressions,
from the interpolating conditions. Additionally, curvature, sharpness, and torsion of
the η3D-splines can be easily and inexpensively kept small, so that the novel planning
primitive represents an ideal candidate for the online generation of smooth profiles.

This work will show how the path primitives typically assumed by the GCode of
CNC machines, i.e., linear segments and circular arcs, can be efficiently and smoothly
joined by means of the η3D-splines, so as to obtain G 3 composite paths. Problems re-
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lated to chips thickness, contact surface and tool temperatures are supposed to be
solved in advance by proper CAM programs: η3D-splines are used for the final re-
finement of the path. The maximum tolerance between the resulting composite path
and the original one is kept below an user defined threshold.

It is worth to point out that, while several efficient solutions to the corner smooth-
ing problem have been proposed for paths made of linear segments [36,47], the gen-
eration of G 3 composite paths involving circular primitives is only considered in [24],
where it is handled by means of the 3D general clothoids. For this reason, this work
proposes direct comparisons between the results achievable with the η3D-splines and
the ones deriving from the use of the 3D general clothoids. In particular, it will be
shown that η3D-splines can accomplish the task by admitting a slightly better smooth-
ness level through a decidedly simpler planning method: a single curve is required for
the generation of each junction segment – instead of 4 – and its coefficients are found
by means of closed form equations. Consequently, while the 3D general clothoids are
mainly conceived for offline planning strategies, the η3D-splines can also be used in
online contexts.

The chapter is organized as follows. Section 3.1 explains how η3D-splines can
be used to join two linear segments or to create arc-to-arc junctions. Comparisons
between the planning primitive proposed in [24] and the η3D-splines are given in
Section 3.2. Final conclusions are drawn in Section 5.3.

3.1 The Generation of G 3 paths

A composite path for CNC machines is typically given by a sequence of linear seg-
ments and circular arcs. As a consequence, in the best case, it admits a G 1 geometric
continuity but, more frequently, it is simply G 0. This section η3D-splines will be ex-
ploited to smoothly join the original primitives so as to generate composite G 3-paths.

Two classic cases, respectively shown in Figs. 3.1 and 3.2, are here addressed: the
creation of junction curves between two linear segments and between two circular
arcs. The extension to mixed cases is straightforward.

In the case of two linear segments, by indicating their reciprocal lengths as s f1 :=
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∥p1 −p0∥ and s f2 := ∥p2 −p0∥, respectively, the corresponding primitives can be
analytically expressed as follows

pp(s̄) :=

{
p0 − t̂A (s f1 − s̄) s̄ ∈ [0,s f1 ]

p0 − t̂B (s f1 − s̄) s̄ ∈ (s f1 ,s f1 + s f2 ].
(3.1)

Analogously, for the two arcs in Fig. 3.2 the following equations apply

pp(s̄) =


pc1 − r cos

(
s f1−s̄

r1

)
n̂01 + r sin

(
s f1−s̄

r1

)
t̂01 ,

s̄ ∈ [0,s f1 ]

pc2 − r cos
(

s f2−s̄
r2

)
n̂02 + r sin

(
s f2−s̄

r2

)
t̂02 ,

s̄ ∈ [s f1 ,s f1 + s f2 ].

(3.2)

Where n̂i j denotes the unit normal vector associated to the jth curve in pi. The same
notation is used for tangent vectors.

The smoothing problem is banally solved by means of the η3D-spline once the
interpolating conditions are known. To this purpose, it is first necessary to select the
start and the end points of the junction curve, namely pA and pB, along the original
segments (see also Figs. 3.1 and 3.2). Each of them is located at the same distance
l from p0. For the same points, correct interpolating conditions must be assigned.
In particular, for a junction curve between two linear segments, t̂A and t̂B can be
obtained as follows

t̂A =
p0 −p1

∥p0 −p1∥
; t̂B =

p2 −p0

∥p2 −p0∥
, (3.3)

while pA and pB admit the following representation

pA = p0 − l t̂A; pB = p0 + l t̂B . (3.4)

Normal (n̂A and n̂B) and binormal (hA and hB) vectors do not need to be specified
because the curves to be interpolated are linear segments. The G 3 continuity is pre-
served by also assigning curvature, sharpness, and torsion at the beginning and at the
end of the curve. Since the original paths are straight segments, they must be assigned
as follows

κA = κB = κ̄A = κ̄B = τA = τB = 0 . (3.5)
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Figure 3.1: A G 3 junction between two linear segments (solid blue lines). An η3D-
spline (solid red line) is used to join points A and B. εmax is the maximum path ap-
proximation error. Situations like the one pointed out by the black dashed line can
not occur with η3D-splines.
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tÂ

nAˆbAˆ

b01ˆ

n01ˆ
b02ˆ

t01ˆ

n02ˆ
t02ˆ

bBˆnBˆ

tB̂

p1

t1̂

n1ˆ

b1ˆ

Figure 3.2: A G 3 junction between two circular arcs (solid black lines). The green
Frenet frames refer to the first arc, while the red ones refer to the second arc. An
η3D-spline (solid blue line) is used to join points A and B.
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Similar considerations apply in case of junctions between linear segments and
circular arcs or between arcs. Fig. 3.2 shows a situation concerning the generation of
a junction curve between two arcs. The units vectors of the Frenet frames for the two
arcs, computed in p0, can be expressed as follows

n̂01 =
pc1 −p0

r1
, n̂1 =

pc1 −p1

r1
, (3.6)

h1 =
n̂1 × n̂01

∥n̂1 × n̂01∥
, t̂01 = n̂01 ×h1 , (3.7)

n̂02 =
pc2 −p0

r2
, n̂2 =

pc2 −p2

r2
(3.8)

h2 =
n̂02 × n̂2

∥n̂02 × n̂2∥
, t̂02 = n̂02 ×h2 , (3.9)

where r1 := ∥pc1 −p0∥= ∥pc1 −p1∥ and r2 := ∥pc2 −p0∥= ∥pc2 −p2∥ are the radii
of the two arcs. By assuming again that the η3D-spline curve begins and ends at a
distance l from p0, the following interpolating conditions can be assumed in A and B
respectively

pA = pc1 − r1 cos(l/r1) n̂01 + r1 sin(l/r1) t̂01 , (3.10)

pB = pc2 − r2 cos(l/r2) n̂02 + r2 sin(l/r2) t̂02 , (3.11)

n̂A =
pc1 −pA

r1
, t̂A = n̂A ×h1 , hA = h1 , (3.12)

n̂B =
pc2 −pB

r1
, t̂B = n̂B ×h2 , hB = h2 , (3.13)

κA = 1/r1 , κB = 1/r2 . (3.14)

Initial and final torsion and sharpness are still equal to zero

κ̄A = κ̄B = τA = τB = 0 . (3.15)

Clearly, the resulting composite path is an approximation of the original one,
whose accuracy depends on the choice of pA and pB – and consequently on l – and
on the characteristics of the η3D-spline curve. Concerning the last aspect, in case of
junction curves between linear segments, shapes like the dashed one shown in Fig. 3.1
are strictly avoided by assuming (2.45)–(2.46). The resulting curve is contained in the
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same plane of t̂A and t̂B and admits very small curvatures and sharpnesses (see also
chapter 2).

The approximation introduced by the smoothing process is typically quantified
by means of the maximum Euclidean distance between the original path and the
modified one. To this purpose, the following expression is used

emax = max
s̄∈[s f1−l,s f1+l]

min
u∈[0,1]

{∥pp(s̄)−p(u)∥} , (3.16)

where pp(s̄) indicates the original path, i.e., it is given by (3.1) or (3.2), while p(u)
is the η3D-spline junction curve. According to (3.16), the hypothesis is that pp(s̄) is
approximated by the η3D-splines for a length 2l.

All the terms required for the synthesis of the η3D-spline curve can be obtained
– through (3.3)–(3.5) or, alternatively, through (3.6)–(3.15) – from the knowledge of
l. Consequently, emax only depends on l, which can be chosen so as to guarantee that
emax ≤ elim, where elim is the desired maximum approximation error. Such result is
obtained by initially imposing l = min

{
s f1/2,s f2/2

}
and by computing emax for the

resulting η3D-spline. If condition emax ≤ elim is not satisfied, emax can be reduced with
the aid of a search method applied to l (bisection, Newton-Raphson, etc.).

In case of generic paths, emax is found by solving the minimax problem (3.16).
Conversely, if the smoothing problem involves two linear segments, a closed form
equation can be provided, thus reducing the overall computational burden of the plan-
ning algorithm. Such equation can be found according to the procedure proposed in
the remainder of this section.

The symmetry properties of the η3D-splines make it possible to assert that, for
the problem at hand, the maximum error is obtained in the midpoint of the curve, i.e.,
for u = 1/2, so that it can be expressed as follows

emax =

∥∥∥∥p
(

1
2

)
−p0

∥∥∥∥ . (3.17)

A few algebraic manipulations of the η3D-splines equations return the following re-
sult

p
(

1
2

)
−p0 =

11η −32 l
64

(t̂A − t̂B) (3.18)
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Figure 3.3: An interpolation test set, obtained by assuming r2 = 0.5, θ1 = π/4, θ2 =

π/2, and θ3 ∈ {−π,−π/4,−π/2, . . . ,3π/4}. The green frame shows the orientation
of the reference frame. The close-up circle shows an example of smoothing curve for
the case θ3 = 0.

As previously asserted, η3D-splines are planned by imposing η = s f . From Fig. 3.1 it
immediately descends that, necessarily, η = s f ≤ 2l and that limit condition η = 2l is
reached only when t̂A and t̂B are perfectly aligned. As a consequence, (32 l−11η)/64
is certainly greater than 0, emax can be expressed as follows

emax =
32 l −11η

64

∥∥t̂A − t̂B
∥∥ . (3.19)

By defining θ ∈ [0,π] the unsigned angle between the two segments to be joined, and
by recalling the Carnot theorem, a few manipulations make it possible to write

emax =

(
1
2

l − 11
64

η

)√
2(1+ cosθ) . (3.20)

By recalling that η = s f depends on the choice of l, it can be concluded that, as
expected, emax is only function of l.

3.2 Comparative test cases

The proposed smoothing method has been compared with the 3D general clothoids
recently devised in [24]. Such planning primitive admits profiles whose smoothness
level is comparable or even better than the one achievable with well known primitives
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like, for example, the B-splines. Furthermore, up to now it is the sole primitive which
has been used for corner smoothing problems involving circular arcs.

Tests were carried out by considering the most general case, i.e., an arc-to-arc
smoothing problem. All quantities in the following are expressed in centimeters. The
first of the two arcs is the same for the whole test set and it is characterized by the
following parameters: r1 = 1, pc1 = [0,0,0]T , p1 = [−1,0,0]T , and p0 = [0,1,0]T . The
second arc joins the first one in p0 and admits r2 ∈ {0.25,0.5,1,2,4}. t̂02 is obtained
by rotating t̂01 according to the following equation

t̂02 = Rx(θ2)Rz(θ1)t̂01 ,

where Rx(θ2) and Rz(θ1) indicate rotation matrices around the x and the z axes, re-
spectively, while θ1,θ2 ∈ {0,π/4,π/2,3π/4,π}. The normal and binormal unit vec-
tors at the beginning of the second arc are obtained as follows

n̂02 = Rt(θ3)Rx(θ2)Rz(θ1)n̂01 ,

h02 = Rt(θ3)Rx(θ2)Rz(θ1)h01 ,

where Rt(θ3) is a rotation matrix around the t̂02 axis and θ3 ∈{−π,−π/4,−π/2, . . . ,3π/4};
therefore the test set contains a total of 1000 configurations (5 different values for r2,
θ1, θ2 and 8 values for θ3, 5× 5× 5× 8 = 1000). Fig. 3.3 shows some test curves
obtained for r2 = 0.5, θ1 = θ2 = π/4, and for all the values of θ3 in the test set.

In order to propose fair comparisons, the maximum error for both primitives was
kept below the same threshold elim = 0.2 by means of the same iterative procedure
acting on l.

For each curve of the test set, the worst case curvature, sharpness, and torsion can
be defined as follows

κ
∗
η = max

u∈[0,1]
{κη(u)}, κ

∗
clot = max

s∈[0,s f ]
{κclot(s)}

κ̄
∗
η = max

u∈[0,1]
{|κ̄η(u)|}, κ̄

∗
clot = max

s∈[0,s f ]
{|κ̄clot(s)|},

τ
∗
η = max

u∈[0,1]
{|τη(u)|}, τ

∗
clot = max

s∈[0,s f ]
{|τclot(s)|},
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Figure 3.4: Experimental results for the 1000 test cases. Curvature, sharpness and tor-
sion indexes are shown in (a), (b) and (c), respectively. Dash-dotted red lines indicate
the average values of the three indexes. (d) compares the emax values obtained with
the η3D-splines (solid blue line) with the ones returned by the 3D general clothoids
(dashed red line). Still using the same colors, (e) shows, for each of the two methods,
the number of iterations required to impose emax ≤ elim, while (f) reports the total
computational time for the synthesis of each curve. The value of θ1 changes every
200 samples: due to its influence on the η3D-spline characteristics, its switches cause
evident change of patterns.
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where subscripts η and clot indicate η3D-splines and 3D general clothoids, respec-
tively. Homologous curves of the test set can then be compared by means of the
following indexes

%κ =
κ∗

η −κ∗
clot

max{κ∗
η ,κ

∗
clot}

, (3.21)

%κ̄ =
κ̄∗

η − κ̄∗
clot

max{κ̄∗
η , κ̄

∗
clot}

, (3.22)

%τ =
τ∗

η − τ∗
clot

max{τ∗
η ,τ

∗
clot}

, (3.23)

Indexes denote, for each quantity, the percentage difference w.r.t. the worst case
value: negative outcomes indicate that η-splines are smoother than 3D general clothoids
and vice versa.

In 48 cases of the test set it was not possible to achieve convergence for the 3D
general clothoids. In particular, numerical problems arose for some of the configura-
tions admitting t̂A = −t̂B, i.e., for θ1 = π . Consequently, comparisons are limited to
952 test cases.

Figure 3.4 summarizes the results. More in details, Figs. 3.4a, 3.4b, and 3.4c show
the trends of %κ , %κ̄ and %τ . Both planning methods return curves with a similar
smoothness level, despite slightly better profiles are generally achieved by means of
the η3D-splines, especially in terms of sharpness. Such conclusion is also confirmed
by Table 3.1, which reports average, standard deviation, maximum, and minimum
values of all indexes. Fig. 3.4d shows that the two planners provide similar perfor-
mances in terms of emax and that, in any case, upper bound elim is never exceeded.
Necessarily, data related to the last 48 tests are missing for the 3D general clothoids.

As early stated, both algorithms fulfill condition emax ≤ elim through an iterative
procedure which acts on l. For each test case, the number of iterations required to
achieve such condition is shown in Fig. 3.4e. Such figure can be evidently subdivided
into clusters of 200 cases, each of them associated to a particular value of θ1. The
first cluster corresponds to θ1 = 0 and, consequently, t̂A = t̂B: the original path is,
at least, G 1 and l is found by means of a single iteration. The same happens for
θ = π/4, while higher values of θ1 impose to iteratively select l. As pointed out
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Table 3.1: Comparisons between η3D-splines and 3D general clothoids in term of
curvature, sharpness, and torsion

avg dev min max

%κ -0.0341067 0.124334 -0.840426 0.33095
%κ̄ -0.174315 0.244473 -0.951469 0.672681
%τ 0.041203 0.372961 -0.93996 0.865881

by the detail in Fig. 3.4e, the number of iterations changes even within the same
cluster of tests and, in general, less iterations are required for the η3D-splines. Finally,
Fig. 3.4f shows the computational times required for the synthesis of the η3D-splines,
obtained by means of an Intel i7-1165G7 processor running at @2.80GHz. They
evidently depend on the number of iterations but, even in the worst case, the solution
is achieved in less than 1 millisecond. The computational times for the 3D general
clothoids are not shown since they are more than two order of magnitude higher.
In fact, beyond the iterations required to achieve condition emax ≤ elim, 3D general
clothoids also require additional recursions for the computation of the coefficients
of each curve. Indeed, they are obtained by numerically solving, through an iterative
procedure, a system of equations involving some Fresnel integrals: computational
times depend on the interpolating conditions and, sometimes, the algorithm may not
converge. Furthermore, the iterative nature of the planning algorithm is the reason of
very variable computational times, so that it can be asserted that 3D general clothoids
are actually suited to off-line planning strategies.

On the contrary, computational efficiency and robustness represent the most ev-
ident characteristics of the smoothing method proposed in this work. Concerning
robustness, the coefficients of the η3D-splines are directly obtained from the interpo-
lating conditions through closed form expressions (2.19)–(2.26) and, consequently,
feasible solutions are always available. For the same reason, the computational bur-
den of the novel primitive is small and predictable: a single curve is planned on aver-
age in 1.81 ·10−4 s with a standard deviation equal to 3.07 ·10−5 s: even considering
the iterations required for the proper selection of l, the total computational time for
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Figure 3.5: Curvature, sharpness and torsion for the η3D-splines (solid blue curves)
and the 3D general clothoids (dashed red curves), obtained assuming θ1 = π/2, θ2 =

3π/4, θ3 = π/4, and κ2 = 2

each curve never exceeds 10−3 s, as proven by Fig. 3.4f.
Figure 3.5 shows curvature, sharpness, and torsion for one of the test cases and

proves that both primitives are G 3-continuous. The same figure highlights that, ad-
ditionally, the inner points of the η3D-splines admit an even higher continuity level,
while for the 3D general clothoids the derivatives of sharpness and torsion are dis-
continuous in correspondence of the clothoid-to-clothoid junctions (see the black ar-
rows).



Part II

Orientation Planner





Chapter 4

State of the Art

The target of automated manufacturing is the production of accurate objects starting
from a their CAD representation. In order to pursue higher precision and flexibil-
ity, manufacturing machines evolved along the years, by gaining degrees of freedom:
nowadays, it is very common to encounter CNC machines equipped with five axis.
The increased number of axis imposes to devise new planning primitives, able to
simultaneously manage position and orientation of the working tool. This work pro-
poses a novel planner, particularly suited for the generation of smooth multi-axis
trajectories. In this second part, the path generation problem is supposed solved by
means of the η3D-splines presented in the first part, so that the emphasis is mainly
posed on the orientation planner.

The orientation planning problem is common to many automation contexts and
can be summarized as follows: given a sequence of through points, a trajectory must
be planned so that the end-effector could exactly cross all of them with the desired
orientation. Typically, generated motions should simultaneously satisfy some addi-
tional features, and smoothness is certainly one of them. To this purpose, reduced
solicitation can be achieved by guaranteeing that the actuators reference signals are
jerk-continuous. Orientations can be expressed in multiple ways and, consequently,
different planning techniques can be conceived. The most commonly used notations
were compared in [5] in terms of effectiveness and conciseness. Rotation matrices
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have an immediate physical meaning but, being based on 9 terms, are certainly re-
dundant. Consequently, they are not immediately suited to planning purposes. Euler
angles return a compact orientation description, but they lack of effectiveness in some
particular configurations. Angle-axis representation and quaternions are the most ef-
fective orientation notations: they both use four terms (one of them is clearly redun-
dant) and are not subject to singular configurations.

One of the first planning strategies specifically conceived for quaternions was
proposed by Shoemake in 1985 [58]: the Spherical Linear Interpolation (SLERP).
Such strategy is well suited for the management of point-to-point trajectories, but it is
not immediately usable in multi-point contexts, which, conversely, are very common
in robotics applications. When the motion involves multiple via-points, the SLERP
approach causes “orientation corners", which induce discontinuities in the actuators
speeds, accelerations and jerks. The “orientation corner” problem is equivalent to the
well known “path corner” problem arising in CNC machines: in both cases discon-
tinuities can be avoided by admitting trajectory approximations. In order clarify the
concept, let us consider the path generation problem for a CNC machine schemati-
cally shown in Fig. 4.1 (the orientation planning problem poses similar problems).
Such figure shows a situation in which a generic curve, represented by the black
solid line, should be followed by a milling tool. As known, in CNC applications the
original path is preliminarily converted into a sequence of via-points: at run-time the
machining tool executes a series of linear segments joining such points (see the blue
dotted lines), thus introducing a first approximation with respect to the desired pro-
file. In order to eliminate discontinuity issues caused by the adoption of straight line
primitives, corner smoothing methods (see the green dash-dotted lines) have been
proposed [59–62]. However, such strategies, as shown in Fig. 4.1, induce further ap-
proximations w.r.t the nominal path.

An equivalent problem arises for orientations trajectories when using the above
mentioned SLERP primitive. In order to partially overcome the continuity issues,
an alternative primitive, named SQUAD, was proposed in [63]. However, as shown
in [64], such orientation primitive only guarantees the C 1 continuity of the reference
signals at the via-points.
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Figure 4.1: Comparison between the desired CAD path (black solid line), the GCODE
converted path (blue dotted line), the corner smoothed path (green dash-dotted line)
and η3D-splines path (yellow dashed line).

Previous considerations make it possible to assert that, for an accurate generation
of the surface profile, particular care must be dedicated to the generation of both
the path and the orientation trajectories. More in details, path approximations can be
strongly reduced, for example, by adopting a primitive proposed in the first part of
this work: a curve which exactly crosses the assigned via-points can be generated
by interpolating them through the η3D-splines. As indicatively shown by the yellow
dashed lines in Fig. 4.1, such primitive allows path errors which are smaller than the
ones that can be achieved with the corner smoothing strategy. However, in order to
implement a fully working planner in the operational space, such path primitive needs
to be combined to an orientation planner. This part is devoted to the design of such
planner, so as to associate a proper orientation to each point of the η3D-splines path.
The proposed primitive is characterized by a C 3 continuity level.

As previously stated, continuity problems can be overcome by means of orienta-
tion corner smoothing techniques, like the ones proposed in [59–62]. Alternatively,
new primitives have been designed for the direct smooth interpolation of the quater-
nions assigned at the via-points. To this purpose, the literature proposes several ap-
proaches, which differ each other for the adopted primitive: to obtain the C 1 continu-
ity Shoemake [63] and Dam et al [64] use a spherical interpolation, while to obtain the
C 2 continuity Legnani et al [65] use a repeated combination of SLERP curves, Kim
et al [66], Ge et al [67] and Pu et al [68]use B-splines, Nielson [69] uses ν-splines,
Liu et al [70] use quartic polynomials while Tan et al [71] use quintic polynomi-
als. It is important to point out that all the aforementioned strategies [63–71] only
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guarantee the C 1 or the C 2 continuity of the orientation profiles. Consequently, the
corresponding actuators jerks are discontinuous. The sole alternative strategies pro-
posed in the literature, which generates position and orientation trajectories in the
operational space and also guarantees jerk-continuous signals, are the ones proposed
in [61, 62].



Chapter 5

Orientation

In this second part, in order to avoid jerk discontinuities and to obtain very smooth
trajectories, a novel orientation planning approach, able to guarantee the C 3 continu-
ity of the reference signals, is designed. The new primitive is specifically conceived
to be used together with the η3D-splines path planner. When used together, the two
primitives allow the generation of jerk-continuous trajectories. A common denomi-
nator of both primitives is represented by their low computational burden. The orien-
tation planner proposed in this work could also be combined with alternative G 3 path
primitives, like the one given in [24] or, if jerk continuity is not mandatory, with G 2

primitives [25, 43].

The novel planner differs from the ones proposed in [61,62] for a relevant aspect.
While all the three approaches guarantee the C 3 continuity – actually [61] allows
the C 4 continuity – the planners designed in [61, 62] are explicitly conceived to
handle corner smoothing problems, so that trajectories are made of linear segments
properly joined at the via-points by means of blending curves. As early seen, this
implies that the assigned positions and orientations at the via-points are satisfied with
a given tolerance. Conversely, the trajectory planner proposed in this work allows a
strict fulfillment of the assigned positions and orientations. This is possible because
the η3D-splines can generate a wide variety of curves – like, for example, linear
segments, circular arcs, clothoids, conic spirals, etc. – directly passing through the
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assigned via-points (see part 2 for more details), so that corner smoothing techniques,
which necessarily cause tolerances, are not required at all.

The chapter is organized as follows. Section 5.1 introduces some preliminary
considerations on the continuity characteristics which must be owned by the orien-
tation planner in order to achieve continuous jerk signals. In the same section, some
basic concepts on the quaternion theory are recalled. Section 5.2 proposes the orienta-
tion planner. Two alternative primitives are considered. Experimental tests have been
executed with a Comau Smart SiX 6.14 manipulator. The corresponding outcomes
are discussed in Section 5.3 and are visually shown by means of two multimedia
attachments. Final conclusions are drawn in Section 5.3.

5.1 Preliminary considerations on the generation of jerk
continuous signals

The main purpose of this work is to devise a new orientation planning primitive for
trajectories in the operational space, so as to guarantee very smooth movements of the
actuators. More precisely, the generated Cartesian trajectories must guarantee that the
third order derivatives of the corresponding joint trajectories, i.e.,

...q , are continuous.

Given a manipulator with n degrees of freedom, a direct relationship exists be-
tween a point in the configuration space, i.e., q ∈ Rn, and the corresponding point
in the operational space. In this work, points in the operational space are represented
through a position p ∈ R3 and an orientation εεε ∈ R4, the latter expressed through
the unit quaternion representation. As a consequence, the continuity on q implies, in
turn, the continuity on both p and εεε .

Analogously, velocities in the two spaces are correlated through the Jacobian
matrix J(q), according to the following expression

vN = J(q) q̇, (5.1)

where vN := [ṗT ωωωT ]T ∈ R6 is the generalized velocity vector, which contains the
linear and the angular velocities of the end-effector. The applications considered in
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this work involve non-redundant systems, so that their Jacobian matrices, far from
singularities, are invertible. Consequently, (5.1) can be rewritten as follows

q̇ = J−1(q)vN . (5.2)

Equation (5.2) makes it possible to assert that the continuity of q̇ is achieved by
guaranteeing the continuity on vN .

Similar considerations hold for the higher order derivatives. J(q) is continuously
differentiable, so that some algebraic manipulations on the derivatives of (5.1) w.r.t.
the time, lead to the following expressions

q̈ = J−1(q)
(
aN − J̇ q̇

)
...q = J−1(q)

(
jN − J̈(q) q̇−2J̇(q) q̈

)
where aN := [p̈T αααT ]T and jN := [

...p T ιιιT ]T are the first and second time derivatives of
vN which, necessarily, need to be continuous in order to guarantee the continuity of
q̈ and of

...q .

The aforementioned considerations indicate that C 3 trajectories in the joint space
can be achieved by means of trajectories in the Cartesian space which fulfill some
specific path and orientation properties. A complete analysis on the path character-
istics can be found in chapter 2 and it is here omitted for conciseness. Conversely,
in this paper the attention is focused on the orientation planning problem: specific
conditions for the generation of smooth profiles are provided in the following.

The end-effector orientation can be expressed through the Euler parameters εεε :=
[ε0 ε1 ε2 ε3]

T . As known, the following condition applies

||εεε||= 1.

A direct relationship between ωωω and ε̇εε can be found according to the following
reasoning. The end-effector orientation can be represented through a rotation matrix
R or, alternatively, through εεε . The two representations are each other correlated by
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the following expression

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33



=

 1−2ε2
2 −2ε2

3 2(ε1ε2 − ε3ε0) 2(ε1ε3 + ε2ε0)

2(ε1ε2 + ε3ε0) 1−2ε2
1 −2ε2

3 2(ε2ε3 − ε1ε0)

2(ε1ε3 − ε2ε0) 2(ε2ε3 + ε1ε0) 1−2ε2
1 −2ε2

2

 . (5.3)

As known, the following relation applies

S(ωωω) = ṘRT =

 ṙ11 ṙ12 ṙ13

ṙ21 ṙ22 ṙ23

ṙ31 ṙ32 ṙ33


 r11 r21 r31

r12 r22 r32

r13 r23 r33

 (5.4)

where

S(ωωω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


is a skew-symmetric matrix which depends on the angular velocity of the end-effector
ωωω := [ωx ωy ωz]

T .
The components of ωωω can be extracted from (5.4). In particular, a few algebraic

manipulations make it possible to write

ωωω =

 ωx

ωy

ωz

=

 r21 ṙ31 + r22 ṙ32 + r23 ṙ33

r31 ṙ11 + r32 ṙ12 + r33 ṙ13

r11 ṙ21 + r12 ṙ22 + r13 ṙ23

 . (5.5)

By substituting the terms of (5.3) into (5.5), after a few algebraic manipulations
the following relationship between ε̇εε and ωωω is finally obtained

ωωω = 2M(εεε)ε̇εε, (5.6)

where

M(εεε) :=

 −ε1 ε0 −ε3 ε2

−ε2 ε3 ε0 −ε1

−ε3 −ε2 ε1 ε0

 . (5.7)
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The inverse relationship between ωωω and ε̇εε can be obtained according to the fol-
lowing reasoning. Let us add an additional row to (5.7), so as to obtain the following
matrix

M∗(εεε) :=


ε0 ε1 ε2 ε3

−ε1 ε0 −ε3 ε2

−ε2 ε3 ε0 −ε1

−ε3 −ε2 ε1 ε0

 .

It can be easily proved that εεε and ε̇εε are each other orthogonal, so that εεεT ε̇εε = 0.
Consequently, (5.6) can be rewritten as follows[

0
ωωω

]
= 2M∗(εεε) ε̇εε. (5.8)

Matrix M∗(εεε) is non-singular since it can be verified that

det(M∗(εεε)) =
(
ε

2
0 + ε

2
1 + ε

2
2 + ε

2
3
)2

= ||εεε||4 = 1,

so that M∗(εεε)−1 always exists. Additionally, M∗(εεε) is orthonormal, i.e. M∗(εεε)−1 =

M∗(εεε)T . Indeed, the following condition applies

M∗(εεε)T M∗(εεε) =


||εεε||2 0 0 0

0 ||εεε||2 0 0
0 0 ||εεε||2 0
0 0 0 ||εεε||2

= I4×4.

As a consequence, (5.8) can be inverted as follows

ε̇εε =
1
2

M∗(εεε)T

[
0
ωωω

]
,

or, more compactly, as follows

ε̇εε =
1
2

M(εεε)T
ωωω, (5.9)

where M(εεε) is given by (5.7).
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Due to (5.6) and (5.9), it can be asserted that the continuity of ωωω is achieved
through the continuity of ε̇εε .

By differentiating (5.6) the following equations are further obtained

ααα =2 [M(εεε)ε̈εε +M(ε̇εε)ε̇εε] ,

ιιι =2 [M(εεε)
...
εεε +2M(ε̇εε)ε̈εε +M(ε̈εε)ε̇εε] ,

where

M(ε̇εε) :=

 −ε̇1 ε̇0 −ε̇3 ε̇2

−ε̇2 ε̇3 ε̇0 −ε̇1

−ε̇3 −ε̇2 ε̇1 ε̇0

 ,

M(ε̈εε) :=

 −ε̈1 ε̈0 −ε̈3 ε̈2

−ε̈2 ε̈3 ε̈0 −ε̈1

−ε̈3 −ε̈2 ε̈1 ε̈0

 ,

i.e., the continuity on ααα and ιιι is mapped into equivalent continuity conditions on ε̈εε

and
...
εεε .

5.2 The C 3 continuous orientation planner

According to the discussion in Section 5.1, the C 3 continuity of the trajectory in
the configuration space imposes, in turn, that also the planning primitive adopted for
εεε must be C 3. In order to guarantee a strict relationship between orientation and
curvilinear coordinate, εεε is planned as a function of the curvilinear coordinate s.
Consequently, a trajectory for εεε is obtained by combining εεε(s) with a timing law
s(t). The time derivatives of the orientation trajectory can be expressed as follows

ε̇εε =
dεεε

dt
=

dεεε

ds
ds
dt

= ṡεεε
′,

ε̈εε = ṡ2
εεε
′′+ s̈εεε

′,
...
εεε = ṡ3

εεε
′′′+3s̈ṡεεε

′′+
...
s εεε

′,
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where εεε ′ := (dεεε)/(ds), εεε ′′ := (d2εεε)/(ds2), and εεε ′′′ := (d3εεε)/(ds3). Clearly, the re-
quired C 3 continuity on

...
εεε is achieved if εεε(s) and s(t) are both C 3 continuous. For

conciseness, the dependency of εεε on s is dropped in the following.
The orientation primitive could be potentially planned by only considering com-

ponents ε1, ε2, and ε3. The fourth component, i.e. ε0 could be subsequently obtained
by imposing condition ∥εεε∥= 1. However, such planning strategy would lead to com-
plex expressions for εεε ′, εεε ′′, and εεε ′′′. For such reason, the four components of the
quaternion are independently planned. The resulting vector, i.e., ε̄εε , is later normal-
ized in order to fulfill condition ∥εεε∥= 1 by means of the following equation

εεε =
ε̄εε

|ε̄εε|
.

The derivatives of εεε w.r.t. s can be easily obtained through some algebraic manipula-
tions. More precisely, it can be easily proved that they can be represented as follows

εεε
′ =

ε̄εε
′

|ε̄εε|
+αε̄εε, (5.10)

εεε
′′ =

ε̄εε
′′

|ε̄εε|
+2αε̄εε

′+β ε̄εε, (5.11)

εεε
′′′ =

ε̄εε
′′′

|ε̄εε|
+3αε̄εε

′′+3β ε̄εε
′+ γε̄εε, (5.12)

where

α =
d
ds

(
1
|ε̄εε|

)
=− ε̄εε

T
ε̄εε
′

|ε̄εε|3
, (5.13)

β =
d2

ds2

(
1
|ε̄εε|

)
=−|ε̄εε ′|2

|ε̄εε|3
− ε̄εε

T
ε̄εε
′′

|ε̄εε|3
+3

(ε̄εεT
ε̄εε
′)2

|ε̄εε|5
, (5.14)

γ =
d3

ds3

(
1
|ε̄εε|

)
=−3

ε̄εε
′T

ε̄εε
′′

|ε̄εε|3
− ε̄εε

T
ε̄εε
′′′

|ε̄εε|3

+9
(ε̄εεT

ε̄εε
′′+ |ε̄εε ′|2)(ε̄εεT

ε̄εε
′)

|ε̄εε|5
−15

(ε̄εεT
ε̄εε
′)3

|ε̄εε|7
. (5.15)

Evidently, by virtue of (5.10)–(5.15), the continuity properties of ε̄εε are inherited by
εεε , so that εεε is certainly C 3 if ε̄εε is C 3.
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According to the premises, the components of ε̄εε are planned independently. Thus,
a scalar primitive is adopted for each of them: it is indicated in the reminder of this
section as f (s).

Given a set of n+ 1 via-points points, whose displacement along the curve is
given through the corresponding curvilinear coordinates s = {0,s1, . . . ,sn}, function
f (s) can be partitioned into a set of n sub-functions defined as follows

f (s) :=



f1(s) if 0 ≤ s ≤ s1

f2(s− s1) if s1 < s ≤ s2

. . .

fn(s− sn−1) if sn−1 < s ≤ sn

. (5.16)

By defining ŝ := s− sk−1, functions fk(·) in (5.16) can be rewritten as follows

fk(ŝ), 0 < ŝ ≤ ŝk,

where ŝk := sk − sk−1.
Many alternative primitives can be adopted for fk(ŝ), k= 1,2, . . . ,n. A nice survey

is proposed in [72] for the achievement of composite C 2 function. In this work, a
possible strategy is devised in order to achieve the required C 3 continuity. For both
of them fk(ŝ) is defined as follows

fk(ŝ) = a0k +a1kŝ+a2kŝ2 +a3kŝ3 +a4kŝ4 +a5kŝ5.

The polynomials coefficients can be evaluated by solving a linear system which can
be set up by considering a proper set of interpolating conditions. For example, since
the orientations at the via-points are assigned, f̂0 := f1(0), f̂k := fk(ŝk),k = 1,2, . . . ,n
are known and must be satisfied by the polynomials. In the two strategies next pro-
posed, jerks at the beginning and at the end of each segment of the composite trajec-
tory are posed equal to zero in order to limit the signal variability.

5.2.1 Strategy A

In the first method, two additional free-displacement points are added in the middle
of the first and of the last intervals of the composite function (see also [72]) in or-
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der to balance the number of equations and unknowns. This implies that n̄ = n+ 2
polynomial functions, namely quintic splines, must be generated.

The following conditions must be satisfied in order to generate a C 3 composite
function

• imposition of the initial and final values for each segment of the composite
curve (2n̄−4 conditions)

f1(0) = f̂0

fk(ŝk) = fk+1(0) = f̂k, k = 2,3, . . . , n̄−2,

fn(ŝn̄) = f̂n̄.

It is worth noticing that the positions of the free-displacement points have not
been assigned;

• imposition of the composite function continuity at the free-displacement points
(2 conditions)

f1(ŝ1) = f2(0), fn̄−1(ŝn̄−1) = fn̄(0);

• imposition of the speed and the acceleration continuity [2(n̄−1) conditions]

f ′k(ŝk) = f ′k+1(0), k = 1,2, . . . , n̄−1,

f ′′k (ŝk) = f ′′k+1(0), k = 1,2, . . . , n̄−1;

• imposition of null jerks at the beginning and at the end of each segment (2n̄
conditions)

f ′′′k (0) = f ′′′k (ŝk) = 0, k = 1,2, . . . , n̄;

• imposition of the speeds and the accelerations at the beginning and end of the
composite curve (4 conditions)

f ′1(0) = f̂ ′0, f ′′1 (0) = f̂ ′′0 ,

f ′n̄(ŝn̄) = f̂ ′n̄, f ′′n̄ (ŝn̄) = f̂ ′′n̄ .
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Summarizing, the planning problem requires solving the following linear system
made of 6n̄ equations in 6n̄ unknowns

Ax = b, (5.17)

where x := [a01 a11 a21 a31 a02 a12 . . . an̄n̄]
T ∈ R6n̄ is the vector of the unknowns, A ∈

R6n̄×6n̄, and b ∈ R6n̄. Some algebraic manipulations make it possible to reduce the
order of (5.17), so that A is converted into the following three-diagonal matrix

0

0

with A ∈ R(n̄−1)×(n̄−1). Analogously, the structure of b ∈ Rn̄−1 changes as follows

b =



10 f̂2− f̂0
ŝ1

−20 f̂ ′0 − 17
2 f̂ ′′0 ŝ1

10 f̂3− f̂2
ŝ3

−10 f̂ ′0 −5 f̂ ′′0 ŝ1
...

10 f̂k+1− f̂k
ŝk+1

−10 f̂k− f̂k−1
ŝk

...

−10 f̂n̄−2− f̂n̄−3
ŝn̄−2

+10 f̂ ′n̄ −5 f̂ ′′n̄ ŝn̄

−10 f̂n̄− f̂n̄−2
ŝn̄

+20 f̂ ′n̄ − 17
2 f̂ ′′n̄ ŝn̄


∈ Rn̄−1.

and x = [a22 a23 . . . a2n̄]
T ∈ Rn̄−1 becomes the vector of the unknowns.

Efficient algorithms exist for the inversion of three-diagonal matrices [73], so
that large values of n̄ can be easily handled. Once the reduced order system has been
solved, the remaining coefficients of the polynomials can be obtained through the
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following closed form equations

a01 = f̂0, (5.18)

a02 =
6a22 +7 f̂ ′′0

20
ŝ2

1 + f̂ ′0ŝ1 + f̂0, (5.19)

a0 j = f̂ j−1, j = 3,4, . . . , n̄−1, (5.20)

a0n̄ =
6a2n̄ +7 f̂ ′′n̄

20
ŝ2

n̄ + f̂ ′n̄ŝn̄ + f̂n̄, (5.21)

a11 = f̂ ′0, (5.22)

a12 =−
20a22 +6a23 +7 f̂ ′′0

20
ŝ1 − f̂ ′0 −

f̂0 − f̂2

ŝ1
, (5.23)

a1 j =−
7a2 j +3a2( j+1)

10
ŝ j +

f̂ j − f̂ j−1

ŝ j
,

j = 3,4, . . . , n̄−2, (5.24)

a1(n̄−1) =−7
2a2(n̄−1)− f̂ ′′n̄

20
ŝn̄ − f̂ ′n̄ +

f̂n̄ − f̂n̄−2

ŝn̄
, (5.25)

a1n̄ =−2a2n̄ + f̂ ′′n̄

2
ŝn̄ + f̂ ′n̄, (5.26)

a21 =
1
2

f̂ ′′0 , (5.27)

a3 j = 0, j = 1,2, . . . , n̄, (5.28)

a41 =
2a22 − f̂ ′′0

4ŝ2
1

, (5.29)

a4 j =
a2( j+1)−a2 j

2ŝ2
j

, j = 2,3, . . . , n̄−1, (5.30)

a4n̄ =
f̂ ′′n̄ −2a2n̄

4ŝ2
n̄

(5.31)
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a51 =
f̂ ′′0 −2a22

10ŝ3
1

, (5.32)

a5 j =
a2 j −a2 j+1

5ŝ3
j

, j = 2,3, . . . , n̄−1, (5.33)

a5n̂ =
2a2n̂ − f̂ ′′n̄

10ŝ3
n̄

. (5.34)

The aforementioned solution applies for n̄ > 4, i.e., when the problem admits
more than 3 planning points. If n̄ = 4, matrices A and b of (5.17) change as follows

b =

 10 f̂2− f̂0
ŝ1

−20 f̂ ′0 − 17
2 f̂ ′′0 ŝ1

2( f̂ ′4 − f̂ ′0)− f̂ ′′0 ŝ1 − f̂ ′′4 ŝ4

−10 f̂4− f̂2
ŝ4

+20 f̂ ′4 − 17
2 f̂ ′′4 ŝ4

 ,

A =

20ŝ1 3ŝ1 0
4ŝ1 2(ŝ1 + ŝ4) 4ŝ4

0 3ŝ4 20ŝ4

 ,

while x = [a22 a23 a24]
T ∈ R3. The remaining coefficients are still obtained through

(5.18)–(5.34) by assuming n̄ = 4.

5.2.2 Strategy B

Alternatively, the orientation functions can be planned by still assuming 5th order
polynomials, but by increasing to 6 the order of the first and of the last polynomials
in order to avoid adding the two free-displacement points.

The linear system matrices A ∈R(n−1)×(n−1) and b ∈Rn−1 assume the following
expressions

0

0

,
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b =



20 f̂0− f̂1
ŝ1

−10 f̂1− f̂2
ŝ2

+10 f̂ ′0 +2 f̂ ′′0 ŝ1
...

10 f̂k+1− f̂k
ŝk+1

−10 f̂k− f̂k−1
ŝk

...

20 f̂n− f̂n−1
ŝn

−10 f̂n−1− f̂n−2
ŝn−1

−10 f̂ ′n +2 f̂ ′′n ŝn


,

while x = [a22 a23 . . . a2n]
T ∈ Rn−1. The remaining coefficients can be computed

through the following closed form equations

a0 j = f̂ j−1, j = 1,2, ...,n, (5.35)

a11 = f̂ ′0, (5.36)

a1 j =−
7a2 j +3a2( j+1)

10
ŝ j +

f̂ j − f̂ j−1

ŝ j
, j = 2,3, ...,n−1, (5.37)

a1n =−2a2n − f̂ ′′n

5
ŝn − f̂ ′n +2

f̂n − f̂n−1

ŝn
, (5.38)

a21 =
1
2

f̂ ′′0 , (5.39)

a3 j = 0, j = 1,2, . . . ,n, (5.40)

a41 =−
a22 +2 f̂ ′′0

ŝ2
1

−5
f̂ ′0
ŝ3

1
+5

f̂1 − f̂0

ŝ4
1

, (5.41)

a4 j =
a2( j+1)−a2 j

2ŝ2
j

, j = 2,3, . . . ,n−1, (5.42)

a4n =−4a2n +3 f̂ ′′n

2ŝ2
n

−5
f̂ ′n
ŝ3

n
−5

f̂n − f̂n−1

ŝ4
n

, (5.43)

a51 =
(8a22 +11 f̂ ′′0 )

5ŝ3
1

+6
f̂ ′0
ŝ4

1
−6

f̂1 − f̂0

ŝ5
1

, (5.44)
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a5 j =
a2 j −a2 j+1

5ŝ3
j

, j = 2,3, . . . ,n−1, (5.45)

a5n = 2
a2n + f̂ ′′n

ŝ3
n

−6
f̂ ′n
ŝ4

n
+6

f̂n − f̂n−1

ŝ5
n

, (5.46)

a61 =−
6a22 +7 f̂ ′′0

10ŝ4
1

−2
f̂ ′0
ŝ5

1
+2

f̂1 − f̂0

ŝ6
1

, (5.47)

a6n =−6a2n +7 f̂ ′′n

10ŝ4
n

+2
f̂ ′n
ŝ5

n
−2

f̂n − f̂n−1

ŝ6
n

. (5.48)

A particular solution is required when only three points are given (n=2). The
composite curve is made of 2 polynomials. Coefficient a22 is obtained by means of
the following equation

a22 =
1

2(ŝ1 + ŝ2)

[
f̂ ′′0 ŝ1 + f̂ ′′2 ŝ2 +5( f̂ ′0 − f̂ ′2)−10

f̂1 − f̂0

ŝ1
+10

f̂2 − f̂1

ŝ2

]
,

while the remaining coefficients are calculated through (5.35), (5.36), (5.38)–(5.41),
(5.43), (5.44) and (5.46)–(5.48) by assuming n = 2.

5.3 Experimental Results

In order to obtain a C 3 timing law, a jerk-continuous s(t) profile is needed. Typically,
Cartesian trajectories are used for applications which require a constant speed of
the tool frame (machining, gluing, soldering, laser cutting, etc.). For this reason, a
simple timing law, like the one shown in Fig. 5.1, was adopted for the experiments.
More complex shapes can be assumed for alternative tasks, provided that the resulting
function is C 3: for example, in order to satisfy a set of given velocity or acceleration
limits, a trajectory scaling strategy like the one proposed in [74] can be used. The
timing law planning problem is not considered in this work, so that no further details
are provided.

The orientation planner has been tested by means of simulations and through
the aid of a Comau Smart SiX 6.14 manipulator, a six link anthropomorphic robot.
The end-effector path is generated by means of the η3D-spline planner proposed in
chapter 2, while the orientation is provided through the first primitive proposed here
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Figure 5.1: The timing law used for the experiments.

(Strategy A). A sphere milling test has been simulated in order to show the effective-
ness of the planner for machining purposes. Additionally, two test trajectories have
been generated and, then, executed with a real manipulator. In the first experiment, a
milling trajectory is planned for a spherical surface. Fig. 5.2 shows its shape. When
finishing an object, the perpendicularity – or keeping a given angle – between the
milling cutter and the surface is critically important in order to guarantee both effi-
ciency (in terms of chip rate, bit temperature, etc.) and surface quality. The proposed
example assumes that the tool tip axis is always aligned with the radius of the sphere,
so that the planner effectiveness is checked by considering the error angle between
the axis of the milling tool and the surface normal. It was verified that the larger errors
occur when the path direction suddenly changes, so that the milling precision can be
simply improved by increasing the density of via-points at the turning points. A max-
imum error equal to 6.5 · 10−4 rad was achieved along the whole path by assuming
the via-points shown in Fig. 5.2: apart from the changes of direction, a very limited
number of via-points are required to mill the entire surface.

As early anticipated, the second set of experiments involved a real industrial ma-
nipulator. Two different trajectories were considered. As shown in Fig. 5.3, the first
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Figure 5.2: The trajectory adopted for the CNC example. Black dots indicate the
assigned via-points, the end-effector longitudinal axis (which is not shown in the
figure) is aligned to the sphere radius.

trajectory is composed by a circular arc immediately followed by a straight segment.
The same figure also shows the assigned orientations of the end-effector frame at
the via-points. The two paths are joined through a Cartesian curve still obtained by
means of an η3D-spline curve. The whole path is G 3. The jerk reference signals for
the six joints, obtained by means of the proposed planner, are shown in Fig. 5.4: as
expected, they are continuous. The second manipulator experiment exploits a com-
posite path made of circular arcs, linear segments, conic spirals, and helical curves
generated by means of the η3D-splines. As shown in Fig. 5.5, proper orientations
have been assigned in each via-point of the path. In order to show the flexibility of
the proposed planner, a constant orientation has been assumed for the first segments
of the composite trajectory, while the tool orientation changes during the execution
of the conic spirals and of the helical curves. More precisely, the tool-frame rotates
around its own ŷ axis, so that its x̂ and ẑ axes remain confined inside a vertical plane.

The acquired orientation errors, i.e. the angular differences between the unit vec-
tors of the trajectory frame and the ones of the tool frame, these latter obtained from
the encoders readings, are shown in Fig. 5.6. Thanks to the jerk continuity (the cor-
responding figure has been omitted for conciseness), the absolute values of the errors
do not show evident peaks along the whole path but, conversely, they remain confined
within a constant strip whose amplitude is equal to 4.2 ·10−3 rad.

As stated in the introduction, the orientation planner was conceived to be used
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Figure 5.3: The trajectory adopted for the first experiment on the manipulator. Black
dots indicate the assigned via points, while the reference frames highlight the desired
end-effector orientations.
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Figure 5.4: Time profiles of the jerks associated to the six joints. The continuity
condition is satisfied for all of them.
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Figure 5.5: The trajectory adopted for the second experiment on the manipulator.
Black dots indicate the assigned via-points, while the reference frames highlight the
desired end-effector orientations.
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Figure 5.6: Orientation errors of the tool-frame.
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in rapidly changing scenarios. Consequently, its computing times have been checked
in order to quantify the computational burden. The planning algorithm was run by
considering 998 test sets. More in detail, the nth set, with n = 3,4, . . . ,1000, was
made of n randomly chosen via-points. Tests were executed on one single core of an
Intel i7-1165G7 processor running at @2.80GHz. The investigation made it possible
to establish that the computational burden depends linearly on the number of via
points. More precisely, the computational time is equal to n× 2.19 · 10−7 s, so that
the trajectory shown in Fig. 2.10, which is composed by 127 segments, is planned
in 2.781 ·10−5 s. Consequently, a trajectory made of 4500 points could be processed
within 1 millisecond.





Conclusions

This thesis has investigated new methods for the complete trajectory planning within
a generic robotic system. Proposed primitives can solve the real-time trajectory plan-
ning as they can be used as stand alone planners or, as seen in this thesis, as different
parts of the same planner.

η3D-splines are an extremely flexible path planning primitive. As shown in the
first part, it can easily emulate other planning primitives and its parameters can be
obtained, at a negligible computational cost, directly from the assigned interpolating
conditions. These properties, combined with the G 3 geometric continuity that the
η3D-splines can guarantee, make it possible to smartly create in real time smooth
paths of considerable complexity, by only using a single planning primitive. The
research activity has next focused on two open problems. On the one hand, the effort
has been posed on the investigation of solutions which exploit the available degrees
of freedom for the generation of smoother path, so as to further reduce the errors
in the joint space; on the other, η3D-splines have been integrated with an additional
primitive, so as to allow the generation of motions which also account for the tool
orientations.

A novel method for the management of the corner smoothing problem has been
proposed in this thesis. The devised strategy, based on the η3D-splines primitive, al-
lows one generating smooth junctions between straight lines and circular arcs, i.e., the
primitives which are typically used in CNC machines, so as to convert the original
profiles into G 3 composite paths. The results of test cases highlighted the strengths of
the novel smoothing strategy. They can be summarized as follows: simplicity, η3D-
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splines coefficients are computed, in a straightforward manner, through closed form
expressions; robustness, a solution is always found independently from the interpo-
lating conditions; efficiency, the computational time is compatible with the typical
sample times of CNC machines; smoothness, the smoothing curves admit moderate
curvatures, sharpnesses, and torsions. The last research on this topic has focused on
the simultaneous management of the tool-tip orientation, so as to achieve an inte-
grated planner for the generation of smooth primitives in the operational space.

The orientation planner proposed in this work makes it possible to generate, in
a straightforward way, composite trajectories in the operational space. Its combina-
tion with the η3D-splines guarantees that the corresponding joint trajectories are C 3.
Consequently, smooth joint movements can be achieved and mechanical solicitations
can be reduced. The computational burden of the novel primitive is particularly light,
so that trajectories with many via-points can be easily handled even in real-time con-
texts. It is worth to remark that, despite in this thesis the orientation planner has been
experimentally tested on an industrial manipulator, it could also be profitably used
for the management of CNC machines with more than 3 axes. The approach is evi-
dently scalable, so that a future extension of the work could consider the generation
of continuous-snap signals obtained by combining G 4 path curves with C 4 orien-
tation primitives. Another potential future improvement of this work could concern
the achievement of trajectories with a specified degree of smoothness, obtained by
bounding joint velocities, accelerations, and jerks. Such result can be achieved, for
example, by means of scaling techniques acting on the timing law [74].

Summarizing, a whole new trajectory planning strategy has been theorized, de-
veloped and tested, and its results are outstanding. The combination between η3D-
splines and the orientation planner allows modern robotic systems to reach higher
speeds while maintaining the same precision. Another huge result is to have the com-
plete control over the trajectory while the system is running: at any time one could
modify or re-plan any of the upcoming tracks without bothering about computational
burden or path continuity.

Future works may lead to the integration of this planner in a collision avoidance
system in order to modify robots trajectory to avoid any kind of dangerous situation.
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Another future work could lead to a study on η3D-splines by running a thorough
analysis of the influence that all free parameters have on the final shape of the curve.
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[55] M. Brezak and I. Petrović, “Real-time Approximation of Clothoids With
Bounded Error for Path Planning Applications,” IEEE Trans. on Rob., vol. 30,
no. 2, pp. 507–515, 2014.

[56] Y. Chen, Y. Cai, J. Zheng, and D. Thalmann, “Accurate and Efficient Approx-
imation of Clothoids Using Bézier Curves for Path Planning,” IEEE Trans. on
Rob., vol. 33, no. 5, pp. 1242–1247, 2017.

[57] L. Dozio and P. Mantegazza, “Linux Real Time Application Interface (RTAI)
in Low Cost High Performance Motion Control,” in Motion Control 2003, a
conference of ANIPLA National Italian Association for Automation, Milano,
Italy, March 2003.

[58] K. Shoemake, “Animating Rotation with Quaternion Curves,” in Proc. 12th
Conf. on Comput. Graphics and Interactive Techn., 1985, pp. 245–254.

[59] M.-C. Ho, Y.-R. Hwang, and C.-H. Hu, “Five-axis tool orientation smoothing
using quaternion interpolation algorithm,” Int. J. of Mach. Tools and Manuf.,
vol. 43, pp. 1259–1267, Sep 2003.

[60] R. Xu, X. Cheng, G. Zheng, and Z. Chen, “A tool orientation smoothing method
based on machine rotary axes for five-axis machining with ball end cutters,” Int.
J. of Adv. Manuf. Technol., vol. 92, pp. 3615–3625, Oct 2017.

[61] R. M. Grassmann and J. Burgner-Kahrs, “Quaternion-Based Smooth Trajectory
Generator for Via Poses in SSS EEE(((333))) Considering Kinematic Limits in Cartesian
Space,” IEEE Rob. and Autom. Letters, vol. 4, no. 4, pp. 4192–4199, 2019.

[62] Y. Jixiang, L. Dingwei, Y. Congcong, and D. Han, “An analytical C3

continuous tool path corner smoothing algorithm for 6R robot manipulator,”
Rob. and Comp.-Int. Manuf., vol. 64, p. 101947, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584519305976

[63] K. Shoemake, “Quaternion calculus and fast animation, computer animation:
3-d motion specification and control.” Siggraph, 1987.

https://www.sciencedirect.com/science/article/pii/S0736584519305976


90 Bibliography

[64] E. B. Dam, M. Koch, and M. Lillholm, “Quaternions, interpolation and anima-
tion,” 1998.

[65] G. Legnani, I. Fassi, A. Tasora, and D. Fusai, “A practical algorithm
for smooth interpolation between different angular positions,” Mechanism
and Machine Theory, vol. 162, p. 104341, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094114X21000999

[66] M.-J. Kim, M.-S. Kim, and S. Shin, “A C2-continous B-spline Quaternion
Curve Interpolating a Given Sequence of Solid Orientations,” in Computer An-
imation, May 1995, pp. 72–81.

[67] W. Ge, Z. Huang, and G. Wang, “Interpolating Solid Orientations with a C2-
Continuous B-Spline Quaternion Curve,” in Proc. Int. Conf. on Technol. E-
learning and Digit. Entertainment, 2007, pp. 606–615.

[68] Y. Pu, Y. Shi, X. Lin, Y. Hu, and Z. Li, “C2-Continuous Orientation Planning for
Robot End-Effector with B-Spline Curve Based on Logarithmic Quaternion,”
Mathematical Problems in Engineering, vol. 2020, p. 2543824, Jul 2020.

[69] G. Nielson, “v-Quaternion splines for the smooth interpolation of orientations,”
IEEE Trans. visualization and comput. graph., vol. 10, pp. 224–9, 04 2004.

[70] Y. Liu, Z. Xie, Y. Gu, C. Fan, X. Zhao, and H. Liu, “Trajectory planning of robot
manipulators based on unit quaternion,” in 2017 IEEE Int. Conf. on Advanced
Intelligent Mechatronics (AIM), 2017, pp. 1249–1254.

[71] J. Tan, Y. Xing, W. Fan, and P. Hong, “Smooth orientation interpolation us-
ing parametric quintic-polynomial-based quaternion spline curve,” Journal of
Computational and Applied Mathematics, vol. 329, pp. 256–267, 2018.

[72] L. Biagiotti and C. Melchiorri, Trajectory planning for automatic machines and
robots. Heidelberg, Germany: Springer, Berlin, 2008.

[73] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C, 2nd ed. Cambridge, UK: Cambridge University Press, 1992.

https://www.sciencedirect.com/science/article/pii/S0094114X21000999


Bibliography 91

[74] C. Guarino Lo Bianco, M. Faroni, M. Beschi, and A. Visioli, “A predictive
technique for the real-time trajectory scaling under high-order constraints,”
IEEE/ASME Trans. on Mechatronics, vol. 27, no. 1, pp. 315–326, 2022.





Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Corrado Guarino Lo
Bianco for his trust and help during the last three years and for being always open to
dialogue for both research and private subjects.

Secondly I would love to dedicate a special thank to Marina Raineri, for being
my point of reference since my bachelor thesis, six years ago, and for transmitting
her passion everyday.

I also wish to thank my friends and colleagues Davide, Mattia, Irene and Stefano
who made work days funnier and less boring but also who could help me when I had
need. A thank goes also to Shabnam and Giammarco, who joined our group in the
last period.

Out of University there is a bunch of people who deserves my gratitude: starting
with my parents who supported me during my whole adventure, continuing to Fabio
who stands beside me whatever happened, concluding with my whole family without
which I would not be the same person I am today.

Finally, the biggest thank goes to my wife Elena, who always supports and loves
me even in the toughest days.


	Introduction
	I Path Planner
	State of the Art
	Cartesian Paths
	Corner Smoothing

	n3D-splines
	Preliminary considerations on the geometric continuity of 3D curves
	The n3D-splines
	Considerations on the selection of n
	Experimental validation

	Corner Smoothing
	The Generation of G3 paths
	Comparative test cases


	II Orientation Planner
	State of the Art
	Orientation
	 Preliminary considerations on the generation of jerk continuous signals
	The C3 continuous orientation planner
	Strategy A
	Strategy B

	Experimental Results

	Conclusions
	 Bibliography


