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Introduction

The rapid evolution of modern society in the last decades has been heavily dependent

on the development of portable electronic devices, the electrification of transporta-

tion, and the integration of renewable energy sources into the power grid. The demand

for energy storage options offering high energy density and fast charge/discharge

capabilities has increased over the years. First commercialised in the early 1990s,

Lithium-Ion Batteries (LIBs) have emerged as the leading technology among the ex-

isting electrochemical energy storage options, e.g., Nickel-Metal Hydride (NiMH) or

lead-acid batteries. Their lightweight design and the consistently high energy dens-

ity over numerous charge and discharge cycles meet the requirements set by recent

innovations in different market fields. In portable and consumer electronics, from

smartphones and laptops to cordless power tools, they substituted the large and bulky

NiMH batteries. The high energy density and fast charging capabilities completely

replaced the heavy lead-acid batteries in Electric Vehicles (EVs), providing sufficient

energy for long-range driving and revolutionising the automotive industry. Moreover,

their long cycle life with minimal capacity degradation and low self-discharge makes

them ideal for long-term applications, hence, they found applications in grid energy

storage systems. LIBs can manage the intermittency of renewable energy sources,

enhancing grid stability and facilitating the transition towards cleaner and more sus-

tainable energy sources.

The market for LIBs is growing rapidly, and the cost of batteries is decreasing (as

shown in Fig. 1) [1]. This trend is expected to continue, leading to further expansion

of the market in the coming years. In fact, the battery market size has already reached
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USD 45.0 billion in 2022 and is projected to grow to USD 93.3 billion by 2028 [2].

Lithium-ion batteries also have certain limitations and disadvantages. Some en-

vironmental concerns have arisen in recent years due to the production and dismant-

ling of batteries. Lithium resources are finite, and the rapid growth in demand for

LIBs has raised concerns about the sustainability of lithium mining. In addition, they

have a longer cycle life than other battery types, but at the end of their life, they must

be recycled appropriately to mitigate environmental impacts. Moreover, the lithium-

ion batteries present some safety concerns related to proper usage. When damaged,

overcharged or over-discharged, LIBs can occur in a thermal runaway event, leading

to safety hazards due to catching fire and potential explosions.

A Battery Management System (BMS) is crucial in monitoring the battery char-

ging and discharging processes. For the safe operation of a Li-ion battery, the BMS

can also provide thermal management to prevent thermal damage. Other than for

safety purposes, properly operating the battery also maximises the storable charge,

prevents early turn-off, and improves the battery cycle life. The BMS algorithms

heavily rely on the proper identification of the battery state in order to manage oper-

ations accurately and safely. Two main indicators are monitored: the State of Charge

(SoC) and the State of Health (SoH). The SoC represents the percentage of available

charge compared to the maximum battery capacity, as it is crucial to operate the bat-

tery in the nominal range and avoid overcharging and over-discharging. The SoH, on

the other hand, represents the remaining available capacity compared to the manu-

facturer’s rated capacity, and it is, therefore, an estimate of battery ageing. Typically,

BMSs evaluate the SoC to provide the user with an estimate of the remaining usage

time, e.g., the driving range of an EV or the remaining charge in a smartphone. More

recently, some high-end devices have introduced the SoH to warn the user of the bat-

tery status and suggest a replacement. In most cases, this is still a feature unavailable

to the user.

Developing sophisticated BMSs allows for a more accurate battery state estim-

ation. Unfortunately, both indicators are strictly related to complex electrochemical

reactions within the battery structure, making direct measurements unfeasible. There-

fore, they have to be estimated by a properly designed algorithm that evaluates some
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Figure 1: Trends in battery demand (a) and materials and battery prices (b)
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directly measurable quantities, such as voltage, current and temperature.

This dissertation aims to investigate the state of the art of BMS algorithms for the

SoC estimation and validate the implementation of new techniques. Battery data for

this purpose have been gathered from remotely controlled workbenches specifically

designed for this investigation. The obtained datasets have been then employed to

evaluate algorithms’ effectiveness for embedded systems.

The dissertation is organised as follows:

• Chapter 1 provides some insights on the lithium-ion technology.

• In Chapter 2, the state of the art for the SoC estimation is investigated.

• In Chapter 3, an Equivalent Circuit Model (ECM) and a Machine Learning

(ML) algorithm are designed for the SoC estimation to be implemented on an

FPGA platform.

• In Chapter 4, the ML approach is extended to an application-independent scen-

ario to improve algorithm generalization.

• In Chapter 5, a novel set of input features is investigated for the training of ML

algorithms.

• In Chapter 6, the investigated approaches are summarized and conclusions on

this dissertation work are drawn.

• In Appendix A, the fundamentals of vehicle dynamics are delineated and the

procedures behind the designed vehicle simulator are detailed.

• In Appendix B, a list of publications based on the proposed approaches is

provided.



Chapter 1

Lithium-Ion Cells

An introduction to the Lithium-Ion chemistry field follows, outlining the key con-

cepts. A Lithium-Ion battery can comprise several primitive blocks called cells. A

combination of cells is usually called a battery pack, and its voltage and capacity

depend on the chosen series and parallel configuration. In this dissertation, the term

cell will be used to refer to the individual electrochemical unit while referring to the

group of connected cells with the term battery or battery pack.

The Lithium-ion typical nominal voltage is in the magnitude order of 3.6 V. The

sum of the series-connected cell voltages will determine the battery pack’s voltage. In

contrast, the number of parallel-connected cells determines the battery pack capacity.

The cell capacity is the storable charge expressed in Ampere-hours (Ah). Li-Ion cell

datasheets typically provide information on the maximum discharge current that the

cell can handle, whether pulsed or continuous. This current data is usually expressed

in terms of a parameter known as the C-rate. The C-rate represents how fast the

cell is charged or discharged relative to its nominal capacity. For example, a 1C rate

means the cell is charged or discharged in one hour. This implies that a cell with

a nominal capacity of 2000 mAh would be discharged with a current of 2000 mA

(i.e., 2 A). Similarly, if the same cell had a 0.5C rate, it would take two hours to

charge or discharge, with a current of 1000 mA (i.e., 1 A). It’s important to note that

high C-rates exceeding the datasheet limitations can cause heat and stress, ultimately
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reducing the cell’s lifespan.

Li-Ion cells are available in various form factors, different from the commonly

known AA size. The most common form factors are the 18650 and the 26650. The

name convention represents the size of the diameter (18) and the length (65), respect-

ively, in millimetres. Different-sized cells have been recently designed to increase the

energy density.

1.1 Cell Structure

Lithium-ion cells consist of four primary components: a positive electrode (cathode),

a negative electrode (anode), a separator and an electrolyte. The operation of LIBs

relies on the reversible intercalation of positively charged lithium ions (Li+) between

the anode and cathode materials during charge and discharge cycles. The more lith-

ium ions can intercalate in the material structure, the more capacity the cell can have.

Therefore, materials composing both the electrodes must facilitate the intercalation

in their crystal structure without being chemically changed by the insertion of the

lithium ion.

Much research is being done on finding the optimum materials, but graphite is

often used as the anode material (lithiated graphite LiC6) [3], which has a hexagonal

layered structure favourable to lithium ions intercalation.

The cathode is a lithiated metal oxide that mostly affects the cell’s perform-

ance. Common cathode materials include lithium cobalt oxide (LiCoO2), lithium iron

phosphate (LiFePO4, or LFP), and lithium nickel-cobalt-manganese (NCM) com-

pounds [4]. The manufacturers choose the cathode material according to the quality

they want to improve, e.g., cell capacity, high current, or long life cycle, but cobalt is

rare and toxic, hence emerging alternatives are preferred.

The electrolyte, typically lithium salts dissolved in non-aqueous organic solvents,

does not participate in the chemical reactions but only facilitates the movement of

lithium ions between the electrodes. At the same time, it works together with the

separator to prevent electrons from passing, forcing them to flow through external

circuitry wires. The separator membrane not only physically isolates the positive and
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Figure 1.1: Cell structure and operating principle

negative electrodes but is also an ionic conductor and an electronic insulator. This

prevents internal short-circuiting between the two electrodes [5]. The simplified rep-

resentation of a lithium-ion cell structure is shown in Fig. 1.1.

1.2 Cell Operations

The electrochemical potential energy at the electrodes causes a potential difference.

Therefore, the cell nominal voltage is related to how the employed structure materials

interact. Oxidation and reduction reactions occur inside the cell during charge and

discharge operations. When the cell is being charged, oxidation takes place in the

cathode. In (1.1), a LiCoO2 cathode is considered, but the chemical balance applies to

different metal oxides as well. The resulting lithium ion moves through the electrolyte

and embeds into the anode. Consequently, a free electron flows through the wires

from the cathode to the anode, resulting in a current flow in the opposite direction.

Meanwhile, on the anode, the combination of the lithium ion and the electron results
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in a reduction reaction (1.2). The x represents the degree of lithiation, close to 1 when

the cell is charged or 0 when discharged and the negative electrode is largely depleted

of lithium ions.

The process is completely reversible and reverses when the cell is discharging.

As shown in Fig. 1.1, lithium ions and electrons move toward the cathode along

different paths, causing a current flow from the positive electrode toward the negative

electrode.

LiCoO2 −−⇀↽−− Li1−xCoO2 + xLi++ xe− (1.1)

C6 + xLi++ xe− −−⇀↽−− LixC6 (1.2)

Many side effects happen during these operations, which affect the cell capacity

and the voltage measured at the external terminals. First, lithium ions move inside

the electrolyte with a certain resistance, which results in a voltage drop affecting

the measured voltage. Moreover, a chemical polarization causes the effect known as

voltage relaxation, whose duration is related to the temperature and the electrode

materials [6].

When the electrolyte solvents react with graphite, they form an irreversible Solid

Electrolyte Interface (SEI) at the anode surface. The SEI is a layer that contains

products of electrolyte decomposition and acts as a passivation layer. A stable SEI

layer helps to improve the performance of the reaction by effectively insulating the

electrons while allowing ions to move freely. It is also vital for stabilizing the elec-

trode as it prevents the solvents from reacting further with the underlying graph-

ite. However, if the SEI layer is unstable, it can continuously consume electrolytes

during consecutive cycles, increasing its thickness and reducing the ions’ ability to

intercalate into the anode. This results in capacity fading and increased cell resist-

ance, consequently limiting the cell charging/discharging efficiency and accelerating

its degradation, ultimately shortening its operational lifespan, in a process commonly

known as ageing. Using the current, voltage or temperature data to directly evaluate

the SoC or SoH of a cell is unfeasible due to these complex electrochemical reac-

tions and these internal side effects, but an estimation can be performed by correctly

modelling or predicting the cell behaviour. In a battery pack, each cell must be in-
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dividually monitored thus a properly designed Battery Management System must be

implemented. In the following chapters, we will investigate the state of the art for the

SoC estimation in BMSs and evaluate the implementation of new techniques.

1.3 State of Charge

The State of Charge (SoC) is a vital parameter for proper cell operations and is the

main indicator employed in management algorithms. The SoC is defined as a unitless

quantity, being 100% (or 1) when the cell is fully charged and 0% (or 0) when fully

discharged. The SoC formulation is given by equation (1.3), which must be multiplied

by a factor of 100 to obtain a percentage.

SOC =
Q

Qtot

(1.3)

The remaining charge, Q, is related to the cell total charge capacity Qtot (or total

capacity), which is defined in Ampere-hour (Ah). The value of Qtot may vary from

cell to cell due to the materials employed in the electrodes and the format factor. It

also differs between two identical brand-new cells due to tolerances in the manu-

facturing process, although the process has become more and more precise over the

years. When the manufacturer provides the total capacity, it is referred to as nominal

capacity Qnom. The total capacity tends to decrease gradually as the cell ages due to

parasitic side reactions (such as SEI formation) and degradation of electrode mater-

ial. Therefore, the total capacity should be periodically characterised, when possible,

to preserve the accuracy of the BMS algorithms.

1.4 Key Concepts

1.4.1 Standard Charging Procedure

There are three commonly used charging methods:

• Constant Current. This is the simplest method employing constant current until

a defined voltage is reached. A higher current allows for faster charging, but
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Figure 1.2: Standard Constant Current Constant Voltage charging procedure with 0.5C

current rate.

the voltage threshold is reached earlier due to the increased internal voltage

drop. Therefore, the charging current is a trade-off between the charging speed

and the quantity of stored charge.

• Constant Voltage. The voltage is kept constant, and the current decreases as the

battery charges. Over-voltage is prevented, but the higher current at the start of

the process may damage the cell.

• Constant Current Constant Voltage (CC-CV). This is the standard charging

procedure used as a reference in literature. The cell is charged at a constant

current until its voltage reaches the upper threshold, usually defined in the data-

sheet. After reaching the upper voltage threshold, the voltage is kept constant at

this level, and the charging current gradually decreases. The cell is considered

fully charged when the current drops below the specified minimum current

threshold. In this fully charged state, the SoC can be defined as 100% with

sufficient accuracy. The entire procedure represented in Fig. 1.2 may take 2 to

4 hours, depending on the constant current rate, which is usually 0.5C for safe

charging operations.
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Other charging profiles were investigated in the literature to obtain fast charging

without compromising the accumulated charge [7], [8], but increasing procedure

complexity.

1.4.2 Error metrics

In the literature, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE)

metrics are commonly adopted to evaluate the performance of the methods under

investigation. Some authors also evaluate the maximum Absolute Error (AE), the

Mean Squared Error (MSE) or the R2. They are defined as:

RMSE =

√

1

m

m

∑
k=1

( ˆSoCk− yk)2 (1.4)

MAE =
1

m

m

∑
k=1

| ˆSoCk− yk| (1.5)

AE = max(| ˆSoCk− yk|) (1.6)

MSE =
1

m

m

∑
k=1

( ˆSoCk− yk)
2 (1.7)

R2 = 1−
∑(yk− ˆSoCk)

2

∑(yk− Åy)2
(1.8)

where, ˆSoCk represents the predicted value of SoC at the observation k, yk is the

observed value, i.e., the target expected value, and m is the number of observations.

The Åy is the mean of the observed values yk.

1.4.3 Drive Cycles

A drive cycle is a series of data points representing the speed of a vehicle versus time.

Different countries and organizations standardized the drive cycle profiles to assess

the vehicle fuel consumption, emissions and autonomy in the laboratory environ-

ment. This allows the classification of vehicle performance. Vehicle manufacturers in
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Figure 1.3: Vehicle speed as a function of time in the FTP-75 US06 drive cycle.

Europe must follow strict regulations for their vehicle emissions. The New European

Driving Cycle (NEDC) was the European standard drive cycle, but it was considered

unrealistic for actual driver’s behaviour. In 2017, the Worldwide harmonized Light

vehicles Test Cycles (WLTC, or WLTP) became the new standard adopted in differ-

ent countries. In the United States of America, the Environmental Protection Agency

(EPA) introduced a collection of four Federal Test Procedures (FTP-75) to measure

vehicle emissions and fuel consumption: the Urban Dynamometer Driving Schedule

(UDDS) simulating an urban route with stops, the Highway Fuel Economy Driving

Schedule (HWFET) simulating highway trips, the SC03 simulating the use of the air

conditioning, and the US06 simulating aggressive driving behaviour, high speed and

speed fluctuations, as shown in Fig. 1.3. In laboratory research, the most common

drive cycles for simulations are the WLTC, NEDC, and the US06.

For the purposes of this dissertation, the vehicle current consumption must be

obtained from the drive cycle vehicle speed. This was performed with a dedicated

vehicle simulator that considered vehicle and battery dynamics, as detailed in Ap-

pendix A. The US06 was widely employed due to the large speed fluctuations, i.e.,

the worst scenario for an Electric Vehicle causing large current consumption.
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Figure 1.4: Example of a 5-fold cross-validation procedure.

1.4.4 Cross-Validation

The k-fold cross-validation is proficiently used in the literature to evaluate the effect-

iveness of a trained ML model, [9], [10]. With the k-fold cross-validation, the dataset

is randomly split into nearly equal k folds, usually composed of N/k data points, with

N total data points as in Fig 1.4. For each fold, a model is trained on the N/k data

(only one fold) and then tested over the remaining folds (N−N/k data), computing

the RMSE or MSE. The process is then iterated for each fold, therefore the choice

of k determines the computational time, i.e., higher k means higher iterations and

higher time. Finally, the accuracy obtained in each iteration is then averaged to get

the model accuracy. Once repeated for different sets of parameters, the averaged error

can be used then to compare and select the optimum model.

The extreme case in which k = N is called Leave-One-Out cross-validation. The

computational cost is maximum because only one sample is used as a test, and N

iterations are performed. This is unsuitable for large datasets. On the other hand, the

Hold Out cross-validation splits the dataset in a specific percentage for the training

and the remaining for the test, as Fig. 1.5. The main difference is that, in this case,

only one training iteration is performed, and the model error is not averaged. There-

fore, the time required to accomplish the validation is usually lower than with the
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TRAIN TEST RMSE

X % 100-X %

Iter 1

Figure 1.5: Example of a Hold Out cross-validation.

k-fold. However, in [9], it was found that the k-fold cross-validation is more accurate

when employed for large datasets, even after the time trade-off, but the k value must

be limited. For the purposes of this dissertation, the 10-fold cross-validation will be

employed to validate the models during the optimization phases.
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State of the Art

Determining the SoC of a battery using (1.3) is not possible because measuring the

charge capacity Q is not feasible. However, various methods have been developed

to estimate SoC using measurable quantities such as current and voltage. Several

recent paper reviews, including [11], [12], [13], [14], [15], have summarized these

techniques, and an overview is presented in Fig. 2.1.

The choice of the approach for the specific application depends on the require-

ments and the trade-offs between accuracy, complexity, and real-time capabilities.

When real-time estimation is needed with minimal computational cost, Coulomb

Counting (CC) is preferred, albeit accepting lower accuracy. Model-based approaches,

on the other hand, are useful when high accuracy is required, but they come at the

cost of a more complicated implementation and time-consuming cell characterisa-

tion. However, they do not properly account for varying cell conditions. In such cases,

a hybrid approach that updates model parameters is suggested, albeit with increased

complexity. Finally, Data-Driven approaches can be employed when cell character-

isation is not feasible, such as in real-world scenarios outside of laboratories, and a

model that can be applied to different cells is preferred. These approaches can provide

good accuracy but require large datasets to infer a Data-Driven Model (DDM).

Moreover, the choice of the estimation approach should rely on the final applic-

ation field. Indeed, an optimum BMS must monitor each cell of the battery pack
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Figure 2.1: State of Charge estimation techniques

simultaneously, but this requires a lot of computational power. Depending on the

battery pack characteristics and the requirement for an actual real-time estimation,

different approaches could be chosen. Several implementations have been presen-

ted in literature based on microcontroller systems [16], [17], [18]. The microcon-

troller implementation could be low cost but has some limitations when managing

real-time tasks. The main drawbacks are the operating frequency limiting the num-

ber of operations and the fixed data type. On the other hand, a Field Programmable

Gate Array (FPGA) allows the implementation of multiple instances of the same

algorithm, exploiting the intrinsic parallelism of these architectures. Recently, differ-

ent solutions have been proposed to estimate the SoC on FPGAs [19], [20]. Tradi-

tionally, the Hardware Description Language (HDL) coding for programming FPGA

devices is time-consuming, involving typing, testing and programming. Neverthe-

less, recently the model-based design tools allowed for rapid system development.

The MATLAB/Simulink environment, for example, offers the HDL Coder tool to

automatically generate certificated HDL code from a Simulink schematic. The tool

allows to select the target FPGA or generate a general HDL code. This allows greater
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portability on FPGA from different manufacturers, unlike some approaches employ-

ing vendor-specific tools as in [21].

2.1 Measure Approaches

The most practical method for estimating the SoC is to rely on physical parameters

such as voltage, current, temperature or impedance. The SoC is estimated through the

gathered data thus it relies on the accuracy of the measurements.

2.1.1 Coulomb Counting

The CC method is one of the most widely used due to its computational simplicity at

the cost of reduced accuracy. The accumulated charge can be obtained by integrating

the current over time. Indeed, the CC formulation is (2.1)

SOC(t0 + t) = SOC(t0)−
1

Qtot

∫ t0+t

t0

η(τ)IL(τ)dτ (2.1)

where SOC(t0) is the SoC at the initial time, η(τ) is the charge efficiency, and IL(τ)

is the load current as a function of time τ flowing into (negative sign) or out (positive

sign) of the cell. It has to be noted that the current sign convention only affects the

+ or − sign in (2.1). The charge efficiency indicates the ratio between the charge

flowing in the cell during charge and the charge flowing out during discharge. For

lithium-ion cells, it is higher than 99%, so it is usually reasonably assumed to be

unity. In embedded systems, data are usually discrete-time sampled, so the following

formulation should be used.

SOC(k+1) = SOC(k)−
∆t

Qtot

η(k)IL(k) (2.2)

In (2.2), the sampling rate is assumed to be regular with period ∆t, and the current is

assumed to be constant over the sampling interval ∆t. These assumptions are usually

reasonable in embedded systems with a short sampling interval. Finally, the k repres-

ents the sample number. Again, the charge efficiency η can be assumed as constant

and unity.
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Implementing the formula is straightforward, and computations are not complex,

making it an attractive choice for real-time SoC estimation, but this method also

shows clear disadvantages. First of all, it is only suitable for ideal scenarios, such as

in laboratory workbenches. In reality, the current measurement is affected by noise

and sensor error, both of which add to the actual data in the integral in an open

loop. Even small errors can be significant due to the cumulative effect, resulting in

a cumulated error that must be reset at a certain point. In laboratory workbenches,

high-resolution instruments can be used, and the noise is usually reduced compared

to real-life settings. Moreover, the initial state SOC(t0) is generally unknown unless

the cell is completely charged or discharged, in which case SOC(t0) can be defined

as 100% or 0%, respectively. If the initial state is unknown, it must be retrieved from

a Look-Up Table (LUT), reducing the accuracy of this approach. Therefore, the CC

technique can be used with high confidence only for SoC estimation in laboratory

measurements. Due to these shortcomings, the CC method in real-world applications

should be combined with other techniques to enhance the estimation reliability.

2.1.2 Look-Up Tables

Most of the methods relying on measured data require obtaining the relationship

between the SoC and the measured quantity. Intensive experiments must be per-

formed in the laboratory to characterise the behaviour of each cell and tabulate this

relationship. Each cell characterisation must be stored then in a specific LUT to be

accessed for computations during battery operations.

The Open Circuit Voltage (OCV) method is simple and accurate but takes huge

time to characterise the cell and measure the OCV values to store in the LUT. Indeed,

firstly, the cell must be fully charged and allowed to rest until the voltage relaxation

disappears. This relaxation period is necessary to remove any polarization effects.

The voltage exponentially decays during this period, and after 3 to 4 times the voltage

time constant τ it can be considered finished. The specific rest time necessary for a

cell can vary and must be experimentally determined, but usually, 30 to 60 minutes

is considered sufficient.

Then, the cell is fully discharged by applying multiple current pulses. Each pulse
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SoC (%) 0 5 10 … 100

OCV (V) 2 2.1 2.2 … 3.6

T

Figure 2.2: Example of Look-Up Table storing OCV-SOC data pairs as a function of the

temperature T

removes a specific percentage of SoC from the cell, based on its duration and amp-

litude. After each pulse, the cell is rested for the relaxation period and the OCV

is recorded. Finally, a list of OCV-SoC pairs is obtained, and the same procedure

must be repeated for the charging phase. The mapping can be stored in a LUT, e.g.,

Fig. 2.2, or a polynomial function can be fitted. The SoC resolution, i.e., the num-

ber of data points, can be changed by modulating the amplitude and duration of

the pulses. Higher resolution allows for more accurate SoC estimation but also re-

quires more characterisation time and increased available space to store larger LUTs.

Then, at each time step, the corresponding SoC level can be determined by measur-

ing the OCV during open-circuit conditions, or computing the OCV through other

approaches.

This method is accurate but has significant drawbacks. The static state OCV can

not be measured because cells are continuously operated in real-world applications.

Moreover, it is also influenced by other factors, such as ambient temperature and

ageing. Therefore, the stored LUT may not be suitable for the specific conditions,

adversely affecting the SoC estimation accuracy. In Fig. 2.3 from [22], a OCV-SoC

relationship and the temperature dependence are shown. Even if different cell para-

meters, such as AC impedance or terminal voltage, could be characterised and stored

in the LUT, these drawbacks still cannot be overcome.
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Figure 2.3: Open Circuit Voltage - State of Charge characteristic at different temperatures

2.2 Model-Based Approaches

The Model-Based approach relies on creating a model to describe the cell’s beha-

viour. The deeper the understanding of the phenomenon to be represented, the higher

the level of accuracy at which the system can be modelled, and hence the better the

results obtained.

A Li-ion cell can be represented by different kinds of models. The most accur-

ate technique is to design an Electrochemical Model describing the ions and electron

kinetics caused by chemical reactions [14], also considering the lithium-ion concen-

tration at each electrode. Multiple partial differential equations and huge amounts

of variables make this model computationally complex and hard to implement [11],

[12], [15], [23]. Despite the high accuracy, they are not suitable for real-time estima-

tion due to the high complexity.

The cell behaviour can be modelled also with an Electrochemical Impedance

model reflecting the mass transport and diffusion dynamics between the electrolyte,

the membrane and the electrodes. Different resistance in the charge dynamics can be

observed with dedicated characterisation procedures. In particular, the Electrochem-

ical Impedance Spectroscopy (EIS) is mainly employed to obtain the impedance fre-

quency spectrum to be included in the model. This method is highly accurate when
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the impedance model is correctly characterised but it is not suitable for online SoC

estimation due to the long and complex characterisation procedures.

On the other hand, the cell dynamics can be investigated and replicated by lumped

electrical components and their equations to obtain an electrical ECM. The purpose

of these models is to represent the cell’s internal electrochemical processes, so deep

knowledge of the operating principles is required to design model parameters accur-

ately. The ECM is the most used model in BMSs due to its simplicity and robust-

ness [24]. As investigated in [15], patents from different companies show that their

BMSs mainly employ the ECMs. ECMs provide good accuracy with a reasonable

computational cost for many applications despite not requiring a high level of detail

as in electrochemical models. Different variants have been proposed in the literature,

but the least complex and most widely used models resulted in the Rint and Thevenin

models.

The Rint model shown in Fig. 2.4 is the simplest cell model. An ideal voltage

source VOC represents the cell’s open-circuit voltage OCV. A temperature and SoC

dependency can be added to better emulate the cell behaviour, but the relationship

still needs to be characterised and stored in a LUT. A series resistor R0 is connected

to the voltage source to describe the voltage drop response to a load current. This

resistor represents the Equivalent Series Resistance (ESR) of the cell. Indeed, the

terminal voltage VT drops below VOC when the cell discharges and rises above when

the current flows into the cell. The voltage behaves as depicted in (2.3), where IL

flowing out of the cell has a positive sign. The voltage drop on R0 will be named V0

in the following.

VT (t) =VOC(SoC(t),T (t))− IL(t)R0 (2.3)

It has to be noted that also the ESR R0 is a function of the temperature T and the

SoC. Improving the model accuracy by considering these relationships requires the

implementation of a LUT.

However, the Thevenin model shown in Fig. 2.5 can better represent the cell dy-

namics. It is typically used due to its increased accuracy and is designed using one

RC group, a resistance for the ESR and a voltage source for the OCV. The RC group

replicates the voltage relaxation phenomenon related to the chemical polarization
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Figure 2.5: Electrical Equivalent Circuit Model - Thevenin model
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Figure 2.6: Dynamic behaviour of cell voltage in response to an input current step

caused by the current flowing through the cell. The voltage relaxation response to

current steps is an exponential decay as in Fig. 2.6, equivalent to a parallel RC in the

electrical domain. By adding multiple RC branches in series, the model accuracy can

be increased [25]. However, this comes at the cost of increased computational com-

plexity. Since the increase in computational complexity is usually greater than the ad-

vantages in terms of accuracy, the one RC branch variant is typically preferred [25].

The voltage drop on the RC branch is named VRC, or either V1...Vn if multiple RC

branches are used. The model can be described by the following equations (2.4) de-

rived from Kirchoff’s Laws.

VT (t) =VOC(SoC(t),T (t))− IL(t)R0−V1(t) (2.4)

dV1(t)

dt
=−

V1(t)

R1C1

+
IL(t)

C1

IL(t) = IR1
(t)+C1

dV1(t)

dt

Each parameter, i.e., R0, R1, C1, VOC, is also a function of the temperature and the

SoC. When a proper characterisation has been performed, high accuracy in SoC

estimation can be obtained. In the case of a laboratory workbench, there is a long

time available to deeply characterise the behaviour of each cell. Therefore, some off-

line methods have been developed, such as the Hybrid Pulse Power Characterization
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(HPPC) and the EIS. Some curve-fitting algorithms and Least Squares (LS) are also

available, depending on the chosen model and type of characterisation. However,

cells are usually placed in on-site applications and internal equivalent parameters

change over time and are affected by environmental conditions. If the conditions

differ from the characterisation setup, the model is not reliable anymore and the ac-

curacy decreases. Consequently, it is crucial to update in real-time the parameters to

adapt to varying conditions to preserve accuracy, and this is usually accomplished by

combining the designed model with other approaches or performing online paramet-

ers identification.

2.2.1 Offline parameter identification

Hybrid Pulse Power Characterization

The HPPC testing procedure is based on pulsed signals and relaxation periods, sim-

ilar to the OCV LUTs approach described in Section 2.1.2, and is commonly em-

ployed to derive the parameters needed for the ECMs and evaluate the cell power

capabilities, [24]. As detailed in [26], a series of current pulses is applied and the

corresponding cell voltage response is recorded during the charge/discharge and the

resting phases. By analysing the dynamic behaviour, that will be as in Figure 2.6, the

time constant of the voltage response can be correlated to equivalent electrical com-

ponents, i.e., the required ECM parameters. Considering the 1-RC Thevenin model

as in Figure 2.5, it is straightforward to extrapolate the R0, R1, C1 and VOC parameters,

by managing the voltage HPPC data. For example, R0 is computed by looking at the

instantaneous voltage change during current drops as (2.5), and R1 and VOC from the

steady state voltage after relaxation. The C1 parameter is then obtained by evaluating

the final relaxation time (4 time constants usually).

R0 = |∆V0/I| (2.5)

R1 =VOC/I−R0 (2.6)

C1 = tend/(4R1)
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It is worth noting that the obtained parameters are a function of the SoC, but the entire

procedure must be repeated for each temperature of interest.

Electrochemical Impedance Spectroscopy

Mainly employed for Electrochemical Impedance models, the EIS technique allows

to obtain the impedance spectrum of a battery cell by applying an AC perturbation

and computing the Ohm’s law applied in the frequency domain (2.7):

Z(ω) =
V (ω)

I(ω)
(2.7)

where the impedance Z evaluated at a specific frequency ω is the ratio of the Fast

Fourier Transform (FFT) of voltage V and current I in the time domain. It is worth

noting that when dealing with hardware implementation on embedded systems, the

FFT algorithm can be computationally intensive. Nevertheless, there are alternative

algorithms that can be employed instead, such as the Goertzel algorithm [27]. Due to

complex chemical reactions inside the cell, various phenomena happen at different

frequencies, e.g., ohmic phenomena in the kHz range or mass transport at the mHz

range. Each phenomenon contributes to the overall impedance [28], [29]. It is crucial

to span most of the frequency range to capture as much cell information as possible.

Before applying this technique, some prerequisites must be met [30], [31]. The

foremost requirement is that the system must be linear so that, considering a cell, a

specific input I is linearly related to the specific output V , and the impedance remains

consistent during operations. However, the voltage-current relationship in a battery

cell is generally non-linear. This can be overcome by applying a sufficiently small

AC input to cause a limited deviation from the operational point, as in Fig. 2.7, thus

preserving a pseudo-linear relationship between the perturbation signal and the cell

response [31].

Additionally, the system must be in a stationary condition, i.e., time-invariant.

This is mostly the case if the DC component of the applied input I is zero. In contrast,

during battery cell operations in which the current contains a non-zero DC compon-

ent, this condition is not verified because the voltage varies with the varying SoC
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Figure 2.7: Example of pseudo-linear relationship in a reduced interval.

level. It is worth noting that the EIS can be applied as long as the voltage drift is re-

moved before computing the impedance. The longer the measurement, i.e., the lower

the frequency, the more noticeable the voltage drift becomes, as shown in Fig. 2.8.

Proper voltage drift correction is mandatory to obtain a meaningful FFT spectrum, as

depicted in [31]. A corrupted voltage spectrum compromises the computation of the

impedance, affecting (2.7).
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Figure 2.8: Typical voltage curve versus cell State of Charge
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Moreover, the SoC deviation during the measurements must be limited to obtain

a reliable spectrum. The SoC variation ∆SoC can be computed with (2.8), derived

from (2.2). In the literature, a deviation of 1% to 5% during measurements is com-

monly considered acceptable [32].

∆SoC(%) =
IDC×∆t

Qtot

×100 (2.8)

where Qtot is the battery capacity and ∆t is the measurement time.

2.2.2 Online parameter identification

Despite the wide variety of offline characterisation tests available, the internal dynam-

ics of Li-ion cells are temperature and SoC dependent, leading to inaccurate results

if the model parameters are not updated during the cell’s operations. Various tech-

niques can be applied to overcome this problematic drawback. Among the online

parameter identification algorithms, the Recursive Least Squares (RLS) is one of the

most employed [33]. However, it is highly susceptible to noisy measurements, hence

different variants are usually employed, such as the Recursive Total Least Squares

(RTLS) [33], the Weighted Least Squares (WLS)[15] and the Moving Window Least

Squares (MWLS)[34].

The LS algorithms aim to minimise the sum of the squared of the residuals, i.e.,

to minimise the error between the observed value and the fitted model value. This

is usually accomplished by evaluating the model equations in a matrix form. Con-

sidering the discrete-time domain, it is possible to evaluate the state change from

one time step to the next. The state matrix B is the result of multiplying the model

variables matrix A (such as current and voltage) by the desired parameters matrix x

(i.e., Ax = B). Therefore, computing the inverse of a matrix is necessary to obtain the

model’s parameters using the LS method (i.e., x = A−1B). However, this process may

become computationally complex if the size of the required matrices is very large

excessive.
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Figure 2.9: Kalman Filter variants

2.3 Filtering Approaches

Filtering algorithms are usually jointly implemented with model-based approaches

to improve predictions by real-time state estimation [11], [14]. Typically, methods

based on filtering provide maximum errors in SoC estimation even below 1% [12],

but implementation complications arise due to the high computational complexity.

2.3.1 Kalman filters

The most widely used algorithm for this method is the Kalman Filter (KF) and its

variants shown in Fig. 2.9 from [12], [15]. Specifically, the Extended KF (EKF) was

introduced to deal with the inefficient performance of standard KF applied to non-

linear systems. The KF is a recursive mathematical algorithm used for estimating the

state of a dynamic system from a series of noisy measurements. A set of state vari-

ables, which may include the SoC or other relevant parameters, is recursively updated

after a prediction step. The KF predicts the state variables based on the equivalent

model, estimating how the state is expected to evolve over time. Real-time measure-

ments, such as voltage and current, are used to update the estimated state variables,

providing a weighted combination of prediction and measurement. The KF also es-

timates the covariance of the state variables, representing the uncertainty in the state
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estimates. The process iterates as new measurements become available, continuously

refining the state estimates. Applying KF for SoC estimation yields acceptable ac-

curacy and effectively handles system noise. However, the algorithm is complex and

requires significant computational memory and proper initialization [34]. Indeed, the

initial state uncertainty in SoC estimation can significantly affect the accuracy of the

KF since any error in the initial estimation can propagate throughout the filtering pro-

cess. Nevertheless, when combined with other approaches, feedback can be obtained

to correct errors.

2.3.2 Particle filter

Besides KF, other adaptive filters have been studied in the literature, such as the

Particle Filter (PF) [35], [23]. This algorithm is based on stochastic modelling and

Monte Carlo simulation from a probability density function. However, the high com-

putational complexity makes this approach unsuitable in most of the cases.

2.3.3 Recursive Least Squares filter

The working principle of the RLS is still based on recursive state estimation, updating

the system states based on feedback errors to minimise the squared of the residuals,

e.g., the error between the modelled terminal voltage VT and the actual measured

voltage, but this approach still does not overcome the drawback of the KFs. However,

KF and RLS are usually employed together to assess the battery state.

2.4 Data-Driven Approaches

A wide variety of algorithms based on large dataset evaluation (i.e., data-driven) have

been employed in the literature for the SoC estimation [11], [14], [15]. Algorithms

based on statistical tools, such as Fuzzy Logic (FL), or Reinforcement Learning (RL),

have been successfully employed in the SoC estimation field [23]. FL is adaptive to

changes in the system conditions being based on rules rather than system descrip-

tion [23]. At the same time, a similar rule-based approach is also provided by RL,
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where an agent learns multiple policies by trial and error interactions with a dy-

namic environment [36]. However, most of the Data-Driven approaches in the SoC

estimation field rely on the use of Artificial Intelligence (AI), i.e., ML algorithms.

In [13], [37], some review of AI-based approaches are presented. Support Vector

Machine (SVM), Gradient-Boosting, and Artificial Neural Networks are reported and

compared. In [38], the SVM in the regression form is employed, and various kernel

functions are evaluated. In [39], the SoC estimation is performed by an RBF-Neural

Network, and in [40], a DCNN was trained to be applied to other cells with the trans-

fer learning technique, similarly to [41]. In [42], [43], also Deep Learning (DL) and

Convolutional Neural Network (NN) are discussed.

In this dissertation, the several ML algorithms and their variations that can be

found in the literature will not be detailed to improve conciseness. However, in the

following chapters, some will be discussed when needed.

One of the advantages of the ML algorithms is that DDMs can be inferred without

prior knowledge of the cell and they do not rely on electrochemical behaviour emu-

lation. Indeed, the inferred models are based on self-learning parameters, preventing

the need for cell characterisation or filtering techniques. During the training phase,

a large dataset is fed into the ML algorithm, which learns and adapts to the cell be-

haviour based on historical data. The algorithm searches for patterns and meaningful

relationships within the training data, evaluating several data features. As a result,

the inferred models are often black boxes for the user, who has to pre-process train

data to optimize the estimation accuracy properly. The choice of the dataset is crucial

for the accuracy of the algorithm. The dataset needs to represent real-world condi-

tions and should include a range of scenarios the algorithm is likely to encounter.

Furthermore, data-driven approaches allow high flexibility. The inferred model can

be trained with measurements from different kinds of cells or different scenarios,

resulting in a single model adaptable to various applications. This is a clear advant-

age compared to model-based approaches, in which each cell must be individually

characterised, and each scenario must be considered separately. These algorithms

can achieve high levels of accuracy, in particular when trained on large datasets. Un-

fortunately, the need for large datasets results in a drawback if data are unavailable
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and must be acquired. However, some battery-related datasets have been provided

in relevant studies [44], [45], [46] to help overcome this drawback. Finally, it has

to be considered that the implementation of these algorithms in embedded systems

requires high computing resources, which makes them usually unsuitable for low-

resource systems.

2.5 Hybrid Approaches

Estimating the SoC accurately and robustly is essential for BMSs. Hybrid approaches,

or mixed algorithms, are a combination of multiple techniques and often incorpor-

ate model-based approaches, filtering techniques, and real-time measurements to im-

prove the SoC estimation [47]. However, the models may struggle in dynamic situ-

ations due to conditions differing from the learned or characterised parameters. The

KF, in particular, is a popular choice in mixed algorithms [48], [49], due to its ability

to integrate dynamic models with noisy measurements. Additionally, Least Squares

(LS) algorithms may be used to update model parameters. Furthermore, the CC can

serve as a reference for providing feedback on the model output. In [50], a physics-

constrained NN has been trained and reinforced with the CC technique. By combin-

ing different approaches, feedback information can be introduced in the estimation

loop, thereby enhancing the accuracy of the stand-alone techniques. Ultimately, this

results in a system that benefits from both the employed methods and improves SoC

estimation accuracy. However, the combined techniques must be tuned to properly act

together, and the system complexity increases. Consequently, the final implementa-

tion in embedded systems may be more difficult, as demonstrated in [B1].





Chapter 3

Implementation of Model-Based

and Data-Driven approaches

3.1 Equivalent Circuit Model and Coulomb Counting

A variety of hybrid approaches combining different techniques have been investi-

gated in the literature, but one of the most straightforward involves improving the

ECM with a feedback loop from the CC as in [51], [21], [B1]. The Thevenin model

in Figure 2.5 has been used, as being one of the most popular cell models. The CC,

on the other side, is the most reliable SoC estimation when performed in a controlled

environment. Nevertheless, in the proposed approach, the feedback loop including

the ECM allows for overcoming the accumulating measurement noise error typical

of the CC computations. As aforementioned, the main drawback of model-based ap-

proaches is the need for extensive characterisation to obtain equivalent cell paramet-

ers. This process is detailed in [52], where a Panasonic NCR18650 2.75 Ah cell was

thoroughly characterised with the HPPC procedure. However, in the proposed ap-

proach, once the system is implemented in the on-site application it must be able

to retain SoC estimation accuracy over time and in different ageing and temperat-

ure conditions. Therefore, the equivalent parameters of the Thevenin model must be

identified online during cell operations to improve SoC accuracy. As detailed in Sec-
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Figure 3.1: System overview for a hybrid approach based on Equivalent Circuit Model,

Coulomb Counting and online parameter identification.

tion 2.2, the online parameter identification algorithms are usually based on Least

Squares or KF. For a first evaluation, in this particular implementation, the KF was

discarded due to the high algorithmic complexity shown in the literature [34], which

could lead to high resource utilization. The MWLS technique has been then chosen,

as successfully employed in [34], [53], [54]. The architecture of the complete system

is shown in Fig. 3.1.

A high-level design has been chosen for the proposed system, to increase flex-

ibility and portability to different hardware platforms. Indeed, the Thevenin model

has been realized in the Simulink environment, along with the complete MWLS al-

gorithmic procedure as proposed in [34]. A Discrete Time Integrator block performs

the accumulation function required by the CC. The entire system has been designed

by employing only HDL Coder compatible blocks to improve code portability, in-

stead of developing the system with vendor-specific design tools such as the Intel

DSP Builder Tool. The MWLS subsystem requires L samples of current and voltage

to estimate the cell parameters, where L is the window length and depends on the

sampling time. Longer window length allows for more accurate parameter identific-
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ation, but increasing the size of the matrices leads to higher computational resources

as depicted in 2.2. As previously detailed, the MWLS requires matrix inversion to

compute the parameters matrix. The Simulink standard block for this operation is not

supported by the HDL Coder tool, therefore an equivalent algorithm based on row

swaps has been designed.

The operations have been performed in fixed-point precision with a signed 32-

bit word length data and 21 fractional bits to obtain a simpler hardware architecture.

This data type can represent a range from -1024 to 1023 and a precision of 4×

10−7, which covers the data range for typical battery packs. Finally, the system has

been converted into VHDL code through the Simulink embedded HDL Coder tool

without specifying the target FPGA, to highlight the high portability of the code.

The behavioural simulation has been performed in the Xilinx Vivado Design Suite,

obtaining a maximum percentage error in the magnitude of 10−4 in parameters value

when compared with offline performed HPPC characterisation values. Additionally,

the synthesis elaboration for a Digilent Nexys 4 DDR Development Board, which is

based on a Xilinx Artix-7 FPGA, resulted in 22.76% of the occupied area, as detailed

in Table 3.1.

TABLE 3.1

AREA OCCUPATION FROM SYNTHESIS ELABORATION

Slice LUTs utilization (%) Slice Registers (%) DSPs utilization (%)

14427/63400

(22.76%)

196/126800

(0.15%)

8/240

(3.33%)

The resulting resource utilization allows for a maximum of four algorithm in-

stances to be implemented on the same Xilinx Artix-7 FPGA. The ECM itself resul-

ted in low computational complexity, but adapting the Model-Based approach to the

online parameters update led to excessively high computational complexity, mainly

due to the matrix operations. However, according to the literature, a similar problem

arises when employing KF. Nevertheless, the proposed system can still achieve good

parallelism for multiple cells with proper pipelining.
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3.2 Support Vector Machines

Given the results obtained by the hybrid approach in terms of ease of implementa-

tion and occupied resources, the implementation of a Data-Driven approach has been

thoroughly investigated to be fairly compared on the same hardware platform. In

the field of SoC estimation, different ML algorithms have been employed, includ-

ing NN and DL. SVMs have also been explored, specifically in the Support Vector

Regression (SVR) version. These algorithms have commonly been investigated on

PC-based platforms [10], with only a few works presenting their implementation on

microcontrollers [17]. The microcontroller constrains the implementation and limits

the model’s flexibility. However, a FPGA platform offers some advantages, including

performing real-time estimations and providing hardware flexibility and reconfigur-

ability. ML algorithms require high computational power, but the goal of estimating

the SoC in real-time can be obtained in an FPGA-based system. In the case of a bat-

tery pack, each cell (or module) is usually monitored by a slave board belonging to

a master BMS board. By exploiting FPGAs, slave boards could be embedded in the

same FPGA platform equipped with multiple instances of the same monitoring al-

gorithm, acting in parallel on each cell, thereby reducing the hardware requirements.

At the time of this dissertation, FPGA implementations of AI approaches for

the SoC estimation were limited to [55] in which a NN model has been considered.

However, it resulted in high area occupancy, making it difficult to export to low-cost

FPGAs and implement multiple instances. On the other hand, the SVR algorithm was

implemented on FPGAs in different applications but not in the SoC estimation field.

Therefore, the SVR algorithm was chosen to implement a data-driven approach for

the SoC estimation on FPGA platforms. The main goal was to achieve good accuracy

in SoC estimation, comparable to that of PC-based implementations available in the

literature, while still resulting in low area occupation.

3.2.1 Support Vector Regression

The SVMs were initially developed by V. Vapnik in 1995 for binary classification [56].

Given a set of training points and two classes, the SVM algorithm aims to define and
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orientate a hyperplane in such a way as to be as far as possible from the closest mem-

bers of both classes, namely Support Vectors (SV), as in Fig. 3.2. The solution to

Figure 3.2: Support Vector Machines for binary classification

this constrained minimization problem is detailed in [57]. However, the algorithm

has been adapted for managing regression problems, resulting in the Support Vector

Regression [58]. It has to be noted that this dissertation focuses on the regression

problem of SoC estimation, and therefore, the acronyms SVM and SVR will be used

interchangeably throughout the text, indicating the same regression task. The SVR is

a supervised learning algorithm. In other words, the inferred model must be trained

with labelled data, i.e., each input data vector is associated with a known corres-

ponding output target, as in Fig. 3.3. This type of algorithm is usually employed for

classification and regression tasks, while unsupervised learning algorithms are better

suited for clustering tasks. In SVR, a set of N data vectors xi ∈ Rn and their corres-

ponding known outputs yi ∈ R are used to construct a regression function by solving

the SVR quadratic programming problem [57]. The SVR algorithm penalizes pre-

dicted values more than a distance ε from the actual value, as shown in Fig. 3.4. The

region of non-penalization is called ε-tube, and defines the approximation accuracy.
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Figure 3.3: Supervised and Unsupervised Learning

The penalty factor C, also named box contraint, determines how much a data point

outside the ε-tube must be penalized in the final solution. The performance of the

SVR model varies depending on the proper optimization of these variables, but a de-

tailed mathematical explanation of ε and C is beyond the scope of this dissertation,

and it can be found in [57].

Each element of the xi vector comprises multiple input data features, such as

the raw data or some statistics. The primary idea of SoC estimation is to map some

cell-related input features to the corresponding cell State of Charge. Usually, current,

voltage and temperature are the most commonly employed input features, but in the

literature, different feature extraction techniques have been studied, such as Principal

Component Analysis (PCA) [59]. Most of the additional input features are related

to mathematical operations or statistics, such as mean and standard deviation in the

data. In Chapter 5, an advanced set of input features including the cell impedance is

also investigated. A Kernel function performs the mapping, whose choice depends

on the specific selected input features. The SVR estimation function for a new input

vector x is (3.1).

f (x) =
NSV

∑
i=1

(αi−α∗i )K(x,xi)+b (3.1)
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Figure 3.4: Support Vector Machines for regression tasks

where αi and α∗i are the Lagrange multipliers. The NSV sample vectors associated

with nonzero Lagrange multipliers are called SVs. K(x,xi) is a kernel function that

maps the input space Rn to a high dimensional feature space Rnk, where regression is

performed, and b is a bias term. Some possible choices [60], [61] for kernel functions

in SoC estimation are:

• Linear: K(x,xi) = x · xi

• Polynomial: K(x,xi) = ((x · xi)+ p)d

• Gaussian Radial Basis Function (RBF): K(x,xi) = exp(−∥x− xi∥
2/2σ2)

For each ML algorithm, large datasets are required for the training phase. For

the purposes of this first approach, a large collection of data acquired on a Panasonic

18650 Li-Ion battery cell, publicly available [44], was used. The cell characteristics

are detailed in Table 3.2.

In [44], the current profiles and the associated measurements were collected from

real batteries applying some of the most popular drive cycles. The "Neural Network
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TABLE 3.2

PANASONIC NCR18650 ELECTRICAL CHARACTERISTICS

Chemistry LiNiCoMnO2

Nominal capacity at 25 °C

after standard CC-CV charge [Ah]
2.75

Nominal Voltage [V] 3.6

Voltage cut-off [V] (lower-upper) 2.5 ± 4.2

Max. discharge current [A] 10

Standard CC-CV cut-off

current [A]
0.10

drive cycle" was chosen for this study because it was specifically designed to be used

within ML training processes [44].

Since developing new ML algorithms was beyond the scope of this dissertation,

the MATLAB design suite and the embedded fitrsvm function [62] were used to train

the SVR model with the aforementioned data. During the training process, various

input features and kernels were experimented with to determine the best compromise

between high accuracy (i.e., low error metrics) and low implementation complex-

ity. Furthermore, to test the generalization capabilities of the models obtained with

different kernel solutions, each was validated on a distinctive dataset from the same

collection, namely the US06, one of the most aggressive drive cycles [63], [64]. It is

worth noting that this dataset was not included in the training phase.

The details regarding the kernel validation results can be found in Section 3.2.4.

Based on these results, a linear kernel was selected. The choice was also led by its

low computational complexity [65], [66], which results in low resource utilization for

the FPGA implementation while still providing good results in terms of RMSE. To

perform successive inferences for a new input vector x, the trained linear kernel SVR

model can be utilized by employing the following estimation function:

f (x) = αT ·

(

x

KS
·

SV T

KS

)T

+b (3.2)
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where KS stands for the Kernel Scale and is a positive scalar value used to divide all

input data before the kernel computation is performed. The stored vector α represents

the differences between the two Lagrange multipliers for each Support Vector SV .

The scalar value b is the bias parameter in (3.1). Finally, the transpose operator is

denoted by T .

3.2.2 Ant Colony Optimization

After selecting the input features and kernel, the SVR model must be properly trained.

Typically, an optimization stage is used to obtain the optimal set of SVR parameters

that result in the best SVR model. The optimal parameter set is usually evaluated us-

ing the cross-validation procedure, as described in Chapter 1. The MATLAB environ-

ment provides different built-in optimization algorithms, such as Bayesian and Grid

Search optimizations [62]. Nevertheless, the literature shows that the Ant Colony Op-

timization (ACO) and the Particle Swarm Optimization (PSO) obtain the best results

when fine-tuning the SVR model parameters [67], [68], [69]. The ACO and the PSO

are part of a family of algorithms for continuous optimization, therefore their work-

ing principles are similar. Despite that, no evidence of ACO’s previous application in

the field of SoC assessment can be found at the time of this dissertation. The ACO

algorithm is inspired by the foraging behaviour of ants [70]. When an ant discovers

a food source, i.e., a set of SVM parameters, it leaves a trail of pheromones on the

path leading to that source. The amount of pheromones depends on the quality of

the food source, i.e., the quality of the model associated with those parameters (e.g.,

lower RMSE, higher quality). Other ants in the colony then move towards the path

with the most quantity of pheromones, searching for a set of parameters close to the

best one found so far. This helps to concentrate the search in regions of the search

space containing high-quality solutions. The process continues until a certain number

of iterations is completed or the changes to the parameters are smaller than a defined

threshold.

The kernel scale KS, the approximation accuracy ε , and the box constraint C

were included in the optimization process of the SVR model since they are the same

parameters used by the built-in MATLAB optimization algorithms [62]. This allowed
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for a benchmark comparison to evaluate the effectiveness of ACO.

3.2.3 FPGA Implementation

The presented overall system architecture can be seen in Fig. 3.5. In the literature,

it is common practice to perform the training phase offline since it involves storing

large datasets and can take a long time to complete. Therefore, only the optimized

SVR inference model was implemented.
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Figure 3.5: Proposed Ant-Colony-Optimized SVR system architecture

The SVR inference equation to be implemented is (3.2). Manipulating the equa-

tion for an easier implementation with less resource usage, it can be greatly simplified

if considering a parameter β defined as (3.3):

β = αT ·

(

SV

KS

)

(3.3)

Furthermore, it is possible to define a scaled parameter βscaled from β as (3.4)

βscaled =
β

KS
(3.4)

Finally, it is possible to transform (3.2) into (3.5) by substituting β and βscaled .

f (x) = ⟨βscaled ,x ⟩+b (3.5)
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where ⟨,⟩ represents a scalar product.

In the end, the hardware architecture required to process new input samples and

estimate a new SoC on an FPGA device involves computing a scalar product and the

sum of the b parameter. Additionally, this approach eliminates the need for division

operation, which can be complicated to implement on an FPGA.

The Hardware Description Language (HDL) code associated with (3.5) was au-

thored and assessed within the Xilinx Vivado Design Suite framework. The VHDL

code was a DSP-free architecture, allowing for implementation on a variety of FPGA

boards, even on those that are not equipped with DSP slices, allowing the user also

to choose cheaper boards, if the resource usage is suitable. A simpler hardware ar-

chitecture was obtained by performing all the operations in fixed-point precision. To

represent data ranging from -256 to 255.999 a signed 32-bit word length data with 23

fractional bits were chosen. This data type is compliant with the most common battery

cells and modules [71] and allows a precision of 1.2× 10−7. It is worth noting that

this data type is suitable for modules with up to about 60 cells in series. The VHDL

code was implemented on a Xilinx Artix 7 [72] XC7A100T-1CSG324C FPGA. Re-

sources utilization and timing simulations are reported in Section 3.2.4. Along with

the SVR estimation model, a UART interface was implemented on the FPGA board

for testing purposes. At each time step, the test input vector x is fed through this

communication port, which finally sends back to the PC the SoC value to assess the

estimation error. The hardware-implemented, ACO-optimized linear SVR model was

finally evaluated against the US06-based dataset.

3.2.4 Results and Discussion

For a preliminary evaluation, different input features and kernel choices were tested.

Each model was trained with the aforementioned NN drive cycle and tested on a

different dataset, i.e., the US06 drive cycle. Finally, the optimum input vector com-

prised:

• Current (I)

• Voltage (V )
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• Temperature (T )

• State of Charge at the previous time step (prevSoC)

with which the linear kernel resulted in the most accurate estimation when tested

on the US06 drive cycle, as shown in Table 3.3. Indeed, including the State of Charge

computed at the previous time step can significantly linearize the behaviour of the

SoC observed in that specific time step, even if the global trend during cell discharge

is known to be highly non-linear, improving the effectiveness of the linear kernel [73].

TABLE 3.3

RMSE RESULTS FOR FOUR SVR KERNELS TRAINED ON THE NN DRIVE CYCLE

DATASET AND TESTED ON THE US06 DRIVE CYCLE DATA.

Kernel RMSE (%)

Linear 8.7

Quadratic 16.7

Cubic 35.9

Sigmoid 30.2

RBF 35.5

Consequently, the SVR model parameters were optimized with the ACO. The al-

gorithm was initialized with a total ant colony population M of 30 ants, each perform-

ing 30 moves (i.e., number of iterations) during the search process. Each ant started

searching for the best parameter set from random positions. This initialization choice

resulted in the best compromise between model accuracy and processing time [74].

Each ant performed the fitrsvm function for the specified number of iterations, leading

to a model with a specific combination of the aforementioned KS,ε,and C paramet-

ers. Finally, the model selected for the successive implementation was the one with

the lowest RMSE. Moreover, the optimization process was compared with the MAT-

LAB built-in optimization options, namely the Bayesian, the Grid Search and the

Random Search. It has to be noted that, for each algorithm, the optimization results

can change over different trials due to the stochastic processes [62]. Therefore, each



3.2. Support Vector Machines 45

was run fifteen times and the mean RMSE and MAE were evaluated on the US06

dataset. Results are summarized in Table 3.4.

TABLE 3.4

RMSE AND MAE RESULTS OVER 15 RUNS OF DIFFERENT OPTIMIZATION

ALGORITHMS.

Algorithm
RMSE (%) MAE (%)

Min Mean Max Min Mean Max

Bayesian 1.9 9.6 25.3 1.6 8.4 21.8

Grid Search 1.6 7.2 18.8 1.3 6.1 15.0

Random Search 1.4 6.8 53.6 1.2 5.9 46.5

ACO 1.4 3.9 7.2 1.2 3.2 5.8

The Random Search and ACO obtained the lowest estimation error in terms of

both RMSE and MAE. Nevertheless, the remaining optimization algorithms were

found to be worse than with the ACO.

Once the ACO SVR architecture was established, a 10-fold cross-validation was

performed to assess the accuracy in terms of the maximum error between the estim-

ated and expected SoC. as detailed in Section 1.4.4. Therefore, in this case, the prop-

erly split NN drive cycle dataset was used for both the training and the test phases.

The effectiveness of the ACO approach in SoC estimation was assessed by compar-

ing the validation results with a recent PC-based implementation of an SVR algorithm

employing the PSO [10] in which a maximum validation error of 2.5% was obtained.

On the other hand, the proposed approach resulted in a maximum validation error of

1.2%, offering good performance.

Finally, the obtained optimized model was coded in VHDL as described in Sec-

tion 3.2.3 and implemented on the FPGA after simulations in the Vivado Design

Suite. The embedded system performance in SoC estimation was then tested with

the US06 test dataset. Using a dataset different from that used in the training phase

allows to evaluate the generalization capability of the approach. For clarity purposes,

the datasets exploited at each training and test step are summarized in Table 3.5.

A first behavioural simulation was performed in the Xilinx Vivado Design Suite
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TABLE 3.5

SUMMARY OF DATASETS USED IN EACH EVALUATION STEP, FOR TRAINING AND TEST.

Phase Train Set Test Set

Evaluation of different

Kernel functions
NN drive cycle US06 drive cycle

Comparison between MATLAB

optimization and ACO
NN drive cycle US06 drive cycle

ACO-optimized Linear SVR

cross-fold validation evaluation
NN drive cycle NN drive cycle

FPGA-implemented ACO-optimized

Linear SVR evaluation
Not performed US06 drive cycle

to evaluate the fixed-point quantization error. SoC estimation data are sent to MAT-

LAB and compared with the US06 target SoC data, computing the Absolute Error

as (1.6) where ˆSoCk is the predicted SoC and yk is the US06 target SoC.

The AE of the HDL-coded SVR was compared with that achieved with a MAT-

LAB SVR simulation performed in double precision. As shown in Fig. 3.6, a max-

imum error of 3.1% was achieved. The figure demonstrates that it is difficult to distin-

guish between the MATLAB and Vivado (behavioural simulation) SoC estimations.

Therefore, an enlarged image is included, revealing an error of approximately 10
−5

between the two approaches.

Next, post-implementation simulations were performed to evaluate the area oc-

cupation and timing performance. In Table 3.6, the occupied area is reported.

When compared to other FPGA-implemented techniques, e.g., the Neural Net-

work architecture in [55], the presented approach requires very limited resources,

employing only 1.39% of the available LUTs and 0.24% of the Slice Registers. This

means that multiple instances of the proposed algorithm can be placed on the same

FPGA. This feature can be of primary importance when several cells need to be mon-

itored in parallel, such as in a battery pack. For example, the proposed approach can

easily manage the case of a pack composed of 60 cells in series. By comparison, the
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Figure 3.6: Absolute Error compared with the target US06 SoC for the Vivado fixed-point

behavioural simulation and the MATLAB floating-point double precision.

ECM model presented in [B1] occupied 23% of the entire FPGA, which prevented

more than four instances from being programmed on the same platform. Further-

more, in contrast with [55], the proposed approach does not require DSP slices. This

means that smaller and low-cost devices can be used instead. Moreover, the post-

implementation timing performance resulted in Worst Negative Slack = 0.188 ns,

Worst Hold Slack = 0.054 ns, and Worst PulseWidth Slack = 4.5 ns, considering a

clock frequency of 100 MHz.

Finally, the RMSE of the proposed solution was evaluated on the implemented

circuit, again using measured data not included in the offline training phase. The

US06 test data were sent to the FPGA through the designed VHDL UART module.

The processed SoC estimation values were sent back to the MATLAB environment

and compared to the expected SoC to assess the RMSE. In Fig. 3.7, the estimated SoC

is compared with the expected US06 SoC values. The FPGA computations (red line)

predict the cell SoC (blue line) with an RMSE of 1.4% and an MAE of 1.2%. The

behavioural simulation completely overlaps the final implementation results hence it
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TABLE 3.6

AREA OCCUPATION COMPARISON WITH OTHER STUDIES.

FPGA
Slice LUTs Utilization

(%)

Slice Registers

(%)

DSP Slices

(%)

Proposed Artix 7
880/63.400

(1.39%)

300/126.800

(0.24%)

0/240

(0%)

ECM

[B1]
Artix 7

14.427/63.400

(22.76%)

196/126.800

(0.15%)

8/240

(3.33%)

NN [55] Virtex 7
1123/303.600

(1%)

751/607.200

(1%)

1125/2800

(40%)

is not shown in Fig. 3.7.

Further results can be investigated by comparing this approach with a model-

based approach and with other literature employing SVR models. In Table 3.7, a

Thevenin ECM was considered either with constant model parameters or with vari-

able parameters indexed in LUTs.

TABLE 3.7

COMPARISON OF PERFORMANCE IN SOC ESTIMATION BETWEEN SVR APPROACH,

ECM APPROACH EITHER WITH CONSTANT AND SOC-VARYING PARAMETERS, AND

THE LITERATURE.

Approach Kernel RMSE (%) Max Error (%) MAE (%)

ACO-SVR Linear 1.4 3.1 1.2

ECM const. par. - 1.5 4.3 1.1

ECM var. par. - 2.5 5.4 2.2

[17] Quadratic 2.5 13 -

[10] RBF - 1.5 1.2

The ACO-SVR model outperforms both cell model-based approaches in terms

of estimation accuracy. This may be due to the loss of accuracy in the LUT stored

parameters when the battery cell is almost fully charged or discharged. The same
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Figure 3.7: Comparison of expected SoC with SoC processed data on the FPGA board.

MAE was obtained as in [10], but in the proposed approach, the feasibility in real en-

vironments has been proved by implementing the algorithm on an embedded system

and tested on different test sets. Moreover, estimation accuracy overcomes [17], also

reducing the kernel complexity.

Concluding, this proposed solution allows the estimation of SoC without the need

to model the particular cell with an ECM. After the training with a large dataset and

the ACO, the obtained model was implemented on a FPGA. The successful SoC

estimation resulted in comparable or better accuracy than the literature while main-

taining a low resource usage.





Chapter 4

Application-Independent Training

for Support Vector Machines

In the literature, methods for estimating the SoC of batteries are usually evaluated

through current profiles obtained from standardized drive cycles, which are com-

monly used for computing fuel consumption in traditional thermal engine vehicles.

The reason behind this is the growing market for electric vehicles and the associ-

ated increased quantity of battery packs mounted on EVs. Therefore, research efforts

have been focused on the EV field. In particular, drive cycle based datasets are used

to train and test ML models. This approach yields high accuracy in predicting SoC;

however, it also means that the developed system relies on the specific application

and discharge profiles used in its training. If the application field changes, the train-

ing procedure must be executed again, which is a long process and requires recording

a new set of measurements.

After the validation of the ML approach proposed in Chapter 3, the goal of this

dissertation was then to further generalize the model training phase employing a

novel approach. A DDM based on SVR can be trained using data acquired while

applying a constant current to the battery cell. The constant current profile is very

generic as it is not related to a specific application, making the inferred model likely

to be applied to any field which requires a lithium battery, not just the automotive
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sector. This means that cell manufacturers or research laboratories can easily train

a model independently from the final specific application, reducing the modelling

effort required by BMS designers.

4.1 Preliminary Approach Validation

A preliminary validation was performed on a reduced-size dataset to evaluate the

effectiveness of the proposed approach. A dataset including constant current cell data

had to be acquired for the training phase thus the data acquisition setup has been

designed to gather data from a widely used 2.75 Ah Panasonic NCR18650PF lithium-

ion cell [71], [75]. Cell characteristics have been detailed in Table 3.2.

4.1.1 Data Acquisition Workbench

The setup overview is shown in Fig. 4.1.

Figure 4.1: Data acquisition schematic overview.

An Agilent E3646A dual-output DC power supply was employed for charging

the cell. The standard CC-CV charging process was applied to avoid cell damages,
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according to the specific datasheet [71]. On the other hand, a ZHIYU Multifunc-

tion 110 W, 30 V, 9.99 A electronically controlled load discharges the cell at a con-

stant current, with a maximum error in current sinking of 0.7% ± 10 mA, equi-

valent to a maximum current error of 80 mA. The battery cell is connected in par-

allel to both devices output via an 18650 battery holder. The CC3200 MicroCon-

troller Unit (MCU) equipped on a Texas Instrument’s LaunchXL board controls

charges and discharges operations through two digital outputs. During operations,

two HP 34401A 6 1/2 digits DMMs acquire the cell voltage and current in a 4-wire

configuration. The flowing current is converted in a differential voltage and measured

by Digital MultiMeter (DMM) DMM2 across a PBH 10 mΩ±1% shunt resistor. The

cell voltage is measured at the cell terminals by DMM1, removing most parasitics

voltage drops on wires. Finally, a third DMM (i.e., DMM3) acquires the temperature

data, sensing the resistance of a 10 kΩ± 1% NTC thermistor longitudinally applied

on the surface of the cell. The NTC thermistor has 10 kΩ resistance at 25 ◦C, and a

characteristic material temperature of 3435 K. Sampling data with a reading speed of

10 readings/s is a trade-off between the monitoring accuracy and the computational

demand due to the quantity of sample points [76]. In Table 4.1, detailed considera-

tions on instrument configuration, resolution and accuracy are presented. It must be

TABLE 4.1

DIGITAL MULTIMETER SETTINGS AND SPECIFICATIONS

Instrument

DMM 1 DMM 2 DMM 3

Measured Cell Feature Voltage Current Temperature

Configuration Voltage Voltage 4-wire resistance

Range 10 V 0.1 V 100 kΩ

Resolution 100 µV 1 µV 1 Ω

Accuracy

± (% reading + % range)

0.0035 +

0.0005

0.0035 +

0.0005

0.01 +

0.001
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noted that the DMM2 voltage resolution of 1 µV in the 0.1 V range corresponds to

a 100 µA current resolution. Moreover, the DMM3 measured the NTC resistance in

the 100 kΩ range, with a 1 Ω resolution, not considering temperatures below -20 ◦C.

All DMMs have the auto-zero function enabled to prevent drift, while the auto-range

function is disabled for faster readings. This setup allows for a maximum of 5 1/2

digits. The entire workbench is remotely controllable through a specifically designed

MATLAB script. An Agilent 82357B USB/GPIB interface allows communication

with the daisy-chained DMMs by sending IEEE 488 standard SCPI commands. The

CC3200 MCU communicates via USB serial connection with the MATLAB script,

controlling the cell operations. The actual complete workbench is shown in Fig. 4.2

Figure 4.2: Data acquisition workbench for constant current measurements.
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4.1.2 Model Training

A total of 15 discharge cycles was collected, i.e., a set of five cycles (numbered #1

to #5) for three different current rates, i.e., 1C, 2C and 0.5C, at ambient temperature

(23 ◦C ± 2 ◦C). Each cycle was followed by 30 minutes of rest to allow polarization

effects to disappear. The cell current, voltage and temperature were used as input

features. Before the training phase, the expected SoC was computed using the CC

method, as all the supervised ML algorithms require a target vector to be trained.

For each set, 80% of the data was assigned to the training set, and the remaining

20% was used for validation. The RBF kernel function was used in the SVR model,

chosen for its good performance in various applications [13], [77], [38]. The MAT-

LAB built-in Regression Learner tool was used to optimize the SVR model with the

Bayesian algorithm, which ran for a default total of 30 iterations. For each iteration,

the tool performed the 10-fold cross-validation and the optimum SVR parameter set

was finally obtained. This was repeated for each of the available cycle combinations,

to avoid biasing the result against one specific cycle combination. The considered

error metrics were the Root Mean Squared Error, the Mean Absolute Error and the

maximum Absolute Error, which are formulated in (1.4), (1.5), and (1.6). The optim-

ization algorithm had stochastic initialization, hence, the optimization process was

repeated ten times, obtaining ten models for each possible cycle combination. The

model effectiveness is assessed by computing the average of error metrics. They were

then tested with the validation set, as shown in Fig. 4.3. The different current rates

are represented by different colours, and the numbers denote the cycles on which the

models were trained. The best cycle combinations for each current rate are marked

with a red circle and were included in a new training phase for a global SVR.

Three different test sets, emulating dynamic current profiles, were built by ran-

domly mixing the 20% of the cycles allocated for the test. Therefore, the samples

were randomly chosen but still preserving a monotonic decreasing SoC profile, thus

emulating a discharge cycle at different current rates. The resulting error metrics are

listed in Table 4.2. As can be seen, the optimized SVR model shows good accuracy

in SoC estimation, with an RMSE lower than 1% in each test set. It is worth noting

that the error metrics obtained from the tests seem to be lower than what is reported
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Figure 4.3: SVR training and testing workflow.
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TABLE 4.2

SVR MODEL ERROR METRICS ON DIFFERENT DISCHARGE CYCLES

Test Set RMSE (%) MAE (%) Max AE (%)

Dynamic Cycle 1 0.576 0.409 3.2

Dynamic Cycle 2 0.578 0.412 3.2

Dynamic Cycle 3 0.564 0.405 3.2

in the literature. However, the reason is that the tests were conducted on a subset

(20%) of the total dataset. As a result, some of the information from the test data is

also already partially included in the training set. This is a common practice during

validation and differs from testing the model with completely new data. The resulting

SoC estimation for the test dynamic profile 1 is shown in Fig. 4.4, compared with the

reference SoC. An enlarged view is also shown for clarity purposes.

(a) (b)

Figure 4.4: (a) Comparison between the reference CC computed SoC and the SVR

estimated SoC. (b) Detail of the SoC estimation profile

Nevertheless, the results when training with constant current data and validating

with emulated dynamic profiles showed promising error metrics so that the approach

could be extended to a more detailed dataset.
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4.2 Application Independent Training Data

Next, the aim was to train the SVR with a multitude of constant current profiles in a

wider current range, and then test it with real-world dynamic profiles. For this reason,

the current range 2 A - 4 A was chosen. This resulted from a trade-off between the cell

discharge rate (which affected the time duration of the data acquisition campaign) and

the actual discharge current a device usually experiences, e.g., quadcopters, smart-

phones, cordless power tools or medical devices. Moreover, a wide test set composed

of different realistic dynamic profiles had to be acquired. This led to the need for an

update to the workbench for data acquisition.

4.2.1 Improved Workbench

The workbench in Fig. 4.2 was capable of discharging the cell through an electronic

load. This device can not be programmed in real-time, therefore discharging the cell

with a dynamic profile was not possible.

The workbench was modified as in Fig. 4.5, replacing both the power supply

and the electronic load with a programmable 200 W ITECH IT-M3412 bidirectional

power supply. It is rated for 60 V and ± 30 A, hence it is perfectly suitable for cell-

level operations. According to the datasheet [78], the accuracy is better than 0.1%

of the maximum voltage when working in constant voltage mode, whilst the pro-

gramming accuracy in constant current mode is better than 0.1% plus 0.1% of the

full scale. The power supply works in a 4-wire configuration, thus sensing the cell

voltage directly on the terminals, removing the wires parasitics voltage drops. Intro-

ducing a bidirectional power supply also allowed the removal of the control board for

switching between the charge and discharge operation. The cell under test was again

a 2.75 Ah Panasonic NCR18650, and the DMMs were configured as described in

Table 4.1. To minimize parasitic voltage drops, the system was wired using AWG 14

copper wires for power delivery, compliant with the wire section range recommended

in the IT-M3412 datasheet. The workbench is capable of remote and autonomous op-

erations and a MATLAB script designed specifically for this purpose communicates

with each DMM using IEEE 488 standard SCPI commands for initial configuration
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Figure 4.5: Improved workbench for data acquisition.

and memory data fetching. The same script interfaces through an ethernet connec-

tion with the IT-M3412 power supply by sending SCPI commands to its fixed IP

address. The script autonomously controls the CC-CV charging procedure and the

cell technical discharge limits outlined in the datasheet. It can also start and stop

the acquisitions or repeat them for a specific number of iterations while managing

proper rest periods for dealing with voltage relaxation. The autonomous script aided

in building a large dataset in a relatively short amount of time.

4.2.2 SVR Training Phase

The training dataset consisted of current, voltage and temperature measurements ac-

quired during discharge cycles at the specified constant current rates. All the cycles

have been started at the ambient temperature.
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For the first investigation, data from constant current discharges at rates between

3 A and 4 A in steps of 100 mA were acquired. For each current rate, a total of five

discharges were performed, totalling 55 cycles for the training set. With a reading

every 100 ms, the dataset was composed of more than a million data samples.

To build a large test set, several test cycles were also acquired. Five different cur-

rent profiles were generated by applying random current values between 3 A and 4 A

to be used as test cycles. A minimum current variation of 0.1 mA was set, which is

different from the 0.1 A steps used for the acquired current rates. This ensured that

the test set also included discharge current values that were not present in the train-

ing set. Additionally, for further testing, some realistic battery-powered drill current

profiles [79] were also acquired and appropriately scaled to fit the considered current

range. Finally, a US06 drive cycle current profile was acquired to validate the pro-

posed approach and compare it against the literature in which drive cycle profiles are

commonly used.

Once the dataset was acquired, the SVR model was trained following the same

procedure as before. The reference State of Charge was computed by employing the

Coulomb Counting algorithm, as (2.1). The high resolution and accuracy of the em-

ployed DMMs and the laboratory environment make the CC suitable for the spe-

cific dataset. Finally, the input vector comprised the current, voltage and temperature

raw data as features, and the target vector was the CC computed reference SoC. The

Bayesian optimization for the RBF kernel [77], [38] was performed in the Regression

Learner tool. The optimum SVR parameters were obtained after 100 optimization

iterations, in which the 10-fold cross-validation was applied to identify the lowest

RMSE.

4.2.3 Dataset Downsampling

As demonstrated in [80], a BMS can efficiently manage battery cells by sampling data

at 2 Hz. Initially, a downsampling factor of five was applied to reduce the dataset size

and speed up computations, reducing from a reading each 100 ms to a reading each

500 ms.

The training dataset composed of 55 cycles in the 3 A to 4 A range downsampled
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to 2 Hz required about two weeks to obtain a model with a validation RMSE of

1.4% on a personal computer with an 11th generation Intel i9-11900 core at 2.5 GHz

and 32 GB RAM. The training time was quite long, considering that multiple SVR

models may be trained for different ranges. It has to be noted that in this validation,

the same kind of data was used for train and test, i.e., constant current. The effects

of a more severe downsample factor were investigated. The aim was to minimize

the training time while maintaining the same accuracy in the SoC estimation. The

resulting datasets included data with a sample every 1 s (downsample factor 10), 10 s

(downsample factor 100), and 100 s (downsample factor 1000). The required training

timing and the related validation accuracy are reported in Table 4.3.

TABLE 4.3

EFFECTS OF DATA DOWNSAMPLING ON TRAINING TIME AND ACCURACY

Training Data

Readings/s
Training Time RMSE (%)

2 15 days 0.9

1 6 days 0.6

0.1 7 hours 1.1

0.01 5 minutes 1.3

As can be seen in Table 4.3, the training time drop is not linear with a higher

down-sampling because it depends not only on the dataset size but also on other

parameters such as the processor computations. Moreover, considering the valid-

ation accuracy, it can be seen that a dependency with the downsampling factor is

not straightforward. The significant improvement in the training time and a limited

worsening in the validation accuracy made the 100 s dataset the best option for further

investigation.

4.2.4 Post-Processing Stage

To overcome the abrupt changes in the predicted value of SoC that AI approaches

are prone to produce [50], data post-processing stages were implemented to further
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improve the estimation accuracy. The post-processing stages were intended to be ap-

plied on-board to the specific application data, thus they had to be easy to implement.

Firstly, the SoC was limited to discard unfeasible values, i.e., values beyond the phys-

ical threshold of 100% - 0%. The spikes in the SoC estimation were then smoothed by

a 64-tap low-pass FIR filter, considering a normalized cut-off frequency of 0.01 Hz.

An example of the resulting filtering is shown in Fig. 4.6.

Figure 4.6: Prefiltered SoC (blue line) compared with the filtered SoC signal (red line).

Finally, an error calibration stage was implemented. The error ε can be expressed

as:

ε = ˆSoC− y (4.1)

A linearly fitted calibration line can be used to correct the estimated SoC, i.e, ˆSoC.

Given m and q as the slope and intercept of the calibration line, the corrected SoC

can be computed as:

SoCc =
ˆSoC−q

1+m
(4.2)

To account for non-linearities in the full 100% - 0% range, it was split into smaller

10% width ranges, obtaining a calibration line for each of them. To compute the linear



4.2. Application Independent Training Data 63

fit, the Simple Linear Regression (SLR) algorithm was considered [81], [82]. This is

an efficient formulation for the MATLAB polyfit function, which, on the other hand,

implements the more complex general least squares algorithm. The SLR minimizes

the residual errors between each data point and the best first-order polynomial. The

cost function to be minimized is:

J(m,q) =
n

∑
i

(yi−mxi−q)2 (4.3)

where (xi,yi) are the coordinates of each data point to be fitted and n the total number

of points. To minimize the cost function, the partial derivatives must be equal to zero,

obtaining:

n

∑
i=1

yi = nq+m
n

∑
i=1

xi (4.4)

n

∑
i=1

xiyi = m
n

∑
i=1

x2
i +q

n

∑
i=1

xi (4.5)

The complete mathematical solution is depicted in [81], [82]. When introducing the

sum of squares, defined as (4.6) - (4.9), the solution can be significantly simplified.

Sx = ∑
i

xi (4.6)

Sy = ∑
i

yi (4.7)

Sxx = ∑
i

x2
i (4.8)

Sxy = ∑
i

xiyi (4.9)

Then, the fit line can be computed through the pseudo-code in Alg. 1.

When considering a 32-bit microcontroller, the averaged error in the m and q

parameters compared to the MATLAB polyfit function are of 3.5× 10−5 and 2.5×

10−5, respectively. As observed in the pseudo-code, the computational complexity is

O(n), much lower than the training phase whose complexity is O(n3) [83]. Therefore,

the training phase is unlikely to be performed online. However, this calibration stage
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Algorithm 1 Simple Linear Regression algorithm

1: Sx← 0

2: Sy← 0

3: Sxx← 0

4: Sxy← 0

5: n← number of data points

6: for i = 1:n do

7: Sx← Sx + x(i)

8: Sy← Sy + y(i)

9: Sxx← Sxx + x(i) · x(i)

10: Sxy← Sxy + x(i) · y(i)

11: end for

12: m← (n ·Sxy−Sx ·Sy)/(n ·Sxx−Sx ·Sx)

13: q← (Sxx ·Sy−Sx ·Sxy)/(n ·Sxx−Sx ·Sx)

14: return m and q

can be implemented on devices that have limited computing resources, calibrating

the system for the user’s application-specific field. Therefore, in the final application,

the algorithm will calibrate the error in the SoC estimation during the first operating

cycle, store the m and q parameters, and apply them to the following cycles.

4.2.5 Testing Phase

For the 3 A - 4 A range, the five dynamic profile test cycles were tested on the ob-

tained SVR model. The RMSE and MAE error metrics were considered for the ac-

curacy assessment. To apply the post-processing stage, one of the test cycles was

used to calibrate the linear fit parameters, which were applied to the remaining four

tests. To avoid the choice of the calibration test influencing the results, this approach

was repeated on each of the five tests. Then, it has to be noted that the specific SVR

model accuracy was defined as the averaged RMSEs and MAEs obtained during the

process. The effectiveness of the post-processing stages is shown in Table 4.4, where
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the error metrics are shown after each stage. As can be seen, the filtering reduces the

TABLE 4.4

TEST RESULTS WITH RANDOM DYNAMIC PROFILES IN THE RANGE 3A-4A

Stage Output RMSE (%) MAE (%)

SVR model 3.98 3.57

FIR Filter 2.87 2.49

Error Correction 1.2 1

RMSE of 28% and then the error correction stage of a further 58%, down to a RMSE

of 1.2% and MAE of 1%. In Fig. 4.7, the estimated and the expected SoC are shown,

along with the absolute error.

The training and testing procedure was repeated for the 2 A - 3 A range and the

totality of the dataset (2 A - 4 A range) to validate the effectiveness and flexibility

over different situations. The 2 A - 3 A range dataset was composed of 55 cycles

acquired as the 3 A - 4 A range dataset, and the final dataset was composed of a

total of 105 cycles. The five dynamic profiles in the range 2 A - 3 A range yielded

similar results in terms of RMSE and MAE as that of the 3 A - 4 A range. For the

2 A - 4 A range, two approaches were proposed. In the first approach, a single SVR

was trained with the entire 2 A - 4 A range dataset, while in the other approach, the

two models, 2 A - 3 A range and 3 A - 4 A range, were used together, applying an

input decision logic to choose the most suitable model according to the specific test

input vector current feature. In Table 4.5, the results of the tests in each current range

are summarized, showing consistency over each current range.

To further validate the proposed technique and make a fair comparison with the

literature, the RMSE and the MAE were evaluated in the case of two different and

more realistic application fields: some discharge cycles following the typical beha-

viour of a battery-powered drill and other drive cycles acquired according to the US06

standard speed profile [63].

The battery-powered drill current consumption was obtained in [79] by meas-

uring the current during a screwing process. The current profile shows a spike at the
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Figure 4.7: SoC value at the output of the system (red line) compared to the reference

(blue line). In the box, the absolute error.

startup, and then the current falls and rises again as the friction of the screw increases.

Finally, a higher current value is due to the conclusive tightening.

On the other hand, the US06 is defined as vehicle speed over time. The speed

set points were converted to current set points by a specifically designed vehicle

simulator as detailed in Appendix A. The reference vehicle was a 2012 Tesla Model

S 75.

For testing purposes, both the vehicle and drill current profiles have been scaled

to the required current range, still preserving the shape. In the case of the power tool

an RMSE of 0.90% and an MAE of 0.60% were obtained, while in the case of US06
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TABLE 4.5

TEST RESULTS WITH RANDOM DYNAMIC PROFILES IN DIFFERENT CURRENT RANGES

Current Range RMSE (%) MAE (%)

2A - 3A 1 0.89

3A - 4A 1.2 1

2A - 4A

(single SVR model)
0.8 0.65

2A - 4A

(multiple SVR models)
0.77 0.61

drive cycle an RMSE of 0.96% and an MAE of 0.76% were achieved. In Table 4.6,

the average of the tests is reported and compared with the literature.

TABLE 4.6

COMPARISON WITH THE STATE OF THE ART

Work
Application

field

Same profiles

for training

and test

RMSE (%) MAE (%)

[38] Automotive YES 1.18 0.94

[39] Automotive Partially 2 ±

ACO Chapter 3 Automotive NO 1.4 1.2

[40] Automotive NO 2.47 ±

[49] Automotive NO 1.51 1.32

[41] Automotive NO 1.37 1.12

Proposed Miscellaneous NO 0.94 0.75

It is important to note that many of the studies that have been reported use the

same profiles for both the training and testing phases, as in [38]. In [39], some con-

stant current profiles are used in the training set together with drive cycles profiles

for training an RBF-Neural Network. In [40], a DCNN was trained with drive cycle
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profiles with the aim of applying the model to other cells with transfer learning,

similarly to [41]. This justifies higher error metrics. In [49], a hybrid approach is

trained and validated with drive cycle profiles. Nevertheless, the proposed method

allows for a more general approach while still achieving similar performance. Some

works [47], [50] achieved even lower errors, but by using more complicated meth-

ods and a higher number of input features. On the other hand, the proposed method

achieved lower RMSE and MAE than papers exploiting different training and test

sets. These results confirm the feasibility of the method based on SVR training with

constant currents, which allows a more general approach to the problem of SoC es-

timation.

Finally, the computational cost was evaluated for the SoC assessment. With the

SVR model trained with the 2 A - 3 A dataset, the SoC value was inferred and post-

processed in 21.2 ms, while 18.2 ms were necessary with the 3 A - 4 A range SVR

model. This is also very important when considering the actual implementation of

the algorithm in a BMS, which must accomplish different monitoring tasks in a short

amount of time for different cells. It is worth considering that if the implementation

relies on a microcontroller device, the operating frequency will limit the maximum

number of cells that can be evaluated. This is because the SoC must be estimated

sequentially for each cell. However, using an algorithm that has a low computational

cost, like the one proposed, allows to monitor multiple cells at the same time. Altern-

atively, if the BMS includes a FPGA, the algorithm can be replicated multiple times

in hardware. This would enable multiple cell SoCs to be evaluated simultaneously

on the same board. This approach could be extended to more comprehensive current

ranges or to different cells, e.g., different chemistries or format factors. Moreover,

acquiring data from different battery cells allows to train ML models with datasets

composed of various data that help in the model generalization if applied to different

kinds of cells.

However, a larger dataset must be built. An improved workbench was developed

to fasten data acquisition on multiple battery cells at the same time. A board with

a set of four 18650 battery holders was wired with four IT-M3412 power supplies,

as shown in Fig. 4.8. Each battery holder and power supply was completely inde-
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Figure 4.8: Workbench for parallel data acquisition on multiple cells.

pendent. A flat cable connects to a LabJack T7 data acquisition (DAQ) board, which

gathers voltage data from the cell terminal and the temperature data from a 10 kΩ

NTC placed on the cell surface. Finally, the current is derived from the voltage sensed

across a PBH 10 mΩ shunt resistor and measured by three DMMs in voltage measure-

ment mode. The fourth cell was not connected due to the lack of a fourth DMM, but

the system is ready to be used. The workbench has been successfully validated by per-

forming some measurements on three battery cells at the same time. This paragraph

was only meant to provide useful information on a setup for parallel data acquisition,

and will not be used in this dissertation because data acquisition is still in progress.





Chapter 5

Advanced Input Features

Investigation

As detailed in Section 2.2 and Chapter 1, the internal impedance of a battery cell

is one of the most significant indicators of its SoC. Impedance variations can be

observed during cell operation, and a dependency on current and temperature has

also been studied [29], [27]. The Electrochemical Impedance Spectroscopy is a well-

known technique for examining the internal properties of electrochemical systems [84].

During the PhD, in the context of an International Mobility Program at the Depart-

ment of Electrical Engineering and Electronics of the University of Liverpool, the

battery cell impedance was evaluated as an additional input vector feature to be in-

cluded in the training set of a SVR model. Constant current cycles data were used

rather than application-specific data, as this approach has been proven successful

in Chapter 4. The main goal was to evaluate the effects on SoC estimation when in-

cluding the impedance spectrum and possibly identify a specific frequency, or a set

of frequencies, at which the SoC estimation performs better [B4].
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5.1 Online Electrochemical Impedance Spectroscopy

As detailed in Section 2.2.1, the EIS analysis results in the impedance frequency spec-

trum by applying (2.7) in the frequency domain. A single frequency perturbation can

be iteratively applied to obtain the full (but still discrete) impedance spectrum [85],

as in Fig. 5.1. However, this is a time-consuming process, as the cell must be com-

ω

Im
a

g

Real

> 10 kHz 10 kHz – 1 Hz < 1 Hz

Figure 5.1: Typical cell impedance spectrum

pletely charged and discharged for each frequency that has to be applied. This is not

appropriate for online operations where gathering as much information as possible in

a limited time is crucial. Several papers proposed to measure the impedance at mul-

tiple frequencies simultaneously [86], [87]. To achieve parallel acquisition, the cell

must be subjected to a multi-sine current signal, defined as (5.1):

I(t) = IDC +∑
k

IACk
sin(2π fk(t− t0k

)) (5.1)

where IDC refers to the DC component, and the terms inside the summation are the

AC perturbations. The IAC and ϕk = 2π fkt0k
are the amplitude and phase shift, re-

spectively, of the k-th sine signal at the fk frequency, as Fig. 5.2. Then, for each fk

frequency, the corresponding impedance value can be computed. This approach al-

lows the acquisition of impedance data at multiple frequencies in a shorter timeframe,
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Figure 5.2: Sinewave component for the multi-sine signal.

as they can be obtained within the same discharge cycle. On the other hand, it wor-

sens the time resolution of the high-frequency measurements and increases the overall

peak-to-peak amplitude of the perturbation.

It has to be noted that dedicated instruments are required to perform the EIS

since high-frequency measurements must be acquired with sufficient accuracy, and

complex computations are required to obtain the impedance value. As a result, EIS

was previously limited to offline characterisation in research laboratories until recent

studies explored the feasibility of an in-situ EIS evaluation of the cell impedance, ex-

ploiting different perturbation sources or perturbation types [88], [89], [90]. Indeed,

it has been successfully proven that the AC input can be injected into the battery

through a DC/DC converter [91], [92], [93]. This prevents any interruption of normal

operations and allows for online impedance evaluation. Employing this setup allows

the AC perturbations IACk
to be superimposed on the DC operations of the battery by

appropriately controlling the switching devices.
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5.2 EIS Dedicated Workbench

In this dissertation, the DC/DC converter strategy was chosen to perform an in-situ

EIS. The cell was subjected to several discharge cycles and different DC current

rates, superimposing a multi-sine signal to obtain the impedance values at differ-

ent frequencies. Working in the frequency domain with the FFT requires sampling

data at a much higher frequency than the workbench previously designed in Sec-

tion 4.2.1. Therefore, a dedicated workbench was designed. The schematic overview

of the workbench is shown in Fig. 5.3 and detailed in Fig. 5.4

Figure 5.3: Schematic overview of the proposed workbench for EIS dataset.

The unit under test was a module composed of sixteen K226650E02 3.2 Ah

26650 Lithium iron phosphate (LFP) cells, from the K2 Energy manufacturer, con-

nected in series. This allows the acquisition of data from each cell at the same time,

with proper precautions. The available cells were not brand new but were subjected

to a limited and equal number of discharge cycles in the controlled laboratory envir-

onment.

The module is connected in series to a DC/DC boost converter. A Labview code im-
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Figure 5.4: Detailed EIS workbench.

plements a closed-loop PI controller for the 100 kHz PWM signal, which is forwarded

to the converter by a NI 9401 digital module interfaced with a National Instruments

(NI) compactRIO 9035.

The multi-sine signal defined in (5.1) contains the AC excitation input. Five sinus-

oidal perturbations, i.e., fk at each decade from 10 mHz (k=1) to 100 Hz (k=5), with

tones amplitude IACk
equal to 5 mA, composed the signal I(t) to be applied to the

module. An Elektro-Automatik EL9000B electronic load is connected on the load

side, operating in constant resistance mode.

The NI 9205 voltage acquisition module receives the voltage data. The voltage is

sensed by the board on which the cells are mounted, which is also equipped with

isolation amplifiers. On the other hand, the current is sensed by a 25 A LEM LA 25-P

Hall-effect current transducer, with± 0.95 % accuracy at nominal current and 25 °C,

and then acquired by a NI 9215 acquisition module. The voltage and current signals

are sampled at a frequency fs of 2.5 kHz, an integer multiple of all frequency com-

ponents. The signal acquisition synchronized with the waveform generation ensures

no spectral leakage occurs when acquiring a full signal period. At the same time, the
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chosen sampling frequency is a sub-multiple of the PWM 100 kHz frequency so that

the aliasing from the switching frequency affects only the DC component and not the

measurements at the AC perturbation frequencies [31]. Finally, a C-coded Arduino

Uno acquires at fs,temp = 1 Hz the sensed temperature from four DS18B20 temper-

ature sensors placed on cells 1, 8, 9, 16 in Fig. 5.3, with a resolution of 0.0625 °C.

Sampling temperature data at a faster rate is not necessary due to the long time con-

stant in temperature changes.

5.3 Impedance Measurements

5.3.1 Dataset

The current range from 2 A to 4 A was considered, as in Section 4.2, with 0.5 A steps.

The module was discharged for a total of five current cycles, and repeated to obtain

three rounds of acquisition, named R1,R2,R3. For EIS technique, the maximum dis-

charge current and the sampling frequency are crucial for limiting the ∆SoC in a time

step, as depicted in (2.8). In the worst-case scenario, the highest current rate, i.e., 4 A,

and the longest measurement time, i.e., 100 s for the 10 mHz frequency, the change

in SoC during measurements is limited to 3.47%, from (2.8).

Proper CC-CV charge and 30 minutes of rest period were applied, followed by the

discharge cycle until the lower cut-off voltage of 2.5 V. A total of three sets composed

of five discharges were then obtained.

5.3.2 Voltage Drift Correction

As depicted in Section 2.2.1, the voltage drift must be corrected before processing the

data with the FFT to preserve the waveform periodicity. In Fig. 5.5a, a 100 s window

(a full 10 mHz period) shows that the voltage drift is noticeable due to the long

acquisition time and highly affects the voltage spectrum in the frequency domain, as

shown in Fig. 5.6a. It has to be noted that the drift in each window is almost linear,

and different techniques can be employed with different complexities to compensate

for it [31], [94], [30].
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In this case, a computationally simple trend linear fitting was used. Firstly, the

signal was averaged and downsampled over 10 s windows. This allowed to retain only

the fundamental sine wave, filtering out perturbations at higher frequencies. Then, the

slope of the straight line joining the window period’s first point with the next period’s

first point was computed, i.e., obtaining the voltage drift slope. The obtained line was

then subtracted from the original signal to compensate for the drift. The effects of the

compensation technique are shown in Fig. 5.5b, where the waveform periodicity was

recovered. This was repeated for each period of each full discharge cycle.

The slope of the voltage drift was assumed to be linear during the period, there-

fore this technique can not be applied in the highly non-linear regions of the voltage

characteristic, visible in Fig. 2.8 corresponding to SoC values near 100% and 0%. As

a consequence, the first and the last 100 s periods were discarded from the later com-

putations. Therefore, it has to be noted that the first impedance value was obtained at

time t = 200 s. If the slowest fk is higher than the 10 mHz employed here, i.e., shorter

windows, multiple periods should be discarded to ensure being out of the non-linear

region. Moreover, the last incomplete period was discarded, e.g., if the cell reached

the cut-off voltage before completing a 100 s period.

Finally, the FFT was performed in the MATLAB environment on each acquired

period of each discharge cycle, obtaining the voltage spectra. In Fig. 5.6b, the FFT

spectrum after the drift compensation is reported for the period in Fig. 5.5. Observing

Fig. 5.6, it is clear the quality improvement: in Fig. 5.6a, the compromised waveform

periodicity cause other frequencies components to appear, which are then removed

after the drift compensation, obtaining much more distinguishable lower frequen-

cies components. Indeed, after the compensation, the perturbation frequencies appear

more than one decade larger than the neighbouring frequencies.

5.3.3 SVR Training and Test

During each measurement period, also the current data withstand FFT analysis without

any pre-processing, as there was no drift. Finally, the impedance values were obtained

by applying (2.7).

Given T the time duration in seconds of a discharge cycle for a total of T × fs
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Figure 5.5: Voltage data comparison before (a) and after (c) the drift correction a single

acquisition period.
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(a)

(b)

Figure 5.6: Voltage FFT spectrum corresponding to a single acquisition period before (a)

and after (b) the drift compensation.
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data points, the obtained dataset was composed of T × f1−d measurement windows

nw, where f1 is the slowest frequency and d is the number of discarded periods, in

this case d =3 (the first, the last incomplete, and the last periods, as aforementioned).

For the fifteen discharge cycles of the three acquisition rounds, nw impedance values

were obtained for the five frequencies. In Fig. 5.7, the magnitude of the impedance at

the five frequencies is plotted against the SoC while discharging at 2 A to clarify the

impedance behaviour during the discharge cycle. The trend is similar for each current

rate.

Figure 5.7: Magnitude of the impedance for cell number 1 discharged at 2 A as a function

of the SoC.

In Fig. 5.8, the impedance magnitudes are plotted against the current rate but a

linear impedance-current dependency can not be found.

Finally, the mean current, voltage and temperature in the 100 s period were com-

puted to eliminate oscillations in the data due to the injected perturbations, possibly

affecting the training phase. At the end of pre-processing, each dataset Ri comprised

the input vector in Table 5.1 for each cell and current rate, where the impedance

magnitude and phase were computed as (5.2) and (5.3), respectively, and Re{Z} and
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Figure 5.8: Magnitude of the impedance for cell number 1 at different current rates.

Im{Z} are the real and imaginary parts of the complex impedance.

|Z|=
√

(Re{Z}2 + Im{Z}2) (5.2)

̸ Z = arctan
Im{Z}

Re{Z}
(5.3)

TABLE 5.1

INPUT VECTORS FOR EACH CELL AND EACH CURRENT RATE.

x1 Imean Vmean Tmean |Z10mHz| ̸ Z10mHz ... |Z100Hz| ̸ Z100Hz

... ... ... ... ... ... ... ... ...

xnw
Imean Vmean Tmean |Z10mHz| ̸ Z10mHz ... |Z100Hz| ̸ Z100Hz

The aim of this work was to evaluate the input features that resulted in the op-

timum SoC estimation, identifying the most important frequencies. As can be seen,

training an SVR model for each of the available combinations (213) was not feas-

ible. Therefore, choices were made. The current, voltage and temperature information
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were included in each training set, as these were the input features typically employed

in the literature, and the magnitude and phase at the same frequency were treated as

a single feature. This led to only six combinations of features, i.e., the combinations

proposed in Table 5.2.

The SVR reference target SoC was computed by (2.1). It is worth noting that in

a series connection, the CC technique must face some problems. The sixteen cells in

the module could be different within the manufacturer’s tolerances and despite having

the same working history, they may have aged slightly differently. Moreover, cell

temperatures may differ during the discharge phase, causing a non-synchronous cut-

off. These differences cannot be accounted for by the CC method, therefore the cells

may not reach the effective full charge and full discharge state at the same time [95].

In this work, the maximum deviation in the SoC of different cells has been estimated

to be 1.8%. For a preliminary investigation, in this work, only cell number 1 of sixteen

was considered for training and testing the SVR, granting consistency in the data. Out

of the three rounds of acquisitions, two were assigned to the training set and the last

one was used for the testing phase.

The SVR was trained with the RBF kernel and 10-fold cross-validation, which

was appropriate with the constant current approach in Chapter 4. Moreover, a linear

kernel works poorly since, from Fig. 5.7, linear fitting of the magnitude as a function

of the SoC leads to inaccurate results. For a benchmark, an SVR was trained with only

current, voltage and temperature and then compared with the SVR models trained

with different impedance information. A post-processing stage was applied to the

estimated SoC, limiting physically unfeasible values [50] and constraining the SVR

output by the maximum and minimum removable charge ∆Q in a time step ∆t.

∆Q = I∆t (5.4)

A 3% tolerance on the current measurement I in (5.4) was used, to avoid constraining

the SoC estimate to follow the CC result. Indeed, ideally setting 0% tolerance and the

initial SoC to the actual starting SoC, it should be possible to obtain an unrealistic

0% RMSE. This was obviously avoided to ensure realistic results to be applied to real

systems.
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TABLE 5.2

DIFFERENT INPUT FEATURES FOR SOC ESTIMATION ON THE SAME CELL

Input Features RMSE

I,V,T 1.34%

I,V,T,|Z|, ̸ Z @ 10 mHz 1.25%

I,V,T,|Z|, ̸ Z @ 100 mHz 1.06%

I,V,T,|Z|, ̸ Z @ 1 Hz 1.19%

I,V,T,|Z|, ̸ Z @ 10 Hz 1.25%

I,V,T,|Z|, ̸ Z @ 100 Hz 1.09%

5.3.4 Results and Discussion

The resulting SoC estimation values were evaluated with the RMSE metric in (1.4).

The comparison between the SVR models trained with the magnitude and phase of

the impedance and the reference SVR model is listed in Table 5.2. The tests were

performed with the five discharges of the left-apart acquisition round. Therefore, the

reported RMSE values are the averaged metrics.

As can be seen in Table 5.2, the reference SVR model without impedance inform-

ation resulted in a mean RMSE after the post-processing stage of 1.34%. All the five

SVMs trained with the impedance information in the feature set performed better than

the reference model. Among these feature combinations, the lowest RMSEs equal to

1.06% and 1.09% were obtained with the 100 mHz and the 100 Hz impedance in-

formation, respectively. The estimated SoC is shown in Fig. 5.9 for the SVR model

with the 100 Hz impedance features. From Fig. 5.9, it can be seen that the discharge

ended above 10% SoC since (2.1) does not consider battery ageing which affects Qtot ,

and the last periods were discarded as aforementioned. Moreover, it is important to

mention that only a limited number of possible combinations of input features were

considered during the analysis. Therefore, it is necessary to investigate more feature

combinations, including the feasibility of using impedance at more frequencies in the

training set at the same time. Among the tested combinations, the 100 Hz impedance

allows for shortening the measurement time compared to the 100 mHz impedance.
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Figure 5.9: State of Charge estimated by SVR trained with (green line) and without (red

line) the impedance information at 100 Hz compared with the reference CC

SoC.

Therefore, for later analyses, the 100 Hz model was used for reference.

Indeed, some more testing was performed using the remaining module cells (i.e.,

cells 2 to 16) not used in the training phase. The model with the 100 Hz information

resulted in a mean RMSE of 1.23% over the cells number 8, 9, and 16, equipped

with the temperature sensor. The error slightly increased, compared to the same-cell

testing, but it is justified by the different cell’s behaviour and impedance.

Compared with the literature, the extended set of input features performs simil-

arly when compared to the 1.8% RMSE of an SVR trained and tested on road drive

cycles in [38], i.e., a different approach than constant current discharges data. When

considering the testing on different cells, in [40] a DCNN was trained on different

cell data with the transfer learning technique. Once tested on different cells than those

used in the training, it resulted in a 2.42%, slightly worse than the proposed method

with extended input features, in which the cells belonged to the same manufacturer.

The hardware implementation of the proposed SVR trained with enhanced input

features will be investigated in the next developments. However, the FPGA imple-



5.3. Impedance Measurements 85

mentation of a trained SVR for SoC estimation has been already detailed in pre-

vious Chapter 4 and Chapter 3. The SVR resulted in low resource usage, so chan-

ging the input vector may have limited effects on the hardware implementation but

this will still be investigated. In contrast, when implementing the impedance feature

extraction, the high computational complexity of the FFT algorithm must be con-

sidered. Nevertheless, alternative methods such as the Goertzel algorithm are usually

employed to reduce the computational complexity of these procedures.





Chapter 6

Conclusions

The Lithium-ion batteries are complex electrochemical systems that must be mon-

itored for secure user operation. Indeed, BMSs equipped with proper management

algorithms are crucial to avoid damages and extend battery lifespan. The keystone of

each algorithm is the SoC indicator, which cannot be directly computed with straight-

forward formulas but must be accurately estimated. Most approaches discussed in the

literature only evaluate their algorithms in PC-based systems within laboratory envir-

onments. While this is crucial for a preliminary evaluation, real-environment BMSs

must be able to monitor several cells inside a battery pack at the same time. There-

fore, the designer must guarantee that the algorithms fit into the BMS platform (a

microcontroller or FPGA-based system) and can execute quickly enough to achieve

a real-time SoC estimation properly. Unfortunately, these considerations are typically

not investigated in PC-based approaches.

Some approaches to the SoC estimation have been investigated in this disserta-

tion. Each discussed approach has been either implemented or designed with future

implementation in mind, making choices to reduce the computational complexity.

Firstly, the state of the art has been investigated, showing that the most accurate

approaches rely on extensive cell characterisation to obtain ECMs. These model-

based approaches can be further improved by using concurrent algorithms that in-

troduce a feedback loop. However, in most cases, the user cannot go through this
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time-consuming process. Despite the high estimation accuracy, it has been proven in

[B1] and in Chapter 3 that implementing such architectures requires large computa-

tional resources. Indeed, when implemented on a Xilinx Artix-7 FPGA, the hybrid

approach that combines an ECM and the CC formula resulted in occupying about

23% of the available area. This can be acceptable if a small number of cells are be-

ing monitored or a good pipelined design is implemented. Nevertheless, it is still not

suitable for low-resource (and often low-cost) platforms.

The DDM approaches have been then investigated to obtain a more suitable tech-

nique for embedded systems [B2]. Among several ML algorithms, the SVR has been

selected as it requires less training data but still achieves comparable results to the

most popular NNs. Moreover, in the literature, the SVR applied to the SoC estima-

tion field has never been investigated for the implementation on embedded systems.

In this dissertation, the ACO was used instead of the traditional optimization al-

gorithms embedded in the MATLAB environment, with the ACO resulting in better

SVR modelling. The SVR model’s inferring function was computationally simpli-

fied leading to an easier implementation. This was obtained by employing a Linear

Kernel to map the input training features to the expected target output (i.e., the refer-

ence SoC computed through the CC, which is suitable for laboratory environments).

If properly manipulated, the Linear Kernel inferring function can be implemented

efficiently with only a scalar product and a sum, thus significantly limiting the re-

quired resources. This was made possible by adding an input feature - the SoC at the

previous time step - that linearized the cell behaviour. The dataset for training and

testing was available online to speed up the process. Finally, the VHDL code for the

SVR model was implemented on a Xilinx Artix-7 FPGA, along with a communica-

tion protocol for testing purposes. The SoC estimation resulted in a RMSE of 1.4%

and MAE of 1.2% when tested on a US06 drive cycle test set. When compared with

the literature, it resulted in better error metrics, and FPGA resource utilisation was

only limited to 1.4% of the available LUTs. The occupied area has been improved by

a factor of 16 compared with the previously investigated hybrid approach in which

23% was used.

Investigating the state of the art, it is clear that most of the work focuses on EVs
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due to the large market share. Therefore, most approaches are trained and tested on

application-specific data, i.e. the simulated EV data called drive cycles, but it is not

clear whether they can be applied to cells used in different scenarios or not. In this

dissertation, a more general approach has been studied, in which only constant cur-

rent profiles were used for the training phase, and the obtained model was tested

on application-specific data [B3], [B5]. A dedicated workbench has been designed

to gather data from a Panasonic NCR18650 battery cell during operations. Constant

current discharges can be easily performed with any instrument or with simple load

resistors, but acquiring dynamic drive cycle profiles for the testing phase was not

straightforward. Indeed, the drive cycles are defined as speed setpoints that must be

converted into current setpoints to be applied to the battery cell. This conversion is

vehicle and battery dependent, therefore a vehicle simulator was coded in MATLAB

to account for EV technical specifications. Different SVR models have been trained

with constant current cell data (i.e., current, voltage, temperature) and the RBF Ker-

nel to deal with the batteries’ non-linear behaviour. The acquired full current range

was 2 A to 4 A, but it has been also split into two subsets to validate the approach

on a total of three different scenarios (2A-4A range, 2A-3A range and 3A-4A range).

The obtained SVR models have been tested with five test cycles representing ran-

dom dynamic cycles, one US06 drive cycle profile and one dynamic profile from a

battery-powered drill. For each of these scenarios, a post-processing stage was im-

plemented to further improve the SoC estimation, and the resulting averaged RMSE

was about 1% on these application-specific tests, with a minimum RMSE of 0.77%,

despite the SVR models being trained on application-independent data. The resulting

error metrics were consistent over different current rates, proving the generalization

capabilities of the proposed approach, and it could definitely be extended to datasets

including a wider current range.

Finally, with the same purposes, a more advanced set of input features was in-

vestigated to improve this general approach. Along with the constant current data,

the AC battery impedance was studied at different frequencies since the cell’s imped-

ance is one of the most important cell state indicators. The impedance spectrum can

be obtained by employing the EIS. In this dissertation, a multi-sine signal composed
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of sine waves at different frequencies (i.e., five frequencies logarithmically spaced)

is superimposed to the DC current. Injecting the perturbations during the cell dis-

charge through a DC/DC converter allowed the online evaluation of the impedance

without stopping cell operations. The workbench for applying the perturbations and

acquiring data has been designed following some crucial rules of thumb to allow ef-

fective online EIS. The voltage and current in the time domain must be Fast-Fourier

transformed in the frequency domain to obtain the impedance value. However, before

processing data, the voltage drift resulting from the cell discharge must be corrected

by introducing a drift compensation pre-processing stage. Finally, the FFT has been

applied and the obtained five impedance values have been introduced in the training

input vector as magnitude and phase. Three datasets were acquired comprising five

different current rates, using the first two for training and the latter for testing. A ref-

erence SVR model has been trained with only current, voltage and temperature but

each SVR model that included the impedance in the input vector resulted in lower

RMSE when tested [B4]. Finally, the 100 Hz impedance is a trade-off between SoC

estimation accuracy and the implementation complexity. Indeed, faster frequencies

allow for shorter measurement time, lower voltage drift, and lower SoC change dur-

ing measurements, improving the whole architecture. Therefore, this approach could

be further investigated and improved, and finally implemented on BMSs to operate

the EIS during actual battery operations.



Appendix A

Vehicle Simulator

Given that drive cycle profiles are the most commonly used reference tests for battery

simulations, it is crucial to use comparable test sets to achieve fair comparisons with

the literature. However, drive cycle profiles are not available in terms of current con-

sumption but they are described in terms of speed as a function of time, as detailed

in Section 1.4.3.

Therefore, a simulator for vehicle consumption computation has been designed.

The simulator can derive the required current profile for a moving Electric Vehicle,

according to the selected drive cycle and vehicle characteristics. For this purpose,

a 2012 Tesla Model S 85 has been chosen due to the online largely available tech-

nical specifications [96]. Moreover, Tesla’s battery pack is composed of 18650 size

factor cells (Fig. A.1), in particular 7104 Panasonic NCR18650 (16 modules, each

one 6s74p). Therefore, the simulated battery cells should reflect the same behaviour

as the 18650 battery cells used in this dissertation.

A.1 Required Force

Drive cycles are standardized and they are expressed as time-speed setpoints se-

quences, as shown in Fig. 1.3. Firstly, obtaining the required acceleration a [m/s2]
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Figure A.1: Tesla Model S 85 kWh battery pack.

for each time step is straightforward by employing (A.1).

a =
∆v

∆t
(A.1)

where ∆v = vt − vt−1 is the speed change in each time step, t is the time index,

and ∆t = t − (t − 1) is the time step. To accelerate the vehicle of the desired a,

a specific tractive force Ft is required. This force can be derived from the equa-

tion of motion when considering resistance forces acting on a vehicle of total mass

M [kg] [97], [98], [99], [100]. The resulting equation is (A.2) and a schematic of the

forces acting on the vehicle is shown in Fig. A.2.

δ ·M ·a = Ft −Faero−Froll−Fgrade (A.2)

Faero =
1

2
·ρ ·A ·Cd · (V +Vwind)

2 (A.3)

Fgrade = M ·g · sin(θ) (A.4)

Froll = Pα ·W β · (a+bV + cV 2) (A.5)

The inertial equivalent mass must be considered, especially when dealing with

heavy electric vehicles, hence, a rotational inertia coefficient δ is introduced. The
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Figure A.2: Schematic representation of the forces acting on a moving vehicle.

δ factor can be estimated using an empirical relationship (A.6) to deal with un-

known angular moments of all the rotating components, reported here but detailed

in [98], [101].

δ = 1+0.04+0.0025i2gi20 (A.6)

where ig is the gear ratio and i0 is the gear ratio of the final drive.

The aerodynamic drag force Faero (A.3) is a function of vehicle frontal area A

[m2], its drag coefficient Cd [unitless], and its speed V [m/s] and wind speed Vwind [m/s].

This vehicle simulator also considers the air density ρ[kg/m3] modelled as a function

of the temperature and altitude [102] to deal with different driving environmental

conditions.

The rolling resistance force Froll (A.5) acting on the wheels is affected by tyres

pressure P [kPa], normal force W [N] and vehicle speed V [km/h] , and the relation

coefficients α,β ,a,b,c has been modelled in SAE J2452 test procedure [103], [104].

Since its equation coefficients are tyre dependent, some typical values can be found in

the literature [105]. The road grade θ causes a force Fgrade acting on the vehicle (A.4)
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and affecting the normal forces Wf , Wr applied on front and rear axles respect-

ively [98], [106], formulated as (A.7).

Wf =
−Faerohaero−MahCG−MghCG sin(θ)+Mglr cos(θ)

l f + lr
(A.7)

Wr =
Faerohaero +MahCG +MghCG sin(θ)+Mgl f cos(θ)

l f + lr

where haero is the height of aerodynamic force application point, and it is assumed

the same as the centre of gravity height hCG [98]. In this case l f and lr are the distances

from the front and rear axle to the centre of gravity, respectively, as they sum to the

vehicle wheelbase L.

A.2 Adherence Coefficient

For stable vehicle control, the computed tractive force Ft should not exceed the max-

imum tractive force Ftmax
permitted by the tyre-road adherence coefficient µ and the

normal force acting on the driven axle (A.8) [98].

Ftmax
= µ(s)Wf/r (A.8)

The adherence coefficient µ highly depends on the slipping of the driven wheels

(namely slip ratio s), which is defined as (A.9) [106].







s = 1− V
re f f ω , during driving (Ft ≥ 0)

s =
re f f ω

V
−1 , during braking (Ft < 0)

(A.9)

where V is the translational speed of the tyre centre, ω is the tyre rotational speed

and re f f is the effective radius of the rolling tyre, computed as (A.10) [106].

re f f = r×
sin(cos(

r−Wf/r/k

r
)
−1

)

cos(
r−W f/r/k

r
)
−1

(A.10)

where k[kg/m] is the tyre stiffness for which a simplified formulation is given in [104].

Since µ is a function of the slip ratio, a simplified formulation is provided in [107].
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In [108], a simplified friction model has been employed in which the adherence coef-

ficient is described as a function of the slip ratio: it grows linearly up to the peak value

µpeak, reached in correspondence of a critical slip ratio scrit , then above the critical

value, µ is constantly considered equal to a value µdyn. This simplified formulation

is also similar to the ªtanh modelº [109]. In literature, some typical values for µpeak,

and corresponding critical slip ratio scrit , are presented [98], [109], [110]. The max-

imum allowed tractive force can be then computed as (A.8) substituting µ(s) with

µpeak. For normal driving, such as standard drive cycles considered in this disserta-

tion, the slip ratio has been assumed to stay within scrit . Therefore, the slip ratio can

be computed by the simple linear relationship in (A.11), and the actual wheel speed

ω can be derived from (A.9).

s =
Ft

Wf/r

×
scrit

µpeak

(A.11)

In addition, wheel speed affects motor shaft speed ωm, as in (A.12) [111], which

may be limited by motor specifications, hence limiting actual vehicle speed. Actual

vehicle speed can be derived from (A.12) and (A.9), employing the limited ωm [rpm].

ωm = ωwheel×G×
60

2π
(A.12)

where G represents the product of gear ratio of the final drive by the gear ratio of the

transmission, called gear ratio from now on.

A.3 Required Torque

Two distinct scenarios must be considered to obtain battery power from the tractive

force value.

Accelerating

The limited tractive force can be directly converted into motor torque Tm through the

wheel radius r and gear ratio G [111] with (A.13)

Tm =
Ft × r

ηG×G
(A.13)
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In this equation, the transmission efficiency ηG cannot be neglected. In the case of a

Tesla Model S 85, the vehicle is equipped with a 9.73:1 single-gear transaxle, similar

to Nissan Leaf transmission, for which in similar papers a 97% efficiency has been

assumed [112], [113], [114]. The resulting motor torque Tm can be limited by motor

specifications, depending on the motor operating point defined by the shaft speed ωm

obtained in (A.12) [115], [116], [117].

Braking

Further considerations must be examined when the vehicle brakes due to EV’s dis-

tinctive regenerative braking. EV motors can recover part of the available kinetic

energy to partially recharge the battery pack, hence improving the vehicle range. The

vehicle manufacturers program the motor controller to obtain the desired regenerat-

ive braking under different driving conditions (e.g., high/low speed, high/low battery

State of Charge, etc.). As a reference for a preliminary simulation, Tesla’s battery can

accomplish an absolute maximum regenerated power Pbat,IN of 60 kW. Therefore, a

maximum braking force can be computed by arranging the equations (A.14) depicted

in [111].

Ft =
Tw

r
(A.14)

Tw =
Tm,brk

ηG

×G

Tm,brk =
Pm,brk

ωm×
2π
60

Pm,brk =
Pbat_in

ηE

Fbrk,maxwheels
=

Pbat_in,max

ηE

×
1

ωm×
2π
60

×
G

ηG

×
1

r

In (A.14), motor brake power Pm,brk stored into the battery is affected by electric

efficiency ηE , which comprises motor, inverter, and battery efficiencies. This max-

imum battery-limited braking force is defined in optimum battery conditions: the

manufacturer motor controller firmware adapts this value according to the SoC level
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and ambient temperature. In [118], a characterisation of coast-down decelerations for

different Tesla vehicles has been performed, reporting three deceleration phases for

the Tesla Model S in Standard and Low Mode regeneration. Here, Standard Mode is

considered. The first phase of increasing deceleration lasts 0.68 s at −0.23 g/s. Since

the standard drive cycle time step is 1 second, this phase has been neglected during

simulation. The second phase is characterised by steady-state deceleration amax at an

average of −0.19 g. This has been reported for different speeds, and a reduction in

deceleration intensity was found to start under a threshold Vth1 = 10.34 mph (i.e.,

16.64 km/h). Therefore, in this simulator, deceleration under this threshold speed has

been computed as a linearly decreasing function since this third phase has not been

analyzed in detail in [118]. In a first approximation, these values can be acceptable

since obtaining precise values from each manufacturer is unfeasible. Coast-down de-

celeration limit leads to the maximum motor braking force definition in (A.15).

Fbrk,coastdown =



















amax×g×δM for V ≥Vth1

amax×
V−Vth2

Vth1−Vth2
×g×δM for Vth2 <V <Vth1

0 for V ≤Vth2

(A.15)

A low-speed threshold Vth2 for regenerative braking activation is usually adopted

due to low available torque conditions [114], [112], here it is assumed to be 5 km/h.

It has to be noted the coast-down test is performed by accelerating to the desired

speed and then releasing the throttle pedal, thus amax comprises road forces, which

are then subtracted when computing brake force at the motor. It amounts to this, if Ft

(previously limited by road adherence) exceeds Fbrk,coastdown then motor brake force

at the wheels Fbrk,mot@wh is limited by the lowest of Fbrk,coastdown and Fbrk,max_wheels,

else it is limited only by Fbrk,max_wheels. Limits on maximum braking force are used

to compute electrical and mechanical brake force partitioning (A.16).

Fbrk,mech = Ft −Fbrk,mot@wh (A.16)

Brake pads effort Fbrk,mech can be reduced to zero allowing the electric motor to

sustain the desired deceleration as far as it does not exceeds limits. Electric motor
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braking capability has been limited to comply with battery limits, therefore when

the battery is almost completely charged, or the temperature is too low, regeneration

is disabled. Electric motor braking force can then be converted into motor torque

through wheel radius and gear ratio (A.17).

Tm,brk =−ηG×
Fbrk,mot@wh× r

G
(A.17)

For simulation evaluation purposes, also the total recoverable energy Eavail has

been computed with (A.18).

Eavail = ∆Ekin−Eloss (A.18)

Eloss = (Faero +Froll +Fgrade)×V ×∆t

where ∆Ekin is the difference in kinetic energy while decelerating during a single time

step, and Eloss represents energy losses due to road forces.

A.4 Battery Power

Actual acceleration for the considered time step can be derived from (A.2), where Ft

is the actual limited tractive force during acceleration or braking. As a consequence,

in case one of the described limits has been exceeded, the vehicle will not be able to

fulfil the required speed for the specific time step. Finally, the total torque computed

for acceleration and braking phases can be converted into motor power Pm, then into

the required battery power (A.19) [111].

Pm =







Tm×
2π
60
×

(ωm,prev+ωm)
2

during driving

Pm,brk = Tm,brk×
2π
60
×

(ωm,prev+ωm)
2

during braking
(A.19)

In (A.19), the motor is assumed to be linearly accelerating; hence, a mean value

for the motor speed over the time step is assumed. The required battery power is

affected by electric efficiency ηE . Motor efficiency for a Tesla Model S 85 induc-

tion motor has been assumed to be 93.4% at the maximum output power operating
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point [119], even though a look-up table for speed-power efficiency heatmap could

be introduced to enhance simulation performance or exploiting piece-wise approx-

imation [112].

Tesla’s inverter and battery efficiencies can roughly be estimated by literature

mean efficiencies, as reported in [120], where inverter efficiency 96% and battery

efficiency 95% are assumed, leading to 85.2% overall electrical efficiency ηE .

The total battery power must also account for auxiliary onboard loads, which

can affect the total vehicle consumption. They are usually powered by a 12 V bat-

tery charged from the high-voltage battery through a DC/DC converter, whose effi-

ciency ηDC has been assumed to be 95% [114]. In [114], the main EV auxiliaries

and their corresponding approximated power consumption are listed. For the NEDC

drive cycle, lights and auxiliary devices must be switched off, except for those re-

quired for testing and daytime operation of the vehicle [114]. Therefore, when the

simulated drive cycle is the NEDC, only driving control, power steering, and energy

management systems will be activated, resulting in a total of 700 W consumption.

Finally, the total battery power can be computed with (A.20) [111].

Pbat =







Paux

ηDC
+ Pm

ηE
during driving

Paux

ηDC
+Pm,brk×ηE during braking

(A.20)

A.5 Current Consumption Profile

Once the battery pack specifications and the required power are known, computing

the battery pack current is a straightforward calculation with (A.21).

Ipack =−
Pbat [W]

Vnom,pack

(A.21)

where Vnom,pack is the nominal battery pack cell voltage, usually available from man-

ufacturer vehicle data or derived from the nominal cell voltage and series connected

cells. The sign convention here is that negative current flows out of the battery.

The current flowing on each cell can be then derived by knowing the battery pack

format factor (A.22).
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Icell =
Ipack

NP

(A.22)

where NP represents the total number of parallel cells in the battery pack.

Moreover, since battery power is highly dependent on battery internal resistance,

which depends on SoC and battery environmental conditions, it is also possible to

accurately model Ipack as a function of SoC, as depicted in [106], [111]. Current

could be then expressed as (A.23)

Ipack =
OCV −

√

OCV 2−4Rint(−Pbat)

2Rint

(A.23)

where OCV is the battery open-circuit voltage and Rint is the internal battery resist-

ance, but they have to be previously characterised [121].

A.6 Range Estimation

Once the battery and cell current have been obtained, the cycle profile can be used as a

test for the SoC estimation algorithms. For the purposes of simulations, the designed

vehicle simulator also included a SoC estimation formula based on the CC (2.2) to

determine a theoretical autonomy range if the vehicle is driven according to the pro-

posed drive cycle. In this simulator, all the battery pack cells are assumed to be equal-

ized by the vehicle BMS, thus, each cell SoC should match the total battery pack SoC.

The total distance the vehicle has run during the drive cycle can be computed

through the integration of the vehicle speed, averaged over the time step to take into

account the linear acceleration. Therefore, by knowing the total distance and total

charge consumption, it is possible to compute the theoretical maximum vehicle range

undergoing the repetition of a specific drive cycle as (A.24)

range =
100%

∆SOC
×distance (A.24)

where ∆SoC is the quantity of charge used during the cycle. In case the current profile

has been evaluated through (A.23), equation (A.24) is no longer accurate since Ipack

is referred only to a specific SoC. Hence, ∆SoC derived from CC cannot be assumed
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to be the same for each drive cycle repetition. In this case, the simulation must be

looped until the resulting SoC equals zero.

At the end of the drive cycle, it is also possible to compute the vehicle efficiency

in terms of percentage recovered energy (A.25).

Erecov =
∑
∫ t

0 Pbat,brk(t)dt

∑Eavail(t)
(A.25)

where Pbat,brk are the negative values of Pbat. The available energy during braking is

computed with (A.18) for each time step, and the integral of the battery power during

braking represents the total energy flowed into the battery in the same time step.

A.7 Results

The Tesla Model S 85kWh NEDC ratings are available online [122] and reported

in Table A.1. Therefore, the NEDC drive cycle was used as a reference to test the

accuracy of the designed simulator. The vehicle was assumed to drive at ambient

temperature at sea level and on a flat road surface.

TABLE A.1

COMPARISON BETWEEN NEDC RATINGS AND SIMULATION RESULTS FOR A TESLA

MODEL S 85KWH.

Energy Consumption

(kWh/100km)

Range

(km)

NEDC 16.1 502

Simulator 17.1 488

Error +6.2% -2.79%

Results reported in Table A.1 show that an error lower than 3% is obtained in

the estimated vehicle range, with 6.2% more battery consumption. It is worth noting

that, even if several data are available reporting the Tesla Model S 85kWh technical

specifications [96], the simulator must introduce different assumptions on the vehicle

efficiencies and environmental conditions. Therefore, the results are optimum for the
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Figure A.3: NEDC drive cycle speed setpoints (blue line) and the corresponding cell

current (red line).

purposes of this simulator, which only aims to convert the desired speed setpoints

into current setpoints.

The NEDC vehicle speed setpoints and the resulting current profile are shown in

Fig. A.3.
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